Comparison between Machine-Learning-Based Turbidity Models Developed for Different Lake Zones in a Large Shallow Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Sediment and Chlorophyll-a
2.2.2. High-Frequency In Situ Observations
2.3. LSTM-Based Turbidity Model
2.3.1. LSTM
2.3.2. Development of LSTM-Based Turbidity Model
2.3.3. LSTM Model Experiments
2.4. Data Processing and Analysis
3. Results
3.1. Sediment Characteristics
3.2. Turbidity, Wind, and Chl-a during In Situ Observations
3.3. Evaluation of LSTM Model Accuracy
3.4. Model Experiments
3.4.1. LSTM_W Scenario
3.4.2. LSTM_S Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdul-Wahab, S.A.; Al-Alawi, S.M. Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ. Model. Softw. 2002, 17, 219–228. [Google Scholar] [CrossRef]
- Bailey, M.C.; Hamilton, D.P. Wind induced sediment resuspension: A lake-wide model. Ecol. Model. 1997, 99, 217–228. [Google Scholar] [CrossRef]
- Bartram, J. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; CRC Press: London, UK, 1996; 365p. [Google Scholar]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model. Stoch. Environ. Res. Risk Assess. 2020, 34, 415–433. [Google Scholar] [CrossRef]
- Basodi, S.; Ji, C.; Zhang, H.; Pan, Y. Gradient amplification: An efficient way to train deep neural networks. Big Data Min. Anal. 2020, 3, 196–207. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hellstrom, T. Wind-induced resuspension in a small shallow lake. Hydrobiologia 1992, 241, 163–172. [Google Scholar] [CrossRef]
- Chen, N.; Mao, S.; Li, D.; Yue, J. PM2.5 prediction model based on multi-station co-training neural network. Sci. Surv. Mapp. 2018, 43, 87–93. [Google Scholar]
- Chen, Y.; Cheng, Q.; Fang, X.; Yu, H.; Li, D. Principal component analysis and long short-term memory neural network for predicting dissolved oxygen in water for aquaculture. Trans. Chin. Soc. Agric. Eng. 2018, 34, 183–191. [Google Scholar]
- Ding, W.; Wu, T.; Qin, B.; Lin, Y.; Wang, H. Features and impacts of currents and waves on sediment resuspension in a large shallow lake in China. Environ. Sci. Pollut. Res. 2018, 25, 36341–36354. [Google Scholar] [CrossRef]
- Ding, W.; Zhao, J.; Qin, B.; Wu, T.; Zhu, S.; Li, Y.; Xu, S.; Ruan, S.; Wang, Y. Exploring and quantifying the relationship between instantaneous wind speed and turbidity in a large shallow lake: Case study of Lake Taihu in China. Environ. Sci. Pollut. Res. 2021, 28, 16616–16632. [Google Scholar] [CrossRef]
- Figueroa-Pico, J.; Carpio, A.J.; Tortosa, F.S. Turbidity: A key factor in the estimation of fish species richness and abundance in the rocky reefs of Ecuador. Ecol. Indic. 2020, 111, 106021. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lai, X. Water level prediction of Lake Poyang based on long short-term memory neural network. J. Lake Sci. 2020, 32, 865–876. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Wang, S.; Pang, Y. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu. J. Lake Sci. 2014, 26, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, C.; Martínez Torres, J.; García Nieto, P.J.; Alonso Fernández, J.R.; Díaz Muñiz, C.; Piñeiro, J.I.; Taboada, J. Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resour. Manag. 2013, 28, 319–331. [Google Scholar] [CrossRef]
- Jalil, A.; Li, Y.; Zhang, K.; Gao, X.; Wang, W.; Khan, H.O.S.; Pan, B.; Ali, S.; Acharya, K. Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. Int. J. Sediment Res. 2019, 34, 205–215. [Google Scholar] [CrossRef]
- Fanxiang, K.; Ronghua, M.; Junfeng, G.; Xiaodong, W. The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. Sci. Limnol. Sin. 2009, 21, 314–328. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.N.; Raju, K.S.; Sathish, T. River Flow Forecasting using Recurrent Neural Networks. Water Resour. Manag. 2004, 18, 143–161. [Google Scholar] [CrossRef]
- Lesht, B.M. Relationship between sediment resuspension and the statistical frequency-distribution of bottom shear-stress. Mar. Geol. 1979, 32, M19–M27. [Google Scholar] [CrossRef]
- Luo, L.; Qin, B.; Hu, W.; Zhang, F. Wave characteristics in Lake Taihu. J. Hydrodyn. 2004, 19, 664–670. [Google Scholar]
- Luo, L.C.; Qin, B.Q.; Zhu, G.W. Sediment distribution pattern mapped from the combination of objective analysis and geostatistics in the large shallow Tatihu Lake, China. J. Environ. Sci. 2004, 16, 908–911. [Google Scholar]
- Mallet, D.; Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 2014, 154, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Gaffar, A.F.O.; Puspitasari, N. Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP). IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012009. [Google Scholar]
- Palani, S.; Liong, S.Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.P.; Luo, L.C. Study on the simulation of transparency of Lake Taihu under different hydrodynamic conditions. Sci. China Earth Sci. 2006, 49, 162–175. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Rajaee, T. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Sci. Total Environ. 2011, 409, 2917–2928. [Google Scholar] [CrossRef]
- Sengorur, B.; Dogan, E.; Koklu, R.; Samandar, A. Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environ. Bull. 2006, 15, 1064–1067. [Google Scholar]
- Shi, M.; Xu, K.; Wang, J.; Yin, R.; Wang, T.; Yong, T. Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network. In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7–9 September 2019; pp. 2110–2116. [Google Scholar]
- Song, C.; Zhang, H. Study on turbidity prediction method of reservoirs based on long short term memory neural network. Ecol. Model. 2020, 432, 109–210. [Google Scholar] [CrossRef]
- Valipour, R.; Boegman, L.; Bouffard, D.; Rao, Y.R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 2017, 62, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Qin, B.; Huang, A.; Sheng, Y.; Feng, S.; Casenave, C. Reconsideration of wind stress, wind waves, and turbulence in simulating wind-driven currents of shallow lakes in the Wave and Current Coupled Model (WCCM) version 1.0. Geosci. Model Dev. 2022, 15, 745–769. [Google Scholar] [CrossRef]
- Wu, T.-F.; Qin, B.-Q.; Zhu, G.-W.; Zhu, M.-Y.; Li, W.; Luan, C.-M. Modeling of turbidity dynamics caused by wind-induced waves and current in the Taihu Lake. Int. J. Sediment Res. 2013, 28, 139–148. [Google Scholar] [CrossRef]
- Xu, G.; Xia, L. Short-Term Prediction of Wind Power Based on Adaptive LSTM. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018. [Google Scholar]
- Yoon, H.-S. Time Series Data Analysis using WaveNet and Walk Forward Validation. J. Korea Soc. Simul. 2021, 30, 1–8. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C. Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. J. Hydrol. 2020, 582, 124488. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, G.; Qin, D.; Lu, Y.; Jin, Y.; Wang, H. A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction. Sci. Total Environ. 2021, 765, 144507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, B.; Chen, W. A study on total suspended matter in lake taihu. Resour. Environ. Yangtze Basin 2004, 13, 266–271. [Google Scholar]
- Zhang, Y.; Yao, X.; Wu, Q.; Huang, Y.; Zhou, Z.; Yang, J.; Liu, X. Turbidity prediction of lake-type raw water using random forest model based on meteorological data: A case study of Tai lake, China. J. Environ. Manag. 2021, 290, 112657. [Google Scholar] [CrossRef]
- Zheng, S.-S.; Wang, P.-F.; Wang, C.; Hou, J. Sediment resuspension under action of wind in Taihu Lake, China. Int. J. Sediment Res. 2015, 30, 48–62. [Google Scholar] [CrossRef]
Scenario | Prediction | Future Wind Speed | Train Set | Test Set |
---|---|---|---|---|
LSTM_W | LSTM_S2-W1 | No | S2 | S2 |
LSTM_S2-W2 | Yes | S2 | S2 | |
LSTM_S | LSTM_S11, S12, S13 | Yes | S1 | S1, S2, S3 |
LSTM_S21, S22, S23 | Yes | S2 | S1, S2, S3 | |
LSTM_S31, S32, S33 | Yes | S3 | S1, S2, S3 |
S1 | S2 | S3 | ||
---|---|---|---|---|
Turbidity (NTU) | Mean | 116.46 | 60.51 | 45.15 |
Standard Deviation | 80.39 | 36.92 | 37.84 | |
Maximum | 314.20 | 289.30 | 259.40 | |
Wind Speed (m s−1) | Mean | 4.27 | 4.75 | 4.29 |
Standard Deviation | 2.30 | 2.36 | 2.62 | |
Maximum | 12.26 | 14.97 | 19.00 | |
Chl-a (mg m−3) | Mean | 23.27 | 14.62 | 30.80 |
Standard Deviation | 15.46 | 9.03 | 26.60 | |
Maximum | 59.99 | 33.59 | 105.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Xu, W.; Yan, W.; Wu, T.; He, X.; Cheng, N. Comparison between Machine-Learning-Based Turbidity Models Developed for Different Lake Zones in a Large Shallow Lake. Water 2023, 15, 387. https://doi.org/10.3390/w15030387
Hu R, Xu W, Yan W, Wu T, He X, Cheng N. Comparison between Machine-Learning-Based Turbidity Models Developed for Different Lake Zones in a Large Shallow Lake. Water. 2023; 15(3):387. https://doi.org/10.3390/w15030387
Chicago/Turabian StyleHu, Runtao, Wangchen Xu, Wenming Yan, Tingfeng Wu, Xiangyu He, and Nannan Cheng. 2023. "Comparison between Machine-Learning-Based Turbidity Models Developed for Different Lake Zones in a Large Shallow Lake" Water 15, no. 3: 387. https://doi.org/10.3390/w15030387
APA StyleHu, R., Xu, W., Yan, W., Wu, T., He, X., & Cheng, N. (2023). Comparison between Machine-Learning-Based Turbidity Models Developed for Different Lake Zones in a Large Shallow Lake. Water, 15(3), 387. https://doi.org/10.3390/w15030387