A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater
Abstract
:1. Introduction
2. Toxicity of Arsenic and Its Health Effects
3. Arsenic Removal Technologies
3.1. Ion-Exchange
3.2. Coagulation/Flocculation
3.3. Phytoremediation
3.4. Oxidation
3.5. Adsorption
3.6. Bioremediation
3.7. Membrane Technology
3.7.1. Electrodialysis
3.7.2. Ultra-Filtration
4. Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, J.; Su, C.; Rashid, A.; Yang, N.; Baloch, M.Y.J.; Talpur, S.A.; Ullah, Z.; Rahman, G.; Rahman, N.U.; Earjh, E.; et al. Hydrogeochemical Assessment of Groundwater and Suitability Analysis for Domestic and Agricultural Utility in Southern Punjab, Pakistan. Water 2021, 13, 3589. [Google Scholar] [CrossRef]
- Talpur, S.A.; Noonari, T.M.; Rashid, A.; Ahmed, A.; Jat Baloch, M.Y.; Talpur, H.A.; Soomro, M.H. Hydrogeochemical signatures and suitability assessment of groundwater with elevated fluoride in uncon-fined aquifers Badin district, Sindh, Pakistan. SN Appl. Sci. 2020, 2, 1038. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.; Chai, J.; Li, S.; Alqurashi, M.; Rehman, G.; Tariq, A.; Talpur, S.A.; Iqbal, J.; Munir, M.; et al. Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes. Water 2021, 13, 3361. [Google Scholar] [CrossRef]
- Baloch MY, J.; Mangi, S.H. Treatment of synthetic greywater by using banana, orange and sapodilla peels as a low cost activated carbon. J. Mater. Environ. Sci. 2019, 10, 966–986. [Google Scholar]
- Baloch, M.Y.J.; Talpur, S.A.; Talpur, H.A.; Iqbal, J.; Mangi, S.H.; Memon, S. Effects of Arsenic Toxicity on the Environment and Its Remediation Techniques: A Review. J. Water Environ. Technol. 2020, 18, 275–289. [Google Scholar] [CrossRef]
- Arifullah; Changsheng, H.; Akram, W.; Rashid, A.; Ullah, Z.; Shah, M.; Alrefaei, A.F.; Kamel, M.; Aleya, L.; Abdel-Daim, M.M. Quality Assessment of Groundwater Based on Geochemical Modelling and Water Quality Index (WQI). Water 2022, 14, 3888. [Google Scholar] [CrossRef]
- Tariq, A.; Mumtaz, F.; Zeng, X.; Baloch, M.Y.J.; Moazzam, M.F.U. Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using day-time and night-time land surface temperatures MODIS and meteorological stations data. Remote. Sens. Appl. Soc. Environ. 2022, 27, 100779. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, J.; Li, S.; Wang, X.; Wu, S.; Liang, Z.; Baloch, M.Y.J.; Silva, L.F.; Zhang, D. Physiological characteristics, geochemical properties and hydrological variables influencing pathogen mi-gration in subsurface system: What we know or not? Geosci. Front. 2022, 13, 101346. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Gu, R.; Liang, Z.; Xu, W.; Baloch, M.Y.J. Health Risk Assessment during In Situ Remediation of Cr(VI)-Contaminated Groundwater by Permeable Reactive Barriers: A Field-Scale Study. Int. J. Environ. Res. Public Health 2022, 19, 3079. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.; Al Shoumik, B.A.; Nigar, A.; Elhassan, A.A.M.; Elshekh, A.E.A.; Bashir, M.O.; Ebrahim, A.F.M.S.; Mohamed, K.A.A.; Iqbal, J. Hydrogeochemical Mechanism Associated with Land Use Land Cover Indices Using Geospatial, Remote Sensing Techniques, and Health Risks Model. Sustainability 2022, 14, 6768. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Zia, Z.; Abbas, S.; Hammad, H.M.; Shah, G.M.; Khalid, S.; Shahid, N.; Sajjad, M.; Fahad, S. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems. Groundw. Sustain. Dev. 2019, 9, 100263. [Google Scholar] [CrossRef]
- Alidokht, L.; Anastopoulos, I.; Ntarlagiannis, D.; Soupios, P.; Tawabini, B.; Kalderis, D.; Khataee, A. Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil. J. Environ. Chem. Eng. 2021, 9, 105533. [Google Scholar] [CrossRef]
- Singh, P.; Borthakur, A.; Singh, R.; Bhadouria, R.; Singh, V.K.; Devi, P. A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundw. Sustain. Dev. 2021, 14, 100607. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Nath, S.G.; Debsarkar, A.; Dutta, A. Technology alternatives for decontamination of arsenic-rich groundwater—A critical review. Environ. Technol. Innov. 2018, 13, 277–303. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.; Zhang, D.; Al Shoumik, B.A.; Iqbal, J.; Li, S.; Chai, J.; Farooq, M.A.; Parkash, A. Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 3325. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Mi, W.; Xie, S.; Ji, L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. 2020, 406, 124337. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.R.; Pintor, A.M.; Boaventura, R.A.; Botelho, C.M.; Santos, S.C. Arsenic removal from water using iron-coated seaweeds. J. Environ. Manag. 2017, 192, 224–233. [Google Scholar] [CrossRef]
- Monteiro De Oliveira, E.C.; Caixeta, E.S.; Santos VS, V.; Pereira, B.B. Arsenic exposure from groundwater: Environmental contamination, human health effects, and sustainable solutions. J. Toxicol. Environ. Health Part B 2021, 24, 119–135. [Google Scholar] [CrossRef]
- Clair-Caliot, G.; Marks, S.J.; Hug, S.J.; Bretzler, A.; N’Guessan, N.D.; Tihe, S.F.K.; Lalanne, F. Uptake of Arsenic by Irrigated Vegetables and Cooked Food Products in Burkina Faso. Front. Water 2021, 3, 667308. [Google Scholar] [CrossRef]
- Karagas, M.R.; Punshon, T.; Davis, M.; Bulka, C.M.; Slaughter, F.; Karalis, D.; Argos, M.; Ahsan, H. Rice Intake and Emerging Concerns on Arsenic in Rice: A Review of the Human Evidence and Methodologic Challenges. Curr. Environ. Health Rep. 2019, 6, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Baloch MY, J.; Su, C.; Talpur, S.A.; Iqbal, J.; Bajwa, K. Arsenic Removal from Groundwater using Iron Pyrite: Influences Factors and Removal Mechanism. J. Earth Sci. 2022, in press. [Google Scholar]
- Kundu, S.; Naskar, M.K. Perspective of Membrane Processes for the Removal of Arsenic from Water: An Overview. Trans. Indian Ceram. Soc. 2021, 80, 28–40. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Agrawal, P.K.; Singh, D.K. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ. Technol. Innov. 2019, 16, 100462. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sastry, S. Problem Definition and Community Participation in Environmental Health Interventions: An Exploratory Study of Groundwater Arsenic Remediation. Health Commun. 2020, 37, 717–725. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Udensi, U.K.; Pacurari, M.; Stevens, J.J.; Patlolla, A.K.; Noubissi, F.; Kumar, S. State of the science review of the health effects of inorganic arsenic: Perspectives for future research. Environ. Toxicol. 2018, 34, 188–202. [Google Scholar] [CrossRef]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.C.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S.; et al. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef]
- Toolabi, A.; Bonyadi, Z.; Paydar, M.; Najafpoor, A.A.; Ramavandi, B. Spatial distribution, occurrence, and health risk assessment of nitrate, fluoride, and arsenic in Bam groundwater resource, Iran. Groundw. Sustain. Dev. 2020, 12, 100543. [Google Scholar] [CrossRef]
- Qurat-ul-Ain Farooqi, A.; Sultana, J.; Masood, N. Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: Spatial trends, sources and human health implications. Toxicol. Ind. Health 2017, 33, 655–672. [Google Scholar] [CrossRef]
- Fernández-Macias, J.C.; Ochoa-Martínez, C.; Orta-García, S.T.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environ. Monit. Assess. 2020, 192, 712. [Google Scholar] [CrossRef] [PubMed]
- Alcaine, A.A.; Schulz, C.; Bundschuh, J.; Jacks, G.; Thunvik, R.; Gustafsson, J.-P.; Mörth, C.-M.; Sracek, O.; Ahmad, A.; Bhattacharya, P. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 2020, 715, 136671. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Rao, T.S.; Isloor, A.M.; Ibrahim, G.S.; Inamuddin; Ismail, N.; Ismail, A.F.; Asiri, A.M. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Int. J. Biol. Macromol. 2019, 129, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.V.; Guo, X.; Gan, Y.; Benner, S.G.; Griffin, A.M.; Gorski, C.A.; Wang, Y.; Fendorf, S. Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River Basin. Geochim. Cosmochim. Acta 2017, 204, 104–119. [Google Scholar] [CrossRef]
- Bundschuh, J.; Armienta, M.A.; Morales-Simfors, N.; Alam, M.A.; López, D.L.; Quezada, V.D.; Dietrich, S.; Schneider, J.; Tapia, J.; Sracek, O.; et al. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010–2020. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1727–1865. [Google Scholar] [CrossRef]
- 3Tsuji, J.S.; Chang, E.T.; Gentry, P.R.; Clewell, H.J.; Boffetta, P.; Cohen, S.M. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: The scientific basis for use of a threshold approach. Crit. Rev. Toxicol. 2019, 49, 36–84. [Google Scholar] [CrossRef]
- Kumar, R.; Patel, M.; Singh, P.; Bundschuh, J.; Pittman, C.U.; Trakal, L.; Mohan, D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Sci. Total Environ. 2019, 694, 133427. [Google Scholar] [CrossRef]
- Singh, R.; Gayen, A.; Kumar, S.; Dewangan, R. Geo-spatial distribution of arsenic contamination of groundwater resources in intricate crystalline aquifer system of Central India: Arsenic toxicity manifestation and health risk assessment. Hum. Ecol. Risk Assessment: Int. J. 2021, 27, 1588–1612. [Google Scholar] [CrossRef]
- Ahmad, A.; van der Wens, P.; Baken, K.; de Waal, L.; Bhattacharya, P.; Stuyfzand, P. Arsenic reduction to <1 µg/L in Dutch drinking water. Environ. Int. 2019, 134, 105253. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Mushtaq, N.; Masood, N.; Khattak, J.A.; Hussain, I.; Khan, Q.; Farooqi, A. Health risk assessment and source identification of groundwater arsenic contamination using agglomerative hierarchical cluster analysis in selected sites from upper Eastern parts of Punjab province, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2020, 27, 999–1018. [Google Scholar] [CrossRef]
- Bandara UG, C.; Diyabalanage, S.; Hanke, C.; van Geldern, R.; Barth, J.A.; Chandrajith, R. Arsenic-rich shallow groundwater in sandy aquifer systems buffered by rising carbonate waters: A geo-chemical case study from Mannar Island, Sri Lanka. Sci. Total Environ. 2018, 633, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Astatkie, H.; Ambelu, A.; Beyene, E.M. Sources and level of heavy metal contamination in the water of Awetu watershed streams, southwestern Ethiopia. Heliyon 2021, 7, e06385. [Google Scholar] [CrossRef]
- Chen, J.; Qian, H.; Gao, Y.; Li, X. Human Health Risk Assessment of Contaminants in Drinking Water Based on Triangular Fuzzy Numbers Approach in Yinchuan City, Northwest China. Expo. Health 2017, 10, 155–166. [Google Scholar] [CrossRef]
- Wei, Y.; Wei, S.; Liu, C.; Chen, T.; Tang, Y.; Ma, J.; Yin, K.; Luo, S. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res. 2019, 167, 115107. [Google Scholar] [CrossRef]
- Maity, J.P.; Ho, P.-R.; Huang, Y.-H.; Sun, A.-C.; Chen, C.-C. The removal of arsenic from arsenic-bearing groundwater in In-situ and Ex-situ environment using novel natural magnetic rock material and synthesized magnetic material as adsorbent: A comparative assessment. Environ. Pollut. 2019, 253, 768–778. [Google Scholar] [CrossRef]
- Ruj, B.; Chakrabortty, S.; Nayak, J.; Chatterjee, R. Treatment of arsenic sludge generated from groundwater treatment plant: A review towards a sustainable solution. S. Afr. J. Chem. Eng. 2021, 37, 214–226. [Google Scholar] [CrossRef]
- Da’ana, D.A.; Zouari, N.; Ashfaq, M.Y.; Abu-Dieyeh, M.; Khraisheh, M.; Hijji, Y.M.; Al-Ghouti, M.A. Removal of toxic elements and microbial contaminants from groundwater using low-cost treatment options. Curr. Pollut. Rep. 2021, 7, 300–324. [Google Scholar] [CrossRef]
- Mateo, C.; Navarro, M.; Navarro, C.; Leyva, A. Arsenic Phytoremediation: Finally a Feasible Approach in the Near Future. In Environmental Chemistry and Recent Pollution Control Approaches; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Leiva, E.; Leiva-Aravena, E.; Rodríguez, C.; Serrano, J.; Vargas, I. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. Sci. Total Environ. 2018, 645, 471–481. [Google Scholar] [CrossRef]
- Hussain, S.; Habib-Ur-Rehman, M.; Khanam, T.; Sheer, A.; Kebin, Z.; Jianjun, Y. Health Risk Assessment of Different Heavy Metals Dissolved in Drinking Water. Int. J. Environ. Res. Public Health 2019, 16, 1737. [Google Scholar] [CrossRef]
- Kobya, M.; Soltani, R.D.C.; Omwene, P.I.; Khataee, A. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environ. Technol. Innov. 2020, 17, 100519. [Google Scholar] [CrossRef]
- Davis, M.A.; Signes-Pastor, A.J.; Argos, M.; Slaughter, F.; Pendergrast, C.; Punshon, T.; Gossai, A.; Ahsan, H.; Karagas, M.R. Assessment of human dietary exposure to arsenic through rice. Sci. Total Environ. 2017, 586, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Kumarathilaka, P.; Seneweera, S.; Ok, Y.S.; Meharg, A.; Bundschuh, J. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environ. Int. 2019, 127, 584–591. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, F.J. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2449–2484. [Google Scholar] [CrossRef]
- Rahman, A.; Granberg, C.; Persson L, Å. Early life arsenic exposure, infant and child growth, and morbidity: A systematic review. Arch. Toxicol. 2017, 91, 3459–3467. [Google Scholar] [CrossRef]
- Jablonska, E.; Socha, K.; Reszka, E.; Wieczorek, E.; Skokowski, J.; Kalinowski, L.; Fendler, W.; Seroczynska, B.; Wozniak, M.; Borawska, M.; et al. Cadmium, arsenic, selenium and iron–implications for tumor progression in breast cancer. Environ. Toxicol. Pharmacol. 2017, 53, 151–157. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, D.; Li, B.; Dong, L.; Sun, G. Development of Arsenic Removal Technology from Drinking Water in Developing Countries. In Arsenic Contamination in Asia; Springer: Singapore, 2018; pp. 163–179. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S.J.E.P. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Alvarez-Ayuso, E. Stabilization and encapsulation of arsenic-/antimony-bearing mine waste: Overview and outlook of existing techniques. Crit. Rev. Environ. Sci. Technol. 2021, 52, 1–33. [Google Scholar] [CrossRef]
- Sarkar, M.; Pal, S.C. Human health hazard assessment for high groundwater arsenic and fluoride intact in Malda district, Eastern India. Groundw. Sustain. Dev. 2021, 13, 100565. [Google Scholar] [CrossRef]
- Poonia, T.; Singh, N.; Garg, M.C. Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: A review, meta-analysis and cancer risk assessment. Int. J. Environ. Sci. Technol. 2021, 18, 2891–2902. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron YA, R.; Santos LV, S.; de Paula, E.C.; Amaral, M.C.S. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Process Saf. Environ. Prot. 2021, 148, 604–623. [Google Scholar] [CrossRef]
- Mohammed, J.S. A brief review on Ion Exchange Chromatography. PharmaTutor 2017, 5, 30–38. [Google Scholar]
- Baskan, M.B.; Hadimlioglu, S. Removal of arsenate using graphene oxide-iron modified clinoptilolite-based composites: Adsorption kinetic and column study. J. Anal. Sci. Technol. 2021, 12, 22. [Google Scholar] [CrossRef]
- Ortega, A.; Oliva, I.; Contreras, K.E.; González, I.; Cruz-Díaz, M.R.; Rivero, E.P. Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Sep. Purif. Technol. 2017, 184, 319–326. [Google Scholar] [CrossRef]
- Litter, M.I.; Ingallinella, A.M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Torres, E.M.F.; Taylor, S.; Frangie, S.; Herkovits, J.; et al. Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Sci. Total Environ. 2019, 690, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zheng, T.; Dai, Q.; Chen, J. Sulfide and arsenic compounds removal from liquid digestate by ferric coagulation and toxicity evaluation. Water Environ. Res. 2019, 91, 1613–1623. [Google Scholar] [CrossRef]
- Robledo-Peralta, A.; López-Guzmán, M.; Morales-Amaya, C.; Reynoso-Cuevas, L. Arsenic and Fluoride in Groundwater, Prevalence and Alternative Removal Approach. Processes 2021, 9, 1191. [Google Scholar] [CrossRef]
- Sandoval, M.A.; Fuentes, R.; Thiam, A.; Salazar, R. Arsenic and fluoride removal by electrocoagulation process: A general review. Sci. Total Environ. 2020, 753, 142108. [Google Scholar] [CrossRef]
- Nidheesh, P.; Singh, T.A. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere 2017, 181, 418–432. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.H.; El-Ashtoukhy, E.Z.; Zoromba, M.S.; Bassyouni, M.; Sedahmed, G.H. Removal of nitrates from water by electrocoagulation using a cell with horizontally oriented Al serpentine tube anode. J. Ind. Eng. Chem. 2020, 82, 105–112. [Google Scholar] [CrossRef]
- Kumar, I.; Quaff, A.R. Comparative study on the effectiveness of natural coagulant aids and commercial coagulant: Removal of arsenic from water. Int. J. Environ. Sci. Technol. 2018, 16, 5989–5994. [Google Scholar] [CrossRef]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef]
- Gałczyńska, M.; Mańkowska, N.; Milke, J.; Buśko, M. Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water. J. Water Land Dev. 2019. Available online: https://www.jwld.pl/files/Galczynska-et-al.pdf (accessed on 13 December 2022). [CrossRef]
- Thathong, V.; Tantamsapya, N.; Yossapol, C.; Liao, C.-H.; Wirojanagud, W.; Padungthon, S. Role of Colocasia esculenta L. schott in arsenic removal by a pilot-scale constructed wetland filled with laterite soil. Heliyon 2019, 5, e01233. [Google Scholar] [CrossRef]
- Paul, M.; Goswami, C.; Mukherjee, M.; Roychowdhury, T. Phyto-remedial detoxification of arsenic by Pistia stratiotes and assessment of its anti-oxidative enzymatic changes. Bioremediation J. 2019, 23, 175–184. [Google Scholar] [CrossRef]
- Cantamessa, S.; Massa, N.; Gamalero, E.; Berta, G. Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi. Plants 2020, 9, 1211. [Google Scholar] [CrossRef]
- Yan, H.; Gao, Y.; Wu, L.; Wang, L.; Zhang, T.; Dai, C.; Xu, W.; Feng, L.; Ma, M.; Zhu, Y.-G.; et al. Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. J. Hazard. Mater. 2019, 368, 386–396. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.D.; Borges, A.C.; Braga, A.F.; Veloso, R.W.; de Matos, A. T Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study. Chemosphere 2019, 234, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Onyia, P.C.; Ozoko, D.C.; Ifediegwu, S.I. Phytoremediation of arsenic-contaminated soils by arsenic hyperaccumulating plants in selected areas of Enugu State, Southeastern, Nigeria. Geol. Ecol. Landscapes 2020, 5, 308–319. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, Y.; Tsang, D.C.; Song, L.; Zhang, C.; Yin, M.; Liu, J.; Xiao, T.; Zhang, G.; Wang, J. Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. J. Hazard. Mater. 2019, 388, 121756. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Mathur, J. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environ. Sci. Pollut. Res. 2020, 27, 29954–29966. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, H.; Liu, C.; Luo, S.; Liu, Y.; Yu, X.; Ma, J.; Yin, K.; Feng, H. Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption. Water Res. 2018, 150, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Mahandra, H.; Ghahreman, A. Novel Continuous Column Process for As(III) Oxidation from Concentrated Acidic Solutions with Activated Carbon Catalysis. Ind. Eng. Chem. Res. 2020, 59, 9882–9889. [Google Scholar] [CrossRef]
- Navarrete-Magaña, M.; Estrella-González, A.; May-Ix, L.; Cipagauta-Díaz, S.; Gómez, R. Improved photocatalytic oxidation of arsenic (III) with WO3/TiO2 nanomaterials synthesized by the solgel method. J. Environ. Manag. 2021, 282, 111602. [Google Scholar] [CrossRef]
- An, Y.; Han, M.; Zheng, H.; Ding, W.; Sun, Q.; Hu, C.; Zheng, L. Hollow structured copper-loaded self-floating catalyst in sulfite-induced oxidation of arsenic(III) at neutral pH: Kinetics and mechanisms investigation. Chem. Eng. J. 2020, 407, 127193. [Google Scholar] [CrossRef]
- Rana, A.; Kumari, N.; Tyagi, M.; Jagadevan, S. Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics. Chem. Eng. J. 2018, 347, 91–100. [Google Scholar] [CrossRef]
- Mondal, M.K.; Garg, R. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environ. Sci. Pollut. Res. 2017, 24, 13295–13306. [Google Scholar] [CrossRef]
- Luong, V.T.; Kurz, E.E.C.; Hellriegel, U.; Luu, T.L.; Hoinkis, J.; Bundschuh, J. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Res. 2018, 133, 110–122. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Sahu, O. Arsenate and fluoride removal from groundwater by sawdust impregnated ferric hydroxide and activated alumina (SFAA). Groundw. Sustain. Dev. 2020, 12, 100490. [Google Scholar] [CrossRef]
- Sherlala, A.; Raman, A.; Bello, M.; Buthiyappan, A. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J. Environ. Manag. 2019, 246, 547–556. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.-G.; Liu, S.-B.; Liu, H.-Y.; Zeng, G.-M.; Tan, X.-F.; Yang, C.-P.; Ding, Y.; Yan, Z.-L.; Cai, X.-X. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chem. Eng. J. 2017, 314, 223–231. [Google Scholar] [CrossRef]
- Nieto-Delgado, C.; Gutiérrez-Martínez, J.; Rangel-Méndez, J.R. Modified activated carbon with interconnected fibrils of iron-oxyhydroxides using Mn2+ as morphology regulator, for a superior arsenic removal from water. J. Environ. Sci. 2019, 76, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.M.; Nguyen, B.Q.; Nguyen, H.T.; Nguyen, H.T. Adsorption of Arsenic and Heavy Metals from Solutions by Unmodified Iron-Ore Sludge. Appl. Sci. 2019, 9, 619. [Google Scholar] [CrossRef]
- Lung, I.; Stan, M.; Opris, O.; Soran, M.L.; Senila, M.; Stefan, M. Removal of lead (II), cadmium (II), and arsenic (III) from aqueous solution using magnetite nanoparticles pre-pared by green synthesis with Box–Behnken design. Anal. Lett. 2018, 51, 2519–2531. [Google Scholar] [CrossRef]
- Liu, L.; Tan, W.; Suib, S.L.; Qiu, G.; Zheng, L.; Su, S. Enhanced adsorption removal of arsenic from mining wastewater using birnessite under electrochemical redox reactions. Chem. Eng. J. 2019, 375, 122051. [Google Scholar] [CrossRef]
- Li, S.; Guo, Y.; Xiao, M.; Zhang, T.; Yao, S.; Zang, S.; Fan, H.; Shen, Y.; Zhang, Z. Enhanced arsenate removal from aqueous solution by Mn-doped MgAl-layered double hydroxides. Environ. Sci. Pollut. Res. 2019, 26, 12014–12024. [Google Scholar] [CrossRef]
- Xu, F.; Chen, H.; Dai, Y.; Wu, S.; Tang, X. Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water. J. Environ. Manag. 2019, 245, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Hou, J.; Hartley, W.; Ren, L.; Wang, M.; Tu, S.; Tan, W. As (III) adsorption on Fe-Mn binary oxides: Are Fe and Mn oxides synergistic or antagonistic for arsenic removal? Chem. Eng. J. 2020, 389, 124470. [Google Scholar] [CrossRef]
- Biswas, R.; Sarkar, A. A two-step approach for arsenic removal by exploiting an autochthonous Delftia sp. BAs29 and neutralized red mud. Environ. Sci. Pollut. Res. 2020, 28, 40665–40677. [Google Scholar] [CrossRef]
- Jin, Q.H.; Cui, C.Y.; Chen, H.Y.; Wang, Y.; Geng, J.; Wu, Y.H. Efficient removal of arsenic from water by dielectrophoresis-assisted adsorption. Water Supply 2018, 19, 1066–1072. [Google Scholar] [CrossRef]
- Min, X.; Li, Y.; Ke, Y.; Shi, M.; Chai, L.; Xue, K. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci. Technol. 2017, 76, 192–200. [Google Scholar] [CrossRef]
- Ghosal, P.S.; Kattil, K.V.; Yadav, M.K.; Gupta, A.K. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network. J. Environ. Manag. 2018, 209, 176–187. [Google Scholar] [CrossRef]
- Zhu, N.; Qiao, J.; Ye, Y.; Yan, T. Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: Adsorption mechanism study and application to a lab-scale column. J. Environ. Manag. 2018, 211, 73–82. [Google Scholar] [CrossRef]
- Hao, L.; Liu, M.; Wang, N.; Li, G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S.; Shrestha, B. Arsenic Removal from Water by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Sasani, M.; Marghzari, S. Removal of Dyes from the Environment by Adsorption Process. Chem. Mater. Eng. 2018, 6, 31–35. [Google Scholar] [CrossRef]
- Song, Y.; Yuan, P.; Du, P.; Deng, L.; Wei, Y.; Liu, D.; Zhong, X.; Zhou, J. A novel halloysite–CeOx nanohybrid for efficient arsenic removal. Appl. Clay Sci. 2020, 186, 105450. [Google Scholar] [CrossRef]
- Usman, M.; Katsoyiannis, I.; Mitrakas, M.; Zouboulis, A.; Ernst, M. Performance Evaluation of Small Sized Powdered Ferric Hydroxide as Arsenic Adsorbent. Water 2018, 10, 957. [Google Scholar] [CrossRef]
- Tripathy, S.S.; Raichur, A.M. Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water. Chem. Eng. J. 2008, 138, 179–186. [Google Scholar] [CrossRef]
- Diaz-Vanegas, C.; Casiot, C.; Liming, L.; de Windt, L.; Djibrine, A.; Malcles, A.; Hery, M.; Desoeuvre, A.; Bruneel, O.; Battaglia-Brunet, F. Performances of a semi-passive field-pilot for bioremediation of As-rich Acid Mine Drainage at the Carnoulès mine (France). In Proceedings of the 14th International Mine Water Association Congress, Christchurch, New Zealand, 9–30 November 2020. [Google Scholar]
- Saunders, J.A.; Lee, M.-K.; Dhakal, P.; Ghandehari, S.S.; Wilson, T.; Billor, M.Z.; Uddin, A. Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite. Appl. Geochem. 2018, 96, 233–243. [Google Scholar] [CrossRef]
- Fernandez-Rojo, L.; Casiot, C.; Laroche, E.; Tardy, V.; Bruneel, O.; Delpoux, S.; Desoeuvre, A.; Grapin, G.; Savignac, J.; Boisson, J.; et al. A field-pilot for passive bioremediation of As-rich acid mine drainage. J. Environ. Manag. 2019, 232, 910–918. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut. 2019, 9, 191203. [Google Scholar] [CrossRef] [PubMed]
- Alka, S.; Shahir, S.; Ibrahim, N.; Chai, T.-T.; Bahari, Z.M.; Manan, F.A. The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environ. Technol. Innov. 2020, 17, 100602. [Google Scholar] [CrossRef]
- Karimi, P.; Javanshir, S.; Sayadi, M.H.; Arabyarmohammadi, H. Arsenic Removal from Mining Effluents Using Plant-Mediated, Green-Synthesized Iron Nanoparticles. Processes 2019, 7, 759. [Google Scholar] [CrossRef]
- Rodríguez-Castrejón, U.E.; Serafin-Muñoz, A.H.; Alvarez-Vargas, A.; Cruz-Jímenez, G.; Noriega-Luna, B. Isolation and molecular identification of native As-resistant bacteria: As(III) and As(V) removal capacity and possible mechanism of detoxification. Arch. Microbiol. 2022, 204, 191. [Google Scholar] [CrossRef]
- Chitara, M.K.; Chauhan, S.; Singh, R.P. Bioremediation of Polluted Soil by Using Plant Growth–Promoting Rhizobacteria. In Microbial Rejuvenation of Polluted Environment; Springer: Singapore, 2021; pp. 203–226. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Review on remediation technologies for arsenic-contaminated soil. Front. Environ. Sci. Eng. 2019, 14, 24. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Mohkami, A.; Habibi-Pirkoohi, M. Arsenic Removal from Aqueous Media using Scenedesmus obliquus: The Promoting Impact of Microalgae-Bacteria Consortium. J. Phycol. Res. 2019, 3, 301–311. [Google Scholar] [CrossRef]
- Sayqal, A.; Ahmed, O.B. Advances in Heavy Metal Bioremediation: An Overview. Appl. Bionics Biomech. 2021, 2021, 1609149. [Google Scholar] [CrossRef] [PubMed]
- Zakhar, R.; Derco, J.; Čacho, F. An overview of main arsenic removal technologies. Acta Chim. Slovaca 2018, 11, 107–113. [Google Scholar] [CrossRef]
- Mir, N.; Bicer, Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. J. Environ. Manag. 2021, 289, 112496. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, X.; Li, J.; Pan, S.; Sun, X.; Shen, J.; Han, W.; Wang, L.; Zhao, S. Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal. J. Colloid Interface Sci. 2018, 514, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Criscuoli, A.; Figoli, A. Pressure-driven and thermally-driven membrane operations for the treatment of arsenic-contaminated waters: A comparison. J. Hazard. Mater. 2019, 370, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Jarma, Y.A.; Karaoğlu, A.; Tekin, Ö.; Baba, A.; Ökten, H.E.; Tomaszewska, B.; Bostancı, K.; Arda, M.; Kabay, N. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. J. Hazard. Mater. 2021, 405, 124129. [Google Scholar] [CrossRef]
- Figoli, A.; Fuoco, I.; Apollaro, C.; Chabane, M.; Mancuso, R.; Gabriele, B.; De Rosa, R.; Vespasiano, G.; Barca, D.; Criscuoli, A. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep. Purif. Technol. 2019, 238, 116461. [Google Scholar] [CrossRef]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.-V.N.; Manan, F.A. Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 2020, 278, 123805. [Google Scholar] [CrossRef]
- Rajendran, M.; Thangavelu, D. Removal of As(V) from water using galvanically coupled sacrificial metals. J. Hazard. Mater. 2020, 409, 124564. [Google Scholar] [CrossRef]
- Kepel, B.; Bodhi, W.; Tallei, T.E. Isolation and Identification of Arsenic-resistant Bacteria for Possible Application in Arsenic Bioremediation. Pak. J. Biol. Sci. 2019, 23, 63–67. [Google Scholar] [CrossRef]
- Mendoza, R.M.O.; Dalida, M.L.P.; Kan, C.-C.; Wan, M.-W. Groundwater treatment by electrodialysis: Gearing up towards green technology. Desalination Water Treat. 2018, 127, 178–183. [Google Scholar] [CrossRef]
- Aliaskari, M.; Schäfer, A.I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Res. 2020, 190, 116683. [Google Scholar] [CrossRef]
- Xu, X.; Lin, L.; Ma, G.; Wang, H.; Jiang, W.; He, Q.; Nirmalakhandan, N.; Xu, P. Study of polyethyleneimine coating on membrane permselectivity and desalination performance during pilot-scale electrodialysis of reverse osmosis concentrate. Sep. Purif. Technol. 2018, 207, 396–405. [Google Scholar] [CrossRef]
- Tuan Minh, P.; Nishihama, S.; Yoshizuka, K. Removal of Arsenic from Water Environment by Electrodialysis. Available online: https://www.academia.edu/59977609/Removal_of_Arsenic_from_Water_by_Electrocoagulation_and_Electrodialysis_Techniques (accessed on 13 December 2022).
- Graça, N.S.; Rodrigues, A.E.J.C.T. The Combined Implementation of Electrocoagulation and Adsorption Processes for the Treatment of Wastewaters. Clean Technol. 2022, 4, 63. Available online: https://www.mdpi.com/2571-8797/4/4/63 (accessed on 13 December 2022). [CrossRef]
- Almeida, J.; Craveiro, R.; Faria, P.; Silva, A.; Mateus, E.; Barreiros, S.; Paiva, A.; Ribeiro, A. Electrodialytic removal of tungsten and arsenic from secondary mine resources—Deep eutectic solvents enhancement. Sci. Total Environ. 2019, 710, 136364. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Khan, T.A.; Asim, M.J.S.; reviews, p. Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Environ. Technol. 2011, 40, 25–42. [Google Scholar] [CrossRef]
- Cohen, B.; Lazarovitch, N.; Gilron, J. Upgrading groundwater for irrigation using monovalent selective electrodialysis. Desalination 2018, 431, 126–139. [Google Scholar] [CrossRef]
- Almeida, J.S.R.d. Recovery of Mining Residues for Eco-Efficient Mortar Production. PhD Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2021. [Google Scholar]
- Almeida, J.; Magro, C.; Rosário, A.R.; Mateus, E.P.; Ribeiro, A.B. Electrodialytic treatment of secondary mining resources for raw materials extraction: Reactor design assessment. Sci. Total Environ. 2021, 752, 141822. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Gokcek, O.B.; Uzal, N. Arsenic removal by the micellar-enhanced ultrafiltration using response surface methodology. Water Supply 2019, 20, 574–585. [Google Scholar] [CrossRef]
- Rosário, A.R.A. Application of the Electrodialytic Process for Tungsten Recovery and Arsenic Removal from Mine Tailings. PhD Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2018. [Google Scholar]
- Ma, S.; Yang, F.; Chen, X.; Khor, C.M.; Jung, B.; Iddya, A.; Sant, G.; Jassby, D. Removal of As(III) by Electrically Conducting Ultrafiltration Membranes. Water Res. 2021, 204, 117592. [Google Scholar] [CrossRef]
- Yaqub, M.; Lee, S.H. Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review. Environ. Eng. Res. 2018, 24, 363–375. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.D.S.; Amaral, M.C.S. Dead-end ultrafiltration as a cost-effective strategy for improving arsenic removal from high turbidity waters in conventional drinking water facilities. Chem. Eng. J. 2020, 417, 128132. [Google Scholar] [CrossRef]
- Chen, M.; Shafer-Peltier, K.; Randtke, S.J.; Peltier, E. Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions. Chemosphere 2018, 213, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, P.; Maleki, A.; Rezaee, R.; Khamforoush, M.; Yetilmezsoy, K.; Athar, S.D.; Gharibi, F. Simultaneous removal of arsenate and nitrate from aqueous solutions using micellar-enhanced ultrafiltration process. J. Water Process. Eng. 2018, 27, 24–31. [Google Scholar] [CrossRef]
- Chen, M.; Jafvert, C.T.; Wu, Y.; Cao, X.; Hankins, N.P. Inorganic anion removal using micellar enhanced ultrafiltration (MEUF), modeling anion distribution and suggested improvements of MEUF: A review. Chem. Eng. J. 2020, 398, 125413. [Google Scholar] [CrossRef]
- Ibrahim, G.S.; Isloor, A.M.; Asiri, A.M.; Ismail, A.F.; Kumar, R.; Ahamed, M.I. Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly (styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chem. Eng. J. 2018, 353, 425–435. [Google Scholar] [CrossRef]
- Hamid, M.F.; Yusof, N.; Ismail, N.M.; Azali, M.A. Role of Membrane Surface Charge and Complexation-Ultrafiltration for Heavy Metals Removal: A Mini Review. J. Appl. Membr. Sci. Technol. 2020, 24, 39–49. [Google Scholar] [CrossRef]
- Kabir, F.; Chowdhury, S. Arsenic removal methods for drinking water in the developing countries: Technological developments and research needs. Environ. Sci. Pollut. Res. 2017, 24, 24102–24120. [Google Scholar] [CrossRef]
- Alam, R.; McPhedran, K. Applications of biological sulfate reduction for remediation of arsenic—A review. Chemosphere 2019, 222, 932–944. [Google Scholar] [CrossRef]
- Yun, H.-S.; Jang, M.; Shin, W.-S.; Choi, J. Remediation of arsenic-contaminated soils via waste-reclaimed treatment agents: Batch and field studies. Miner. Eng. 2018, 127, 90–97. [Google Scholar] [CrossRef]
Sr. No. | Country | Area | Source | Concentration (μg/L) | Reference |
---|---|---|---|---|---|
1 | Pakistan | Rahim Yar Khan district, Punjab | Water | 107.23 | [30] |
2 | Pakistan | Punjab | Groundwater | 655 | [41] |
3 | Mexico | San Luis Potosi | Water | 16.2 | [31] |
4 | Argentina | Northeastern La Pampa province, in the Chaco-Pampean plain, Argentina. | Water | 270.3 | [32] |
5 | Sri Lanka | Mannar Island, | Groundwater | 34 | [42] |
6 | Ethiopia | Southwestern Ethiopia | surface water | 184.5 | [43] |
7 | China | North of Ningxia | Water | 6 | [44] |
8 | China | Changsha | groundwater | 275 | [45] |
9 | Latin America | All Latin American countries | groundwater, surface water, soil and sediments | 2283 | [35] |
10 | Taiwan | Taiwan | Drinking water | 97.56 | [46] |
11 | USA | USA | Water | 150 | [36] |
12 | India | India | Water | 65.1178 | [47] |
13 | Qatar | Qatar | Groundwater | 15.5 | [48] |
14 | Iran | Iran | Water | 500 | [12] |
15 | Mexico | Durango | Water | 7.35 | [47] |
Diseases | References |
---|---|
Cancer, numbness, darkening of skin, and abdominal pain. | [33] |
Chronic exposure | [34] |
Respiratory problems, skin lesions, muscle cramps, and skin irritation | [15] |
Leucomelanosis, spotted melanosis, diffuse melanosis, palmoplantar keratosis, spotted keratosis on the sole, and suspected Bowens | [38] |
Chronic bronchitis, emphysema, pleural adhesions, pneumoconiosis, cardiovascular diseases, respiratory problems, and nervous system disorders | [60] |
Cancer | [36] |
Dermal and nervous system toxicity effects, spasms, and cramps | [61] |
Carcinogenic and non-carcinogenic | [62] |
Mortality risk for cancers, cardiovascular diseases, and developmental disorders | [26] |
Carcinogenic risks, such as the malignant transformation of cells, non-carcinogenic risk | [18] |
Lung cancer, cirrhosis, and myocardial infection. | [63] |
Cancer, liver infection | [47] |
Lung cancer, male infertility, skin disorders, and various cardiovascular diseases | [15] |
Treatment | Initial Concentration | Initial pH | Final pH | Time (min) | Removal Efficiency | References |
---|---|---|---|---|---|---|
Electrocoagulation | 0.042 mg/L | 3 | 6.47 | 15 | >97% | [69] |
Coagulation flocculation | - | - | 6 | 3–15 | 77% | [63] |
Coagulation | 2 mg/L | 6 | 8 | 3–30 | 69.25% | [73] |
Iron electrode as anode and stainless steel as cathode | 0.05 mg/L | 6.5 | 8.5 | 80% | [71] |
Sr. No. | Plant | As Bioaccumulation (mg/kg) | Reference |
---|---|---|---|
1 | Lemna Valdiviana | 1190 | [80] |
2 | Pteridium Aquilinum | 622 | [81] |
3 | Lasimorpha Senegalesis | 314 | [81] |
4 | Sacciolepis Cymbiandra | 264 | [81] |
5 | Brake fern (Pteris vittata L.) | (7215–11,110) | [82] |
6 | Helianthus annuus L | 0.002–2.55 | [83] |
7 | Salix atrocinerea | 2400 (roots), 25 (leaves) | [13] |
Sr No. | Adsorbent | pH | Applied Models | Maximum Adsorption Capacity (mg/g) | Removal Efficiency | Reference | |
---|---|---|---|---|---|---|---|
Adsorption Kinetics Models | Adsorption Isotherm Models | ||||||
1 | Mn-doped MgAl-LDHs | 7 | Pseudo first-order, Pseudo second-order | Langmuir, Freundlich | 166.94 | 85% | [98] |
2 | starch-FMBO | 2 | Pseudo first-order, Pseudo second-order | Langmuir, Freundlich | 161.29 | 90% | [99] |
3 | Fe-FeS2 | 3–10 | Langmuir, Freundlich | As(V) 98.483 As(III) 58.341 | 75.7% 84.06% | [103] | |
4 | CMGO nanocomposites | 7.3 | Pseudo first-order, Pseudo second-order, Intra-particle | Langmuir, Freundlich | 45 | 89% | [92] |
5 | MG-CSB | 2–11 | Pseudo first-order, Pseudo second-order | Langmuir, Freundlich | 45.8 | 90% | [93] |
6 | iron-modified activated carbons | 7 | Pseudo first-order, Pseudo second-order, Weber–Morris | Langmuir, Freundlich | 4.9 mg | 86% | [94] |
7 | Fe/olivine composite | - | Pseudo first-order, Pseudo second-order, second-order, intraparticle diffusion | Langmuir, Freundlich, Tempkin, Dubinine Radushkevich (D-R) | As(III)T 2.83 As(V)T 5.25 | 86% 91% | [104] |
8 | Iron-coated seaweeds | 7 | Langmuir, Freundlich | As(III) 4.2 As (V) 7.3 | 88% 90% | [19] | |
9 | Ferric hydroxide | 7.9 | Langmuir, Freundlich | As(III) 1.4 As (V) 2.1 | 86% 91% | [110] | |
10 | Activated alumina | 2.8–11.5 | Langmuir | As (V) 2.1 | 98% | [111] |
Technology | Microorganism | As Removal | Time (Days) | Reference |
---|---|---|---|---|
Bioremediation | Brevibacillus sp. KUMAs1 | 55% | 4 | [120] |
Bioremediation | Sporosarcina ginsengisoli CR5 | 99% | 10 | [120] |
Bioremediation | Scenedesmus obliquus with the combination of Shewanella sp. | >80% | 10 | [122] |
Technology | pH | Current | Time | Initial As | As Removal | Reference |
---|---|---|---|---|---|---|
Electrodialysis | 7.68 | −162.3 | 95 min | 232.08 µg/L | 0.88 µg/L | [134] |
Electrodialysis | 5–6 | 100 | 14 days | 3743.2 mg/kg | 63% | [143] |
Electrodialysis | 10 | - | 14 days | 594 mg/kg | 478 mg/kg | [139] |
Technology | Membrane | pH | As Removal | CPC (Cetylpyridinium Chloride) | Reference |
---|---|---|---|---|---|
Micellar-enhanced ultrafiltration | PAN membrane used with NO3− under optimal condition | 7–8 | As(V)– 90% | Concentration 5 mM | [151] |
Micellar-enhanced ultrafiltration | Membrane thickness 150 um | 7 | As– 100% | CPC efficiency 91.7% | [151] |
Micellar-enhanced ultrafiltration | Membrane material PES | 8 | As(V)– 100% | Concentration 10 mM | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dilpazeer, F.; Munir, M.; Baloch, M.Y.J.; Shafiq, I.; Iqbal, J.; Saeed, M.; Abbas, M.M.; Shafique, S.; Aziz, K.H.H.; Mustafa, A.; et al. A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater. Water 2023, 15, 478. https://doi.org/10.3390/w15030478
Dilpazeer F, Munir M, Baloch MYJ, Shafiq I, Iqbal J, Saeed M, Abbas MM, Shafique S, Aziz KHH, Mustafa A, et al. A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater. Water. 2023; 15(3):478. https://doi.org/10.3390/w15030478
Chicago/Turabian StyleDilpazeer, Fariha, Mamoona Munir, Muhammad Yousuf Jat Baloch, Iqrash Shafiq, Javeeria Iqbal, Muhammad Saeed, Muhammad Mujtaba Abbas, Sumeer Shafique, Kosar Hikmat Hama Aziz, Ahmad Mustafa, and et al. 2023. "A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater" Water 15, no. 3: 478. https://doi.org/10.3390/w15030478
APA StyleDilpazeer, F., Munir, M., Baloch, M. Y. J., Shafiq, I., Iqbal, J., Saeed, M., Abbas, M. M., Shafique, S., Aziz, K. H. H., Mustafa, A., & Mahboob, I. (2023). A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater. Water, 15(3), 478. https://doi.org/10.3390/w15030478