Relation of Hydrogeology and Contaminant Sources to Drinking Water Quality in Southern Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sampling
2.2. Chemical Analysis
3. Results and Discussion
3.1. Hydrogeology
3.2. Contaminant Inventory
3.2.1. Almaty Region
3.2.2. Zhambyl Region
3.2.3. Turkestan Region
3.2.4. Kyzylorda Region
4. Present Study
5. Conclusions
6. Future Directions and Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arkhangelsky, V.; Denisenko, M.; Elizarov, V.; Zhusupov, B.; Moldakulova, G. Population Situation Analysis of the Republic of Kazakhstan 2019; United Nations Population Fund (UNFPA): Astana, Kazakhstan, 2019; p. 42. [Google Scholar]
- Yapiyev, V.; Wade, A.J.; Shahgedanova, M.; Saidaliyeva, Z.; Madibekov, A.; Severskiy, I. The hydrochemistry and water quality of glacierized catchments in central asia: A review of the current status and anticipated change. J. Hydrol. Reg. Stud. 2021, 38, 100960. [Google Scholar] [CrossRef]
- Omarova, A.; Tussupova, K.; Hjorth, P.; Kalishev, M.; Dosmagambetova, R. Water supply challenges in rural areas: A case study from central kazakhstan. Int. J. Environ. Res. Public Health 2019, 16, 688. [Google Scholar] [CrossRef] [PubMed]
- Bekturganov, Z.; Tussupova, K.; Berndtsson, R.; Sharapatova, N.; Aryngazin, K.; Zhanasova, M. Water related health problems in central asia—A review. Water 2016, 8, 219. [Google Scholar] [CrossRef]
- Karatayev, M.; Kapsalyamova, Z.; Spankulova, L.; Skakova, A.; Movkebayeva, G.; Kongyrbay, A. Priorities and challenges for a sustainable management of water resources in kazakhstan. Sustain. Water Qual. Ecol. 2017, 9, 115–135. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A review of water pollution arising from agriculture and mining activities in central asia: Facts, causes and effects. Environ. Pollut. 2021, 291, 118209. [Google Scholar] [CrossRef]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central asia in the early twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- Törnqvist, R.; Jarsjö, J.; Karimov, B. Health risks from large-scale water pollution: Trends in central asia. Environ. Int. 2011, 37, 435–442. [Google Scholar] [CrossRef]
- Imanaliyev, T.; Koybakov, S.; Karlykhanov, O.; Amanbayeva, B.; Bakiyev, M. Prospects for the development of water resources management in the south of kazakhstan. NEWS Natl. Acad. Sci. Repub. Kazakhstan 2022, 6, 80–95. [Google Scholar] [CrossRef]
- Smailov, A. On Approval of the Concept for the Development of the Water Resources Management System of the Republic of Kazakhstan for 2023–2029; Republic of Kazakhstan: Astana, Kazakhstan, 2023. [Google Scholar]
- Zhupankhan, A.; Tussupova, K.; Berndtsson, R. Water in kazakhstan, a key in central asian water management. Hydrol. Sci. J. 2018, 63, 752–762. [Google Scholar] [CrossRef]
- 51232-2003, S. R. G. R.; General Requirements of Quality Control Organization and Methods of Water Quality Control. Republic of Kazakhstan: Astana, Kazakhstan, 2005.
- 51592-2003, S. R. G. R.; State Standard of the Republic of Kazakhstan—Methods for Drinking Water Testing. Committee for Technical Regulation and Metrology of the Ministry of Industry and Trade of the Republic of Kazakhstan (State standard), Republic of Kazakhstan: Astana, Kazakhstan, 2003.
- 17.1.4.01-80, S. R. G.; General Requirements to Methods for Determining Oil Products in Natural and Waste Waters. IPC Standards Publishing House: Moscow, Russia, 1980.
- Radelyuk, I.; Tussupova, K.; Persson, M.; Zhapargazinova, K.; Yelubay, M. Assessment of groundwater safety surrounding contaminated water storage sites using multivariate statistical analysis and heckman selection model: A case study of kazakhstan. Environ. Geochem. Health 2021, 43, 1029–1050. [Google Scholar] [CrossRef]
- 33045-2014, S.; Water. Methods for Determination of Nitrogen-Containing Matters. Federal Agency for Technical Regulation and Metrology: Standardinform Publishing House: Moscow, Russi, 2014.
- 4011-72., S. R. G.; Methods for Measuring the Mass Concentration of Total Iron. IPC Standards Publishing House: Moscow, Russia, 1972.
- Liu, Y.; Wang, P.; Ruan, H.; Wang, T.; Yu, J.; Cheng, Y.; Kulmatov, R. Sustainable use of groundwater resources in the transboundary aquifers of the five central asian countries: Challenges and perspectives. Water 2020, 12, 2101. [Google Scholar] [CrossRef]
- Dmitriev, L.; Tverdovsky, A. General Scheme for the Integrated Use and Protection of Water Resources of the Republic of Kazakhstan—Almaty; Integrated Water Resources Management: Almaty, Kazakhstan, 2010; 172p. [Google Scholar]
- Nurtazin, S.; Pueppke, S.; Ospan, T.; Mukhitdinov, A.; Elebessov, T. Quality of drinking water in the balkhash district of kazakhstan’s almaty region. Water 2020, 12, 392. [Google Scholar] [CrossRef]
- Absametov, M.; Sagin, J.; Adenova, D.; Smolyar, V.; Murtazin, E. Assessment of the groundwater for household and drinking purposes in central kazakhstan. Groundw. Sustain. Dev. 2023, 21, 100907. [Google Scholar] [CrossRef]
- Sosnin, F.I.; Breusov, V.S. Hydrogeological Map of the USSR, Scale 1:200,000, Sheet k-43-v (Almaty 1); Explanatory Note; Nedra Publishing House: Moscow, Russia, 1972. [Google Scholar]
- Satpayev, A.G.; Mukhamedzhanov, A.A. Drawing up a Program for the Integrated Use of Groundwater for Drinking, Irrigation and Watering, Industry and Other Sectors of the Economy within the Framework of Monitoring; Kazakh Institute of Hydrogeology: Almaty, Kazakhstan, 2011; 184p. [Google Scholar]
- Adenova, D.; Tazhiyev, S.; Sagin, J.; Absametov, M.; Murtazin, Y.; Trushel, L.; Miroshnichenko, O.; Zaryab, A. Groundwater quality and potential health risk in zhambyl region, kazakhstan. Water 2023, 15, 482. [Google Scholar] [CrossRef]
- Tleuova, Z.T.; Mukhamedzhanov, M.A. Ecological problems of southern kazakhstan and pollution of drinking groundwaters. Geol. Bowels Earth Almaty 2019, 4, 41–45. [Google Scholar]
- Harman, W.; Allan, C.; Forsythe, R.D. Assessment of potential groundwater contamination sources in a wellhead protection area. J. Environ. Manag. 2001, 62, 271–282. [Google Scholar] [CrossRef]
- Nixdorf, E.; Sun, Y.; Lin, M.; Kolditz, O. Development and application of a novel method for regional assessment of groundwater contamination risk in the songhua river basin. Sci. Total Environ. 2017, 605, 598–609. [Google Scholar] [CrossRef]
- KazHydroMet. Monitoring the Quality of Surface Waters of the Republic of Kazakhstan; Kazhydromet: Astana, Kazakhstan, 2023; Available online: http://ecodata.kz:3838/app_dem_water_visual (accessed on 22 September 2023).
- Ibrayev, T.; Badjanov, B.; Li, M. Methodology of measuring processes and evaluation of water resources of the republic of kazakhstan. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Springer: Cham, Switzerland, 2014; pp. 563–575. [Google Scholar]
- Murtazin, Y.; Miroshnichenko, O.; Trushel, L. Methods of making of geoinformational and analytical system of groundwater resources in kazakhstan. NEWS Natl. Acad. Sci. Repub. Kazakhstan 2018, 5, 21–31. [Google Scholar] [CrossRef]
- Tussupova, K.; Hjorth, P.; Berndtsson, R. Access to drinking water and sanitation in rural kazakhstan. Int. J. Environ. Res. Public Health 2016, 13, 1115. [Google Scholar] [CrossRef]
- Yermenbay, A.; Shagarova, L.; Absametov, M.; Osipov, S. Prospects of water supply with fresh groundwater under anthropogenic impact conditions. In Proceedings of the GEOLINKS International Conference, Plovdiv, Bulgaria, 23–25 March 2020; pp. 281–289. [Google Scholar] [CrossRef]
- Sagin, J.; Adenova, D.; Tolepbayeva, A.; Poryadin, V. Underground water resources in kazakhstan. Int. J. Environ. Stud. 2017, 74, 386–398. [Google Scholar] [CrossRef]
- Mukhamedzhanov, M.A.; Arystanbaev, Y.U.; Kazanbaeva, L.M.; Nurgaziyeva, A.A.; Rakhmetov, I.K. Underground drinking water of kazakhstan and problems of their contamination. In Proceedings of the 18th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 2–8 July 2018; Volume 18, pp. 743–750. [Google Scholar]
- Mukhamedzhanov, M.; Arystanbaev, Y.; Iskakov, N.; Kazanbaeva, L.; Bekzhigitova, D. Prospects of use groundwaters torangesicle field of water supply for the growing need of kyzylorda. In Proceedings of the 17th International Multidisciplinary Scentific Geoconference (SGEM), Albena, Bulgaria, 29 June–5 July 2017; Volume 17, pp. 659–667. [Google Scholar]
- Murtazin, Y.Z.; Adenova, D.K.; Tazhiyev, S.R. Assessment of the potential of self-discharging hydrogeological wells for sustainable development of rural areas of zhambyl region. NEWS Natl. Acad. Sci. Repub. Kazakhstan 2022, 5, 143–455. [Google Scholar] [CrossRef]
- Ospanov, K.; Kuldeyev, E.; Kenzhaliyev, B.; Korotunov, A. Wastewater treatment methods and sewage treatment facilities in almaty, kazakhstan. J. Ecol. Eng. 2022, 23, 240–251. [Google Scholar] [CrossRef]
- Urmanova, D.; Durmagambetov, B.; Humphrey, J.D.; Zagranichniy, S. Geological and hydrodinamic modeling of an oil field of the pricaspian region of the republic of kazakhstan. NEWS Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2022, 455, 266–288. [Google Scholar] [CrossRef]
- Mukhamedzhanov, M.A.; Kazanbayeva, L.M.; Nurgaziyeva, A.A.; Rakhmetov, I.K. Environmental problems of the south kazakhstan and pollution of drinking groundwater. In Proceedings of the 19th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 30 June–6 July 2019; Hydrogeology, Engineering Geology and Geotechnics, Oil and Gas Exploration. Volume 19, pp. 207–213. [Google Scholar]
- Tleuova, Z.T.; Snow, D.D.; Mukhamedzhanov, M.A.; Murtazi, E.Z. Assessment of the impact of human activity on groundwater status of south kazakhstan. NEWS Natl. Acad. Sci. Repub. Kazakhstan 2022, 2, 217–229. [Google Scholar] [CrossRef]
- Tleuova, Z.T.; Mukhamedzhanov, M.A. Assessment of conditions for the formation of groundwater resources in south kazakhstan in the conditions of climatic and anthropogenic changes. Bull. KazNRTU 2020, 139, 74–81. [Google Scholar]
- Barmakova, D.B.; Rodrigo-Ilarri, J.; Zavaley, V.A.; Rodrigo-Clavero, M.E.; Capilla, J.E. Spatial analysis of the chemical regime of groundwater in the karatal irrigation massif in south-eastern kazakhstan. Water 2022, 14, 285. [Google Scholar] [CrossRef]
- Mustafayev, Z.S.; Kenzhaliyeva, B.T.; Daldabayeva, G.T.; Alimbayev, E.N. Hydrochemical exploration and ecological state of the territory in the lower down of the syrdarya river. NEWS Natl. Acad. Sci. Repub. Kazakhstan. Ser. Geol. Tech. Sci. 2023, 4, 157–175. [Google Scholar] [CrossRef]
- Abdimutalip, N.A.; Kurbaniyazov, A.K.; Toychibekova, G.; Koishieva, G.; Shalabaeva, G.; Zholmagambetov, N. Influence of changes in the level of salinity of the aral sea on the development of ecosystems. NEWS Natl. Acad. Sci. Repub. Kazakhstan. Ser. Geol. Tech. Sci. 2022, 2, 17–32. [Google Scholar] [CrossRef]
- Abdibay, A.M.; Anuarbekov, K.K.; Chormanski, J.; Kaipbayev, Y.T.; Aldiyarova, A.E. Regulation of water-salt regime of irrigated lands in the lower reaches of the syrdarya river. NEWS Natl. Acad. Sci. Repub. Kazakhstan. Ser. Geol. Tech. Sci. 2023, 1, 6–19. [Google Scholar] [CrossRef]
- Morris, B.L.; Darling, W.G.; Gooddy, D.C.; Litvak, R.G.; Neumann, I.; Nemaltseva, E.J.; Poddubnaia, I. Assessing the extent of induced leakage to an urban aquifer using environmental tracers: An example from bishkek, capital of kyrgyzstan, central asia. Hydrogeol. J. 2006, 14, 225–243. [Google Scholar] [CrossRef]
- Alvarado, J.C.; Balsiger, B.; Röllin, S.; Jakob, A.; Burger, M. Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of mailuu suu (kyrgyzstan). J. Environ. Radioact. 2014, 138, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rakhmatullaev, S.; Huneau, F.; Kazbekov, J.; Celle-Jeanton, H.; Motelica-Heino, M.; Coustumer, P.; Jumanov, J. Groundwater resources of uzbekistan: An environmental and operational overview. Open Geosci. 2012, 4, 67–80. [Google Scholar] [CrossRef]
- Batabyal, A.K.; Chakraborty, S. Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environ. Res. 2015, 87, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Rashid, A.; Nawab, J.; Bacha, A.-U.-R.; Ghani, J.; Iqbal, J.; Zhu, Z.; Alrefaei, A.F.; Almutairi, M.H. Fluoride contamination in groundwater of community tube wells, source distribution, associated health risk exposure, and suitability analysis for drinking from arid zone. Water 2023, 15, 3740. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; p. 614. [Google Scholar]
- United States Environmental Protection Agency. Drinking Water Requirements for States and Public Water Systems; United States Environmental Protection Agency: Washington, DC USA, 2023. [Google Scholar]
- Satybaldiyev, B.; Ismailov, B.; Nurpeisov, N.; Kenges, K.; Snow, D.D.; Malakar, A.; Taukebayev, O.; Uralbekov, B. Downstream hydrochemistry and irrigation water quality of the syr darya, aral sea basin, south kazakhstan. Water Supply 2023, 23, 2119–2134. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Abuduwaili, J.; Ge, Y.; Issanova, G.; Saparov, G. Hydrochemical characteristics and irrigation suitability of surface water in the syr darya river, kazakhstan. Environ. Monit. Assess. 2019, 191, 1–17. [Google Scholar] [CrossRef]
Parameters | Detection Limits (mg/L) Li Limit | Instrument | Description of Methods |
---|---|---|---|
Dry residues, total solids | OHAUS Adventurer Balance | Gravimetry (0.00001 g) | |
pH | Mettler Toledo pH meter | Potentiometry | |
Ammonia | 0.1 | KFK-2MP Photocolorimeter | Photometric method for ammonia and ammonium ions (in total) with Nessler reagent calibration from 0.1 to 3.0 mg/L. |
Nitrite | 0.003 | KFK-2MP Photocolorimeter KFK-2 | Photometric method for nitrites using sulfanilic acid. Calibration range from 0.003 to 0.3 mg/L. |
Nitrate content using sodium salicylic acid | 0.1 | KFK-2MP Photocolorimeter | Photometric method for determining the nitrate using sodium salicylic acid. Calibration range from 0.1 to 2.0 mg/L. |
Ferrum (iron) | 0.01–0.03 | KFK-2MP Photocolorimeter | Photometric method in an alkaline medium with sulfosalicylic acid to form a yellow-colored complex (400–430 nm). Calibration range is 0.10–2.00 mg/L [11]. |
Metals: Cd, Co, Mn, Cu, As, Ni, Hg, Pb, Cr, Zn | 0.00001 | ICPE-9820 Atomic Emission Plasma Spectrophotometer. | ICPE-9820 Atomic Emission Plasma Spectrophotometer. Calibration range is 0.00001–10.0. |
Alkalinity CO3, HCO3 | 10 | Automatic titrator | Titration: HCl volume consumption per 100 mL sample using phenolphthalein indicator. |
Ca, Mg | 10 | Automatic titrator | Titration: consumption of Triton B per 100 mL sample using an indicator. |
Chloride | 10 | Automatic titrator | Titration: mercurimetry by Hg(NO3)2 per 50 mL sample and indicator. |
Sulfate | 30 | OHAUS Adventurer Balance | Gravimetric method using precipitation of sulfate ions in a hydrochloric acid medium with barium chloride. Range is 30–300 mg/L [12]. |
Total Petroleum Hydrocarbons | 0.0001 | Bruker SCION SQ 456-Gas Chromatograph with Flame ionization Detector) | Chromatography (Bruker SCION SQ 456-GC) (description of method is provided in Supplemental Materials Section S1). |
Risk Category | Chemical Elements |
---|---|
Extremely hazardous | mercury, beryllium, carbon tetrachloride |
Highly hazardous | lead, cadmium, aluminum, silicon, cobalt, barium, arsenic, lithium, cyanides, rhodanides, nitrites |
Hazardous | nitrites, ammonia, iron, manganese, nickel, chromium, zinc, copper, phosphates, acetone, chlorobenzene, nitrobenzene, synthetic surfactants |
Moderately hazardous | chlorides, sulfates, phenols, oil products, boron, fluoride |
Administrative Region | Total Number of Observed Contamination Sites | Number of Ground Water Contamination Sites by Hazard Class of Identified Pollutants | |||
---|---|---|---|---|---|
Extremely Hazardous | Highly Hazardous | Hazardous | Moderately Hazardous | ||
Almaty | 10 (21.4%) | 1 | - | - | 9 |
Zhambyl | 16 (34.2%) | - | - | 4 | 12 |
Turkestan | 17 (36.3%) | - | - | - | 17 |
Total for the RK: | 214 | 15 | 34 | 51 | 114 |
Administrative Area | Number of Pollution Sources | Number of Identified Areas of Groundwater Pollution | ||
---|---|---|---|---|
Total Identified | Surveyed | Having an Observation Network | ||
Almaty | 103 | 10 | 10 | 10 |
Zhambyl | 19 | 16 | 15 | 16 |
Turkestan | 29 | 17 | 3 | 17 |
Kyzylorda | 11 | 3 | 2 | 2 |
Total | 162 | 46 | 30 | 45 |
Administrative Region | Total Number of Contamination Sites | Number of Sites where Groundwater Contamination Was Detected | Number of Sites with Pollution above MPC | Number of Polluted Areas, km2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sulfates, Chlorides, Mineralization | Nitrogen Compounds | Oil Products | Phenols | Other Organic Compounds | Ferrum Compounds | Heavy Metal | Other Inorganic Compounds | Up to 10 | 10–100 | More than 100 | Less than 10 | 10–20 | 20–100 | More than 100 | Not Installed | ||
Almaty | 10 (21.4%) | 9 | - | 7 | - | - | - | - | 9 | 9 | - | - | - | - | - | - | - |
Zhambyl | 16 (34.2%) | - | 14 | 3 | - | - | - | - | 12 | 3 | - | - | - | - | - | - | 15 |
Turkestan | 17 (36.3%) | 5 | - | 2 | - | 3 | - | - | 10 | - | - | - | 5 | 5 | - | - | 13 |
Total: | 214 | 95 | 55 | 37 | 15 | 4 | 35 | 24 | 92 | 82 | 39 | 21 | 87 | 13 | 20 | 12 | 75 |
Parameters | Standards (mg/L) | Current Samples from Southern Kazakhstan (mg/L) | ||||
---|---|---|---|---|---|---|
Kazakhstan | WHO | USA | Max | Min | Percent above WHO Standard | |
pH | 6–9 | 6.5–8.5 | 6.5–8.5 | 8.18 | 6.58 | 0 |
TDS | 1000–1500 | 200–2500 | 500 | 285 | 198 | 0 |
Sodium | 200 | 200 | 200 | 298 | 3 | 1.5 |
Sulfate | 300 | 250 | 250 | 753.2 | 11.5 | 3 |
Chloride | 350 | 250 | 250 | 248.2 | 3.5 | 0 |
Fluoride | 1.5 | 1.5 | 4 | 1.4 | 0.08 | 0 |
Total Iron | 0.3 | 0.2–2 | 0.3 | 2.45 | ˂0.1 | 1.2 |
Nickel | 0.1 | 0.07 | 0.1 | 0.02 | 0.01 | 0 |
Lead (Pb) | 0.03 | 0.01 | 0.015 | 0.018 | 0.009 | 1.8 |
Cadmium | 0.001 | 0.003 | 0.005 | 0.0042 | 0.001 | 1.4 |
Nitrate | 45 | 50 | 10 | 98.9 | ˂0.2 | 1.9 |
Nitrite | 3 | 3 | 1 | 0.43 | ˂0.01 | 0 |
Ammonia | 2 | 3 | -- | 10 | ˂0.05 | 3.3 |
Petroleum hydrocarbons | 0.1 | 0.3 | 0.1 | >0.005 | >0.008 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tleuova, Z.; Snow, D.D.; Mukhamedzhanov, M.; Ermenbay, A. Relation of Hydrogeology and Contaminant Sources to Drinking Water Quality in Southern Kazakhstan. Water 2023, 15, 4240. https://doi.org/10.3390/w15244240
Tleuova Z, Snow DD, Mukhamedzhanov M, Ermenbay A. Relation of Hydrogeology and Contaminant Sources to Drinking Water Quality in Southern Kazakhstan. Water. 2023; 15(24):4240. https://doi.org/10.3390/w15244240
Chicago/Turabian StyleTleuova, Zhanna, Daniel D. Snow, Murat Mukhamedzhanov, and Aray Ermenbay. 2023. "Relation of Hydrogeology and Contaminant Sources to Drinking Water Quality in Southern Kazakhstan" Water 15, no. 24: 4240. https://doi.org/10.3390/w15244240
APA StyleTleuova, Z., Snow, D. D., Mukhamedzhanov, M., & Ermenbay, A. (2023). Relation of Hydrogeology and Contaminant Sources to Drinking Water Quality in Southern Kazakhstan. Water, 15(24), 4240. https://doi.org/10.3390/w15244240