The “Journey” of Microplastics across the Marine Food Web in China’s Largest Fishing Ground
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Digestion Procedures
2.3. Microscopic Inspection
2.4. Identification and Validation of Microplastics with μ-FTIR
2.5. Quality Controls of Experiment
3. Results
3.1. Abundance and Distribution of Microplastics in Marine Organisms
3.2. Physicochemical Characteristics of Microplastics
3.3. Transfer of Microplastics across Marine Food Webs
4. Discussion
4.1. Abundance of Microplastics in Different Species
4.2. Morphotype, Color, and Chemical Composition of Microplastics
4.3. Microplastic Transfer across Trophic Levels in the Marine Food Chain
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Law, K.L. Plastics in the Marine Environment. Ann. Rev. Mar. Sci. 2017, 9, 205–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowley, J.; Baker-Austin, C.; Porter, A.; Hartnell, R.; Lewis, C. Oceanic Hitchhikers—Assessing Pathogen Risks from Marine Microplastic. Trends Microbiol. 2021, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.; Herat, S. Ecotoxicity of Microplastic Pollutants to Marine Organisms: A Systematic Review. Water Air Soil Pollut. 2021, 232, 195. [Google Scholar] [CrossRef]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Arthur, C.; Baker, J.E.; Bamford, H.A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris; University of Washington Tacoma: Tacoma, WA, USA, 2009. [Google Scholar]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Huang, W.; Li, J.; Wang, C.; Zhang, D.; Zhang, C. Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean. Environ. Pollut. 2020, 259, 113948. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, H.; Cui, Y.; Wang, C.; Li, Y.; Zhang, D. Microplastics in offshore sediment in the Yellow Sea and East China Sea, China. Environ. Pollut. 2019, 244, 827–833. [Google Scholar] [CrossRef]
- Cozar, A.; Echevarria, F.; Gonzalez-Gordillo, J.I.; Irigoien, X.; Ubeda, B.; Hernandez-Leon, S.; Palma, A.T.; Navarro, S.; Garcia-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Cui, Y.; Zhou, H.; Jin, C.; Yu, X.; Xu, Y.; Li, Y.; Zhang, C. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci. Total Environ. 2019, 703, 134768. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Chen, M.; Chen, S.; Dasgupta, S.; Xu, H.; Ta, K.; Du, M.; Li, J.; Guo, Z.; Bai, S. Microplastics contaminate the deepest part of the world’s ocean. Geochem. Perspect. Lett. 2018, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Desforges, J.P.; Galbraith, M.; Dangerfield, N.; Ross, P.S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94–99. [Google Scholar] [CrossRef]
- Gassel, M.; Harwani, S.; Park, J.S.; Jahn, A. Detection of nonylphenol and persistent organic pollutants in fish from the North Pacific Central Gyre. Mar. Pollut. Bull. 2013, 73, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Ivar do Sul, J.A.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Setala, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Elliott, M.; Almeida, C.M.R.; Ramos, S. Microplastics and plankton: Knowledge from laboratory and field studies to distinguish contamination from pollution. J. Hazard Mater. 2021, 417, 126057. [Google Scholar] [CrossRef]
- Banerjee, A.; Shelver, W.L. Micro-and nanoplastic induced cellular toxicity in mammals: A review. Sci. Total Environ. 2021, 755, 142518. [Google Scholar] [CrossRef]
- Alomar, C.; Deudero, S. Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea. Environ. Pollut. 2017, 223, 223–229. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Peda, C.; Caccamo, L.; Fossi, M.C.; Gai, F.; Andaloro, F.; Genovese, L.; Perdichizzi, A.; Romeo, T.; Maricchiolo, G. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ. Pollut. 2016, 212, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.J.; Urbina, M.A.; Corr, S.; Lewis, C.; Galloway, T.S. Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance. Environ. Sci. Technol. 2015, 49, 14597–14604. [Google Scholar] [CrossRef] [PubMed]
- Binda, G.; Zanetti, G.; Bellasi, A.; Spanu, D.; Boldrocchi, G.; Bettinetti, R.; Pozzi, A.; Nizzetto, L. Physicochemical and biological ageing processes of (micro)plastics in the environment: A multi-tiered study on polyethylene. Environ. Sci. Pollut. R 2022. [Google Scholar] [CrossRef]
- Frias, J.P.; Sobral, P.; Ferreira, A.M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef] [PubMed]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 2012, 160, 42–48. [Google Scholar] [CrossRef]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Jiang, R.; Han, X.; Zhang, D.; Zhang, C. Are Bacterial Communities Associated with Microplastics Influenced by Marine Habitats? Sci. Total Environ. 2020, 733, 139400. [Google Scholar] [CrossRef]
- Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. [Google Scholar] [CrossRef]
- Santana, M.F.M.; Moreira, F.T.; Turra, A. Trophic transference of microplastics under a low exposure scenario: Insights on the likelihood of particle cascading along marine food-webs. Mar. Pollut. Bull. 2017, 121, 154–159. [Google Scholar] [CrossRef]
- McMahon, C.R.; Holley, D.; Robinson, S. The diet of itinerant male Hooker’s sea lions, Phocarctos hookeri, at sub-Antarctic Macquarie Island. Wildl. Res. 1999, 26, 839–846. [Google Scholar] [CrossRef]
- Cedervall, T.; Hansson, L.A.; Lard, M.; Frohm, B.; Linse, S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 2012, 7, e32254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zantis, L.J.; Bosker, T.; Lawler, F.; Nelms, S.E.; O’Rorke, R.; Constantine, R.; Sewell, M.; Carroll, E.L. Assessing microplastic exposure of large marine filter-feeders. Sci. Total Environ. 2022, 818, 151815. [Google Scholar] [CrossRef] [PubMed]
- Froese, R.; Pauly, D. FishBase; World Wide Web Electronic Publication. version (08/2019). Available online: www.fishbase.org (accessed on 25 December 2022).
- Masura, J.; Baker, J.; Foster, G.; Arthur, C.; Herring, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment, Recommendations for Quantifying Synthetic Particles in Waters and Sediments; NOAA Marine Debris Division: Silver Spring, MD, USA, 2015. [Google Scholar]
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.; Quan, W.m.; Li, C.H.; Chen, Y.H. Changes in trophic level of marine catches in the East China Sea region. Mar. Sci. 2005, 29, 51–55. [Google Scholar]
- He, Z.t.; Xue, L.j.; Jin, H.w. On feeding habits and trophic level of Collichtys lucidus in inshore waters of northern East China Sea. Mar. Fish 2011, 33, 265–273. [Google Scholar]
- Li, J.; Cao, K.; Ding, F.; Yang, W.; Shen, G.; Li, Y. Changes in trophic-level structure of the main fish species caught by China and their relationship with fishing method. J. Fish Sci. China 2016, 24, 109–119. [Google Scholar] [CrossRef]
- Li, Y.k.; Yu, N.; Chen, L.q.; Chen, Y.; Feng, D.X. Ecological modeling on structure and functioning of southern East China Sea ecosystem. Prog. Fish Sci. 2010, 31, 30–39. [Google Scholar]
- Liu, Y.; Cheng, J. A preliminary analysis of variation characteristics of structure and average trophic level of the main fishery species caught by paired bottom trawl in the East China Sea and the Yellow Sea during the fall season. J. Fish. China 2015, 39, 691–702. [Google Scholar]
- Yan, G.-S.; Zhang, T.; Zhao, F.; Wang, S.-k.; Yang, G.; Wang, Y.; Zhang, L.-Z. A study on trophic level of the major fishery species from the Yangtze Estuary based on stable isotope technology. Chin. J. Ecol. 2016, 35, 3131–3136. [Google Scholar]
- Yu, Y.; Zhang, Q.; Chen, W.; Xu, Y. A preliminary study on dominant fish species and their interspecific relations in waters of islands off the northern Zhejiang. J. Fish. China 1986, 10, 137–149. [Google Scholar]
- Zhang, B.; Tang, Q.-s. Study on trophic level of important resources species at high trophic level in the Bohai Sea, Yellow Sea and East China Sea. Adv. Mar. Sci. 2004, 22, 393–404. [Google Scholar]
- Fraser, M.A.; Chen, L.; Ashar, M.; Huang, W.; Zeng, J.; Zhang, C.; Zhang, D. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China. Ecotoxicol. Environ. Saf. 2020, 196, 110536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, W.; Li, T.; Wu, W.; Guo, Y.; Yang, C. Distribution and composition characteristics of microplastics in the coastal surface seawaters of Zhejiang Province. J. Zhejiang Univ. (Agric. Life Sci.) 2021, 47, 371–379. [Google Scholar]
- Zhang, F.; Wang, X.; Xu, J.; Zhu, L.; Peng, G.; Xu, P.; Li, D. Food-web transfer of microplastics between wild caught fish and crustaceans in East China Sea. Mar. Pollut. Bull. 2019, 146, 173–182. [Google Scholar] [CrossRef]
- Lefebvre, C.; Saraux, C.; Heitz, O.; Nowaczyk, A.; Bonnet, D. Microplastics FTIR characterisation and distribution in the water column and digestive tracts of small pelagic fish in the gulf of lions. Mar. Pollut. Bull. 2019, 142, 510–519. [Google Scholar] [CrossRef]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a larage, remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef]
- Denuncio, P.; Bastida, R.; Dassis, M.; Giardino, G.; Gerpe, M.; Rodríguez, D. Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), from Argentina. Mar. Pollut. Bull. 2011, 62, 1836–1841. [Google Scholar] [CrossRef]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- Wu, F.Z.; Wang, Y.J.; Leung, O.N.H.; Huang, W.; Zeng, J.N.; Tang, Y.B.; Chen, J.F.; Shi, A.Q.; Yu, X.; Xu, X.Q.; et al. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. Sci. Total Environ. 2020, 708, 135432. [Google Scholar] [CrossRef]
- Neves, D.; Sobral, P.; Ferreira, J.L.; Pereira, T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull. 2015, 101, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Boerger, C.M.; Lattin, G.L.; Moore, S.L.; Moore, C.J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull. 2010, 60, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Nel, H.A.; Froneman, P.W. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Mar. Pollut. Bull. 2015, 101, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ran, W.; Teng, J.; Liu, Y.; Liu, H.; Yin, X.; Cao, R.; Wang, Q. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Sci. Total Environ. 2018, 640–641, 637–645. [Google Scholar] [CrossRef]
- Wang, T.; Hu, M.H.; Song, L.L.; Yu, J.; Liu, R.J.; Wang, S.X.; Wang, Z.F.; Sokolova, I.m.; Huang, W.; Wang, Y.J. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environ. Pollut. 2020, 266, 115137. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef]
- Fisner, M.; Majer, A.; Taniguchi, S.; Bicego, M.; Turra, A.; Gorman, D. Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets. Mar. Pollut. Bull. 2017, 122, 323–330. [Google Scholar] [CrossRef]
- Cesa, F.; Turra, A.; Baruque-Ramos, J. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Sci. Total Environ. 2017, 598, 1116–1129. [Google Scholar] [CrossRef]
- Suaria, G.; Achtypi, A.; Perold, V.; Lee, J.R.; Pierucci, A.; Bornman, T.G.; Aliani, S.; Ryan, P.G. Microfibers in oceanic surface waters: A global characterization. Sci. Adv. 2020, 6, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, W.; Xu, Y.; Jin, A.; Zhang, D.; Zhang, C. Microplastics in sediment cores as indicators of temporal trends in microplastic pollution in Andong salt marsh, Hangzhou Bay, China. Reg. Stud. Mar. Sci. 2020, 35, 101149. [Google Scholar] [CrossRef]
- Gallagher, A.; Rees, A.; Rowe, R.; Stevens, J.; Wright, P. Microplastics in the Solent estuarine complex, UK: An initial assessment. Mar. Pollut. Bull. 2016, 102, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Alava, J.J. Modeling the Bioaccumulation and Biomagnification Potential of Microplastics in a Cetacean Food web of the Northeastern Pacific: A Prospective Tool to Assess the Risk Exposure to Plastic Particles. Front. Mar. Sci. 2020, 7, 566101. [Google Scholar] [CrossRef]
- O’Connor, J.D.; Lally, H.T.; Koelmans, A.A.; Mahon, A.M.; O’Connor, I.; Nash, R.; O’Sullivan, J.J.; Bruen, M.; Heerey, L.; Murphy, S. Modelling the transfer and accumulation of microplastics in a riverine freshwater food web. Environ. Adv. 2022, 8, 100192. [Google Scholar] [CrossRef]
- Wang, T.; Hu, M.; Xu, G.; Shi, H.; Leung, J.Y.S.; Wang, Y. Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence? Sci. Total Environ. 2021, 754, 142099. [Google Scholar] [CrossRef]
Species | Feeding Features | Total Samples | Body Weight ± SD (g) | Fork Length ± SD (mm) | Trophic Level | |
---|---|---|---|---|---|---|
Fish | Harpodon nehereus | Benthos; nekton | 18 | 68.92 ± 42.07 | 210.17 ± 40.37 | 3.81 |
Collichthys lucidus | Benthos; nekton | 17 | 21.92 ± 7.84 | 117.83 ± 14.83 | 3.29 | |
Scomber japonicus | Plankton; nekton | 8 | 179.72 ± 89.13 | 239.79 ± 48.77 | 3.30 | |
Pampus argenteus | Plankton; jellyfish | 12 | 96.13 ± 61.34 | 148.29 ± 33.97 | 3.10 | |
Larimichthys polyactis | Benthos; nekton | 10 | 40.02 ± 20.50 | 136.00 ± 18.38 | 3.46 | |
Trichiurus lepturus | Nekton; crustacean | 7 | 143.31 ± 119.09 | 186.60 ± 57.12 | 3.82 | |
Cynoglossus trigrammus | Benthos | 14 | 106.16 ± 13.75 | 251.60 ± 2.87 | ― a | |
Sardinella zunasi | Plankton | 5 | 5.36 ± 1.19 | 75.13 ± 3.72 | 2.66 | |
Muraenesox cinereus | Benthos; nekton | 6 | 182.41 ± 123.79 | 200.00 ± 47.34 | 3.85 | |
Johnius belengerii | Benthos; nekton | 27 | 71.95 ± 40.37 | 149.83 ± 28.26 | 3.53 | |
Crustacean | Charybdis japonica | Benthos | 9 | 72.70 ± 30.99 | 51.33 ± 7.94 | 2.77 |
Portunus trituberculatus | Benthos | 6 | 68.28 ± 71.58 | 50.17 ± 15.25 | 2.85 | |
Exopalaemon carinicauda | Benthos | 7 | 5.06 ± 0.72 | 75.14 ± 3.09 | 3.16 | |
Copepoda b | ― | ― | 0.2 g | ― | ― | 2.17 |
Nereidae b | ― | ― | 0.2 g | ― | ― | 2.22 |
Type of Polymers | Number | Proportion of Total Particles (%) | FTIR Library |
---|---|---|---|
Cellulose | 117 | 50.4 | Wizard Library |
Cellophane | 52 | 22.4 | Hummel Polymer Sample Library |
Rayon | 23 | 9.9 | Synthetic Fibers by Microscope |
Polyethylene terephthalate | 16 | 6.9 | Cross Sections Wizard |
Polyester | 9 | 3.9 | Synthetic Fibers by Microscope |
Acrylic | 7 | 3.0 | Synthetic Fibers by Microscope |
Polystyrene | 3 | 1.3 | Aldrich Linked IR |
Polyethylene | 2 | 0.9 | Hummel Polymer Sample Library |
Polypropylene | 2 | 0.9 | Polymer Additives and Plasticizers |
Polyamide | 1 | 0.4 | Hummel Polymer Sample Library |
Total | 232 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.; Deng, Z.; Li, J.; Xiao, Y.; Xu, Y.; Wang, J.; Li, T.; Zhang, C. The “Journey” of Microplastics across the Marine Food Web in China’s Largest Fishing Ground. Water 2023, 15, 445. https://doi.org/10.3390/w15030445
Jiang R, Deng Z, Li J, Xiao Y, Xu Y, Wang J, Li T, Zhang C. The “Journey” of Microplastics across the Marine Food Web in China’s Largest Fishing Ground. Water. 2023; 15(3):445. https://doi.org/10.3390/w15030445
Chicago/Turabian StyleJiang, Rijin, Zhaochao Deng, Jingjing Li, Yi Xiao, Yongjiu Xu, Jing Wang, Tiejun Li, and Chunfang Zhang. 2023. "The “Journey” of Microplastics across the Marine Food Web in China’s Largest Fishing Ground" Water 15, no. 3: 445. https://doi.org/10.3390/w15030445
APA StyleJiang, R., Deng, Z., Li, J., Xiao, Y., Xu, Y., Wang, J., Li, T., & Zhang, C. (2023). The “Journey” of Microplastics across the Marine Food Web in China’s Largest Fishing Ground. Water, 15(3), 445. https://doi.org/10.3390/w15030445