Network-Scale Analysis of Sea-Level Rise Impact on Flexible Pavements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pavement Network and Roadway Characteristics
2.2. Groundwater Table, Topography, and Bedrock Level
2.3. Pavement Layer Samples
Core Source | Functional Classification | Layer Type | Generalized Material | Soil Class | MR (MPa) | µ | Thickness (mm) | |
---|---|---|---|---|---|---|---|---|
ID. | Description | |||||||
I-95 North Miami | 11A | Principal Arterial—Interstate | Asphalt | HMA | n/a | 2413 | 0.35 | 229 |
Base | Sand, silt with limerock | GM | 265 | 0.35 | 1006 | |||
Subgrade | Sandy limestone | SP | 193 | 0.3 | 2134 | |||
Sand | SP | 193 | 0.3 | 2438 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
I-95 NB to Turnpike Connector | 11B | Principal Arterial—Interstate | Asphalt | HMA | n/a | 2413 | 0.35 | 102 |
Base | Sand, silt with limerock | GM | 265 | 0.35 | 1128 | |||
Subgrade | Sand, silt with limerock | SM | 221 | 0.25 | 1524 | |||
Sand | SP | 193 | 0.3 | 1829 | ||||
Sand | SP | 193 | 0.3 | 2438 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR-826/SR-836 Palmetto Expressway | 12A | Principal Arterial—Expressway | Asphalt | HMA | n/a | 2413 | 0.35 | 366 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 183 | |||
Subgrade | Sand, silt with traces of limerock | A-2-4 | 221 | 0.25 | 1128 | |||
Sand | A-3 | 200 | 0.30 | 610 | ||||
Sandy Silt | A-4 | 165 | 0.33 | 610 | ||||
Sand | A-3 | 200 | 0.30 | 2438 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR-826/1-75 | 12B | Principal Arterial—Interstate | Asphalt | HMA | n/a | 2413 | 0.35 | 152 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 762 | |||
Subgrade | Sand | A-3 | 200 | 0.30 | 914 | |||
Sand, silt with limerock | A-1-b | 262 | 0.35 | 610 | ||||
Sand | A-3 | 200 | 0.30 | 2438 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
US 1/SR 5 SB SW 214 Street | 14A | Principal Arterial—Other | Asphalt | HMA | n/a | 2413 | 0.35 | 305 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 305 | |||
Subgrade | Sand, silt with limerock | A-1-b | 262 | 0.35 | 305 | |||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR A1A/Indian Creek Drive | 14B | Principal Arterial—Other | Asphalt | HMA | n/a | 2413 | 0.35 | 58 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 213 | |||
Subgrade | Sand, silt with traces of limerock | A-2-4 | 221 | 0.25 | 945 | |||
Sand | A-3 | 200 | 0.30 | 1829 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR 25 | 16A | Minor Arterial | Asphalt | HMA | n/a | 2413 | 0.35 | 122 |
Base | Sand, silt with limerock | SM/SP-SM | 221 | 0.35 | 244 | |||
Subgrade | Sand, silt with limerock | SP/SP-SM | 193 | 0.25 | 732 | |||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR-826/SR836 Interchange | 16B | Minor Arterial | Asphalt | HMA | n/a | 2413 | 0.35 | 38 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 204 | |||
Subgrade | Sand, silt with traces of limerock | A-2-4 | 221 | 0.25 | 305 | |||
Sand | A-3 | 200 | 0.3 | 1524 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR 925/NW 3 RD Court | 17A | Major Collector | Asphalt | HMA | n/a | 2413 | 0.35 | 221 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 305 | |||
Subgrade | Sand | A-3 | 200 | 0.30 | 518 | |||
Sand | A-3 | 200 | 0.3 | 1524 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
NW 103 ST and W16 Ave | 17B | Major Collector | Asphalt | HMA | n/a | 2413 | 0.35 | 33 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 204 | |||
Subgrade | Sand, silt with traces of limerock | A-2-4 | 221 | 0.25 | 305 | |||
Sand | A-3 | 200 | 0.3 | 1524 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
SR-826/SR836 Interchange | 18A | Minor Collector | Asphalt | HMA | n/a | 2413 | 0.35 | 61 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 2377 | |||
Subgrade | Sand | A-3 | 200 | 0.30 | 1067 | |||
Sand, silt with traces of limerock | A-2-4 | 221 | 0.25 | 610 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
NE 124TH Street | 18B | Minor Collector | Asphalt | HMA | n/a | 2413 | 0.35 | 51 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 204 | |||
Subgrade | Sand | A-3 | 200 | 0.30 | 305 | |||
Sand | A-3 | 200 | 0.3 | 1524 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
NE 205TH Street | 19A | Local | Asphalt | HMA | n/a | 2413 | 0.35 | 102 |
Base | Sand, silt with limerock | GM | 265 | 0.35 | 204 | |||
Subgrade | Sandy Limestone | SP | 193 | 0.25 | 1219 | |||
Bedrock | n/a | 5171 | 0.2 | Infinite | ||||
NE 128TH Street | 19B | Local | Asphalt | HMA | n/a | 2413 | 0.35 | 25 |
Base | Sand, silt with limerock | A-1-b | 262 | 0.35 | 204 | |||
Subgrade | Sand | A-3 | 200 | 0.30 | 305 | |||
Sand | A-3 | 200 | 0.30 | 244 | ||||
Bedrock | n/a | 5171 | 0.2 | Infinite |
2.4. Vulnerable Road Identification Due to Rising Groundwater
2.5. Pavement Response Model
3. Results and Discussion
3.1. Zone Classification Based on Base Clearance to Groundwater Table
3.2. Pavement Response Model Calibration
3.3. Network Scale Pavement Performance under SLR
3.4. Analysis of Groundwater Flow Effect
4. Uncertainty and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkinson, R.W.; Wdowinski, S. Accelerating Sea-Level Rise and the Fate of Mangrove Plant Communities in South Florida, U.S.A. Geomorphology 2022, 412, 108329. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Sarah, L.C.; Péan, C.; Chen, Y.; Goldfarb, L.; Melissa, I.; Gomis, J.B.; Matthews, R.; et al. Climate Change 2021: The Physical Science Basis; Working Group I Contribution to the IPCC Sixth Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021. [Google Scholar]
- Southeast Florida Regional Climate Change Compact Sea Level Rise Work Group (Compact). Unified Sea Level Rise Projection Southeast Florida. 2020. Available online: https://southeastfloridaclimatecompact.org/wp-content/uploads/2023/10/2019-sea-level-projections.pdf (accessed on 1 December 2022).
- PolicyLink; PERE. An Equity Profile of the Southeast Florida Region; PolicyLink: Oakland, CA, USA, 2014. [Google Scholar]
- Hughes, J.D.; White, J.T. Hydrologic Conditions in Urban Miami-Dade County, Florida, and the Effect of Groundwater Pumpage and Increased Sea Level on Canal Leakage and Regional Groundwater Flow; US Geological Survey: Reston, Virginia, USA, 2014; p. 175.
- Sukop, M.C.; Rogers, M.; Guannel, G.; Infanti, J.M.; Hagemann, K. High Temporal Resolution Modeling of the Impact of Rain, Tides, and Sea Level Rise on Water Table Flooding in the Arch Creek Basin, Miami-Dade County Florida USA. Sci. Total Environ. 2018, 616–617, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Hauer, M.; Mueller, V.; Sheriff, G.; Zhong, Q. More than a Nuisance: Measuring How Sea Level Rise Delays Commuters in Miami, FL. Environ. Res. Lett. 2021, 16, 064041. [Google Scholar] [CrossRef]
- Moraes, R.; Velasquez, R.; Bahia, H. Measuring the Effect of Moisture on Asphalt-Aggregate Bond with the Bitumen Bond Strength Test. Transp. Res. Rec. 2011, 2209, 70–81. [Google Scholar] [CrossRef]
- Aguiar-Moya, J.P.; Salazar-Delgado, J.; Baldi-Sevilla, A.; Leiva-Villacorta, F.; Loria-Salazar, L. Effect of Aging on Adhesion Properties of Asphalt Mixtures with the Use of Bitumen Bond Strength and Surface Energy Measurement Tests. Transp. Res. Rec. 2015, 2505, 57–65. [Google Scholar] [CrossRef]
- Sultana, M.; Chai, G.W.; Martin, T.C.; Chowdhury, S.H. A Study on the Flood Affected Flexible Pavements in Australia. In Proceedings of the 9th International Conference on Road and Airfield Pavement Technology, Dalian, China, 9–13 August 2015; pp. 9–13. [Google Scholar]
- Sultana, M.; Chowdhury, S.; Chai, G.; Martin, T. Modelling Rapid Deterioration of Flooded Pavements. Road Transp. Res. 2016, 25, 3–14. [Google Scholar]
- Vallès-vallès, D.; Torres-machi, C.; Ph, D.; Asce, M. Deterioration of Flexible Pavements Induced by Flooding: Case Study Using Stochastic Monte Carlo Simulations in Discrete-Time Markov Chains. J. Infrastruct. Syst. 2023, 29, 05022009. [Google Scholar] [CrossRef]
- Knott, J.F.; Elshaer, M.; Daniel, J.S.; Jacobs, J.M.; Kirshen, P. Assessing the Effects of Rising Groundwater from Sea Level Rise on the Service Life of Pavements in Coastal Road Infrastructure. Transp. Res. Rec. 2017, 2639, 1–10. [Google Scholar] [CrossRef]
- Elshaer, M.; Ghayoomi, M.; Daniel, J.S. Impact of Subsurface Water on Structural Performance of Inundated Flexible Pavements. Int. J. Pavement Eng. 2019, 20, 947–957. [Google Scholar] [CrossRef]
- Elshaer, M.; Ghayoomi, M.; Daniel, J.S. Methodology to Evaluate Performance of Pavement Structure Using Soil Moisture Profile. Road Mater. Pavement Des. 2017, 19, 952–971. [Google Scholar] [CrossRef]
- Mallick, R.B.; Tao, M.; Nivedya, M.K. Impact of Flooding on Roadways. In Geotechnics for Natural and Engineered Sustainable Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 385–397. [Google Scholar] [CrossRef]
- Asadi, M.; Kottayi, N.M.; Tirado, C.; Mallick, R.B.; Mirchi, A.; Nazarian, S. Framework for Rigorous Analysis of Moisture-Related Structural Damage in Flexible Pavements. Transp. Res. Rec. 2019, 2673, 640–648. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H. Impact of Sea Level Rise on Asphalt Pavement Responses Considering Seasonal Groundwater and Moisture Gradient in Subgrade. Transp. Geotech. 2023, 40, 100992. [Google Scholar] [CrossRef]
- Cook, L.M.; McGinnis, S.; Samaras, C. The Effect of Modeling Choices on Updating Intensity-Duration-Frequency Curves and Stormwater Infrastructure Designs for Climate Change. Clim. Change 2020, 159, 289–308. [Google Scholar] [CrossRef]
- Oyediji, R.; Lu, D.; Tighe, S.L. Impact of Flooding and Inundation on Concrete Pavement Performance. Int. J. Pavement Eng. 2019, 22, 1363–1375. [Google Scholar] [CrossRef]
- Spy Pond Partners; Transcend Spatial Solutions; Hall, J.P. Successful Practices in GIS-Based Asset Management; NCHRP; Transportation Research Board: Washington, DC, USA, 2015; ISBN 9780309308397. [Google Scholar]
- Lee, B.; Gilman, S. Asset Management Field Data Collection Tools: Case Studies of Select Transportation Agencies; Office of Planning Federal Highway Administration: Washington, DC, USA, 2020.
- Cahill, P.; Englin, E. Asset and Performance Management at State DOTs Case Studies of Select Transportation Agencies; United States Federal Highway Administration: Washington, DC, USA, 2021.
- Bloetscher, F.; Berry, L.; Rodriguez-Seda, J.; Hammer, N.H.; Romah, T.; Jolovic, D.; Heimlich, B.; Cahill, M.A. Identifying FDOT’s Physical Transportation Infrastructure Vulnerable to Sea Level Rise. J. Infrastruct. Syst. 2014, 20, 04013015. [Google Scholar] [CrossRef]
- Dorney, C.; Flood, M.; Meyer, M.; Cornetski, G.; Borroni, G.; Lafferty, J. South Florida Climate Change Vulnerability Assessment and Adaptation Pilot Project; United States Federal Highway Administration: Washington, DC, USA, 2015.
- Goodison, C.; Thomas, A.; Palmer, S.; Pierre-Jean, R.; Downing, D.; Zwick, P.; Watkins, R.; Barbour, L.; Norris, K. Testing and Enhancement of the Florida Sea Level Scenario Sketch Planning Tool; University of Florida GeoPlan Center: Gainesville, FL, USA, 2015. [Google Scholar]
- Rojali, A.; Gocmez, M.G.; Ali, H.A.; Fuentes, H.R. Improvement and Benefit of Updated Vulnerability Maps of Pavement Infrastructure Affected By Sea-Level Rise: A Case in South Florida. In Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021), Singapore, 1–6 August 2021; World Scientific Publishing Company: Singapore, 2022; Volume 1, pp. 138–140. [Google Scholar] [CrossRef]
- Asphalt Recycling and Reclaiming Association (ARRA). Basic Asphalt Recycling Manual, 1st ed.; FHWA: Washington, DC, USA, 2001.
- Williams, B.A.; Willis, J.R.; Shacat, J. Annual Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2019; National Asphalt Pavement Association: Greenbelt, MD, USA, 2020; 48p. [Google Scholar]
- National Asphalt Pavement Association. The Environmental Impact of Asphalt Plants; National Asphalt Pavement Association: Louisville, KY, USA, 2020. [Google Scholar]
- Gaspard, K.; Martinez, M.; Zhang, Z.; Wu, Z. Impact of Hurricane Katrina on Roadways in the New Orleans Area; Louisiana Department of Transportation and Development: Baton Rouge, LA, USA, 2007.
- Hung, A.M.; Goodwin, A.; Fini, E.H. Effects of Water Exposure on Bitumen Surface Microstructure. Constr. Build. Mater. 2017, 135, 682–688. [Google Scholar] [CrossRef]
- Mndawe, M.B.; Ndambuki, J.M.; Kupolati, W.K.; Badejo, A.A.; Dunbar, R. Assessment of the Effects of Climate Change on the Performance of Pavement Subgrade. African J. Sci. Technol. Innov. Dev. 2015, 7, 111–115. [Google Scholar] [CrossRef]
- Cedergren, H.R. Why All Important Pavements Should Be Well Drained. Transp. Res. Rec. 1988, 1188, 56–62. [Google Scholar]
- FDOT FDOT Open Data Hub. Available online: https://gis-fdot.opendata.arcgis.com/ (accessed on 1 June 2022).
- Florida Department of Transportation. Roadway Characteristics Inventory Handbook; Florida Department of Transportation: Tallahassee, FL, USA, 2022.
- Miami-Dade TPO. Origin-Destination Traffic Study Northwest Quadrant of Miami-Dade County. 2022. Available online: https://miamidadetpo.org/library/studies/mdtpo-origin-destination-traffic-study-miami-dade-northwest-quadrant-executive-summary-2022-03.pdf (accessed on 1 November 2022).
- County, M.D. Miami Dade County Open Data Hub. Available online: https://gis-mdc.opendata.arcgis.com/documents/MDC::2021-miami-dade-county-dem-5ft/explore (accessed on 1 August 2022).
- Obeysekera, J.; Sukop, M.; Troxler, T.; Irizarry, M.; Rogers, M. Final Report: Potential Implications of Sea-Level Rise and Changing Rainfall for Communities in Florida Using Miami-Dade County as a Case Study; Sea Level Solutions Center: Miami, Fl, USA, 2019. [Google Scholar]
- Michael, F.H.; Xu, T.; Stein, J.A. Recent Progress in the ANUDEM Elevation Gridding Procedure Recent Progress in the ANUDEM Elevation Gridding Procedure. Geomorphometry 2011, 2011, 19–22. [Google Scholar]
- Hutchinson, M.F.; Stein, J.A.; Stein, J.L.; Xu, T. Locally Adaptive Gridding of Noisy High Resolution Topographic Data. In Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia, 13–17 July 2009; pp. 2493–2499. [Google Scholar]
- Fish, J.E.; Stewart, M. Hydrogeology of the Surficial Aquifer System, Dade County, Florida Investigations Report 90-4108; USGS and SFWMD: Tallahassee, FL, USA, 1991.
- Florida Department of Transportation. FDOT Public Soil Boring Viewer Application. Available online: https://gis.fdot.gov/Public_Soil_Boring_Viewer/ (accessed on 1 December 2022).
- Sobhan, K. Surface Pavement Solutions for Poor Subgrade Conditions; Florida Department of Transportation: Tallahassee, FL, USA, 2007.
- FDOT. Flexible Pavement Design Manual; Florida Department of Transportation: Tallahassee, FL, USA, 2021.
- Ping, W.V.; Ling, C.-C.; Zhang, C.; Liu, H.; Lan, J. Design Highwater Clearances for Highway Pavements; Florida Department of Transportation: Tallahassee, FL, USA, 2008; Volume I.
- Skar, A.; Andersen, S. ALVA: An Adaptive MATLAB Package for Layered Viscoelastic Analysis. J. Open Source Softw. 2020, 5, 2548. [Google Scholar] [CrossRef]
- Levenberg, E. Viscoelastic Pavement Modeling with a Spreadsheet. In Proceedings of the Eighth International Conference on Maintenance and Rehabilitation of Pavements, Singapore, 27–29 July 2016; pp. 746–755. [Google Scholar] [CrossRef]
- AASHTO. Mechanistic-Empirical Pavement Design Guide; Transportation Research Board: Washington, DC, USA, 2008; ISBN 978-0-309-43133-0. [Google Scholar]
- AASHTO. Mechanistic-Empirical Pavement Design Guide: A Manual of Practice; AASHTO: Washington, DC, USA, 2015; ISBN 9781560515975. [Google Scholar]
- Elshaer, M. Assessing the Mechanical Response of Pavements during and after Flooding. Ph.D. Thesis, University of New Hampshire, Durham, NH, USA, 2017. [Google Scholar]
- Witczak, M.W.; Andrei, D.; Houston, W.N. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures Appendix DD-1: Resilient Modulus as Function of Soil Moisture-Summary of Predictive Models; National Cooperative Highway Research Program, Transportation Research Board: Washington, DC, USA, 2000. [Google Scholar]
- Fredlund, D.G.; Xing, A. Equations for the Soil-Water Characteristic Curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Perera, Y.Y.; Zapata, C.E.; Houston, W.N.; Houston, S.L. Prediction of the Soil-Water Characteristic Curve Based on Grain-Size-Distribution and Index Properties. In Advances in Pavement Engineering; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 1–15. [Google Scholar] [CrossRef]
- Erlingsson, S. Modelling of Rutting Development in Pavement Structures. Procedia Soc. Behav. Sci. 2012, 48, 321–330. [Google Scholar] [CrossRef]
- Roberson, R.; Siekmeier, J. Determining Material Moisture Characteristics for Pavement Drainage and Mechanistic Empirical Design; Minnesota Department of Transportation: Saint Paul, MN, USA, 2002. [Google Scholar]
- Miami-Dade County Sea Level Rise and Flooding. Available online: https://www.miamidade.gov/global/economy/resilience/sea-level-rise-flooding.page (accessed on 22 December 2022).
- Elkins, G.E.; Schmalzer, P.; Thompson, T.; Simpson, A. Long-Term Pavement Performance Information Management System Pavement Performance Database User Reference Guide; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2003; Volume FHWA-RD-03.
Level | Requirement |
---|---|
1 | Base Clearance > 91.44 cm |
2 | 91.44 cm ≤ Base Clearance > 60.96 cm |
3 | 60.96 cm ≤ Base Clearance > 30.48 cm |
4 | 30.48 cm > Base Clearance |
SLR Scenario | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Low | 1877.3 (66%) | 580.55 (20%) | 275.31 (10%) | 114.49 (4%) |
High | 1529.05 (54%) | 583.74 (20%) | 492.73 (17%) | 242.16 (9%) |
Surface | Base | Subgrade | |||
---|---|---|---|---|---|
Type | Asphalt Concrete | Type | Uncrushed Gravel | Type | Coarse-Grained Soils: Poorly Graded Sand with Silt |
Thickness (mm) | 112 | Thickness (mm) | 132 | AASHTO | A-3 |
AASHTO | A-1-b | Percent passing #200 | 6.2 | ||
Percent passing #200 | 6.9 | D60 (mm) | 0.38 | ||
Plasticity Index PI | NP | Plasticity Index PI | NP | ||
D60 (mm) | 2.6 | Percent of coarse sand | 42 | ||
OMC (%) | 7 | Percent of fine sand | 34 | ||
In situ dry density (kg/m3) | 2030 | Percent of silt | 4.5 | ||
Specific gravity (Gs) | 2.713 | Percent of clay | 1.5 | ||
Void ratio (e) | 0.34 | Optimum moisture % | 8 | ||
Max lab dry density (kg/m3) | 2195 | In situ dry density (kg/m3) | 1828 | ||
Specific Gravity (Gs) | 2.65 | ||||
Void ratio | 0.45 | ||||
Max lab dry density (kg/m3) | 1970.3 | ||||
Porosity | 0.31 | ||||
Depth to bedrock | 2.5 m from the top of the subgrade layer |
Road Class | Fatigue Cracking | Rutting | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DTW (cm) | DTW (cm) | |||||||||||||
25 | 50 | 75 | 100 | 125 | 150 | 175 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | |
11A | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
11B | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
12A | n/a | n/a | n/a | n/a | n/a | 100% | 100% | n/a | n/a | n/a | n/a | n/a | 100% | 100% |
12B | n/a | n/a | n/a | n/a | n/a | 100% | 100% | n/a | n/a | n/a | n/a | n/a | 100% | 100% |
14A | 50% | 51% | 87% | 100% | 100% | 100% | 100% | 18% | 18% | 62% | 100% | 100% | 100% | 100% |
14B | 26% | 34% | 99% | 100% | 100% | 100% | 100% | 10% | 16% | 98% | 100% | 100% | 100% | 100% |
16A | 47% | 47% | 93% | 100% | 100% | 100% | 100% | 16% | 17% | 87% | 100% | 100% | 100% | 100% |
16B | 15% | 83% | 99% | 100% | 100% | 100% | 100% | 8% | 62% | 99% | 100% | 100% | 100% | 100% |
17A | 55% | 56% | 57% | 63% | 83% | 98% | 100% | 15% | 16% | 16% | 23% | 56% | 92% | 100% |
17B | 12% | 45% | 100% | 100% | 100% | 100% | 100% | 8% | 35% | 99% | 100% | 100% | 100% | 100% |
18A | 38% | 39% | 42% | 69% | 92% | 100% | 100% | 11% | 11% | 13% | 42% | 82% | 99% | 100% |
18B | 20% | 21% | 32% | 69% | 98% | 100% | 100% | 7% | 7% | 15% | 53% | 94% | 100% | 100% |
19A | 25% | 25% | 37% | 71% | 97% | 100% | 100% | 8% | 8% | 16% | 53% | 93% | 100% | 100% |
19B | 14% | 14% | 28% | 67% | 99% | 100% | 100% | 6% | 6% | 15% | 55% | 96% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojali, A.; Fuentes, H.R.; Chang, C.M.; Ali, H. Network-Scale Analysis of Sea-Level Rise Impact on Flexible Pavements. Water 2023, 15, 4163. https://doi.org/10.3390/w15234163
Rojali A, Fuentes HR, Chang CM, Ali H. Network-Scale Analysis of Sea-Level Rise Impact on Flexible Pavements. Water. 2023; 15(23):4163. https://doi.org/10.3390/w15234163
Chicago/Turabian StyleRojali, Aditia, Hector R. Fuentes, Carlos M. Chang, and Hesham Ali. 2023. "Network-Scale Analysis of Sea-Level Rise Impact on Flexible Pavements" Water 15, no. 23: 4163. https://doi.org/10.3390/w15234163
APA StyleRojali, A., Fuentes, H. R., Chang, C. M., & Ali, H. (2023). Network-Scale Analysis of Sea-Level Rise Impact on Flexible Pavements. Water, 15(23), 4163. https://doi.org/10.3390/w15234163