Bimodal Bed Load Transport Characteristics under the Influence of Mixture Ratio
Abstract
:1. Introduction
2. Methods
2.1. Flume System Used in the Experiment
2.2. Sediment Used in Experiments
2.3. Monitoring System of the Amount of Bed Load
2.4. Image Collection of Particles and Turbulence Measurement
2.5. Experimental Design
3. Results
3.1. Key Parameters
3.2. Experimental Results
4. Discussion
4.1. Correlation of the Motion Characteristics of the Bed Load Particle with Turbulence Features
4.2. Three Incipient Motion Modes of Coarse Sediments in the Bed Load Mixture
4.3. Distinct Motion Properties of the Coarse and Fine Particles near the Bed
4.4. Influence of Bed-Material Mixture Ratio on the Bed Load Transport Rate
4.5. Effects of Different Particle Sizes on the Non-Uniform Bed Load Transport
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chien, N.; Wan, Z. Mechanics of Sediment Transport; ASCE Press: Reston, VA, USA, 1999. [Google Scholar]
- Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows; Technical Bulletin 1026; Soil Conservation Service, United States Department of Agriculture: Washington, DC, USA, 1950. [Google Scholar]
- Bagnold, R.A. Bedload Transport in Gravel-Bed Streams with Unimodal Sediment; Survey Circular; U. S. Geology: Washington, DC, USA, 1960; 421p. [Google Scholar]
- Deal, E.; Venditti, J.G.; Benavides, S.J.; Bradley, R.; Zhang, Q.; Kamrin, K.; Perron, J.T. Grain shape effects in bed load sediment transport. Nature 2023, 616, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Hui, Y.J. Bed-load transport 2. Stochastic characteristics. J. Hydraul. Eng. -ASC 1996, 122, 255–261. [Google Scholar] [CrossRef]
- Sun, Z.L.; Donahue, D. Statistically derived bed load formula for any fraction of non-uniform sediment. J. Hydraul. Eng. -ASCE 2000, 126, 105–111. [Google Scholar] [CrossRef]
- DeVries, P. Bed load layer thickness and disturbance depth in gravel bed streams. J. Hydraul. Eng. -ASCE. 2002, 128, 983–991. [Google Scholar] [CrossRef]
- Pierce, J.K.; Hassan, M.A. Joint stochastic bedload transport and bed elevation model: Variance regulation and power law rests. J. Geophys. Res. -Earth Surf. 2020, 125, e2019JF005259. [Google Scholar] [CrossRef]
- Fu, X.D.; Wang, G.Q.; Shao, X.J. Vertical disoersion of fine and coarse sediments in turbulent open-channel flows. J. Hydraul. Eng. -ASCE 2005, 131, 877–888. [Google Scholar] [CrossRef]
- Liu, M.X.; Pelosi, A.; Guala, M. A statistical description of particle motion and rest regimes in open-channel flows under low bedload transport. J. Geophys. Res. Earth Surf. 2019, 124, 2666–2688. [Google Scholar] [CrossRef]
- Cheng, N.S. Exponential formula for bed load transport. J. Hydraul. Eng. -ASCE 2002, 128, 942–946. [Google Scholar] [CrossRef]
- Storm, K.; Papanicolaou, A.N.; Evangelopoulos, N. Microforms in gravel bed rivers: Formation, disintegration, and effects on bedload transport. J. Hydraul. Eng. -ASCE 2004, 130, 554–567. [Google Scholar] [CrossRef]
- Zhong, D.Y.; Zhang, H.W. Concentration Distribution of Sediment in bed load Layer. J. Hydrodyn. 2004, 16, 28–33. [Google Scholar]
- Ancey, C.; Heyman, J. A microstructural approach to bedload transport: Mean behavior and fluctuations of particle transport rates. J. Fluid Mech. 2014, 744, 129–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.K.; Zheng, J.; Li, D.; Qu, Z.S. Modification of the Einstein bed load formula. J. Hydraul. Eng. -ASCE 2008, 134, 1363–1369. [Google Scholar] [CrossRef]
- Fraccarollo, L.; Hassan, M. Einstein conjecture and resting-time statistics in the bed-load transport of monodispersed particles. J. Fluid Mech. 2019, 876, 1077–1089. [Google Scholar] [CrossRef]
- Nino, Y.; Garcia, M.H. Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport. J. Fluid Mech. 1996, 326, 285–319. [Google Scholar] [CrossRef]
- Roseberry, J.C.; Schmeeckle, M.W.; Furbish, D.J. A probabilistic description of the bed load sediment flux: 2. Particle activity and motions. J. Geophys. Res. -Earth Surf. 2012, 117, F03032. [Google Scholar] [CrossRef] [Green Version]
- Lajeunesse, E.; Malverti, L.; Charru, F. Bed load transport in turbulent flow at the grain scale: Experiments and modeling. J. Geophysical. Res. -Earth Surf. 2010, 115, F04001. [Google Scholar] [CrossRef]
- Wang, G.Q.; Ni, J.R. Kinetic theory for particle concentration distribution in two-phase flow. J. Eng. Mech. -ASCE 1990, 116, 2738–2748. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.R.; Wang, G.Q.; Borthwick, A.G. Kinetic theory for particles in dilute and dense solid-liquid flows. J. Hydraul. Eng. -ASCE 2000, 126, 893–903. [Google Scholar] [CrossRef]
- Zhong, D.Y.; Wang, G.Q.; Zhang, M.X.; Li, T.J. Kinetic equation for particle transport in turbulent flows. Phys. Fluids 2020, 32, 073301. [Google Scholar] [CrossRef]
- Pierce, J.K.; Hassan, M.A. Back to Einstein: Burial-induced three-range diffusion in fluvial sediment transport. Geophys. Res. Lett. 2020, 47, e2020GL087440. [Google Scholar] [CrossRef]
- Wilcock, P.R.; Crowe, J.C. Surface-based Transport Model for Mixed-Size Sediment. J. Hydraul. Eng. -ASCE 2003, 129, 120–128. [Google Scholar] [CrossRef]
- Patel, P.L.; Jain, M. Bed Load Transport of Bimodal Sediments. ISH J. Hydraul. Eng. 2009, 15, 14–23. [Google Scholar] [CrossRef]
- Patel, S.B.; Patel, P.L.; Porey, P.D. Fractional bed load transport model for nonuniform unimodal and bimodal sediments. J. Hydro-Environ. Res. 2015, 9, 104–119. [Google Scholar] [CrossRef]
- Houssais, M.; Lajeunesse, E. Bedload transport of a bimodal sediment bed. J. Geophys. Res. -Earth Surf. 2012, 117, F04015. [Google Scholar] [CrossRef]
- Pelosi, A.; Parker, G. Morphodynamics of river bed variation with variable bedload step length. Earth Surf. Dyn. 2014, 2, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, D.; Zhang, Y.; Chen, L. Understanding partial bed load transport: Experiments and stochastic model analysis. J. Hydrol. 2015, 521, 196–204. [Google Scholar] [CrossRef]
- Fan, N.; Xie, Y.; Nie, R. Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diusion. J. Hydrol. 2017, 553, 26–34. [Google Scholar] [CrossRef]
- Almedeij, J.H.; Diplas, P. Bedload transport in gravel-bed streams. J. Hydraul. Eng. -ASCE 1987, 113, 277–292. [Google Scholar]
- Wu, W.; Wang, S.S.Y.; Jia, Y. Nonuniform sediment transport in alluvial rivers. J. Hydraul. Res. 2000, 38, 427–434. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, Q.Y.; Lu, W.Z.; Wang, X.K. Effects of bed load movement on mean flow characteristics in mobile gravel beds. Water Resour. Manag. 2011, 25, 2781–2795. [Google Scholar] [CrossRef]
- Wu, B.S.; Molinas, A.; Shu, A.P. Fractional transport of sediment mixture. Int. J. Sediment Res. 2003, 18, 232–247. [Google Scholar]
- Wu, B.S.; Molinas, A.; Julien, P.Y. Bed-material load computations for nouniform sediments. J. Hydraul. Eng. -ASCE 2004, 130, 1002–1012. [Google Scholar] [CrossRef]
- Hu, C.H.; Guo, Q.C. Near-bed sediment concentration distribution and basic probability of sediment movement. J. Hydraul. Eng. -ASCE 2011, 137, 1269–1275. [Google Scholar] [CrossRef]
- Bai, Y.C.; Wang, X.; Cao, Y.G. Incipient motion of non-uniform coarse grain of bedload considering the impact of two-way exposure. Sci. China-Technol. Sci. 2013, 56, 1896–1905. [Google Scholar] [CrossRef]
- Kleinhans, M.G.; Van Rijn, L.C. Stochastic prediction of sediment transport in sand-gravel bed rivers. J. Hydraul. Eng. -ASCE 2002, 128, 412–425. [Google Scholar] [CrossRef]
- Hassan, M.A.; Saletti, M.; Johnson, J.P.L.; Ferrer-Boix, C.; Venditti, J.G.; Church, M. Experimental insights into the threshold of motion in alluvial channels: Sediment supply and streambed state. J. Geophys. Res. -Earth Surf. 2020, 125, e2020JF005736. [Google Scholar] [CrossRef]
- Yang, F.G.; Liu, X.N.; Cao, S.Y.; Huang, E. Bed load transport rates during scouring and armoring processes. J. Mt. Sci. 2010, 7, 215–225. [Google Scholar] [CrossRef]
- Chen, Y.H.; Bai, Y.C.; Xu, D. On the mechanisms of the saltating motion of bedload. Int. J. Sediment Res. 2017, 32, 53–59. [Google Scholar] [CrossRef]
- Roarty, H.J.; Bruno, M.S. Laboratory measurements of bed load sediment transport dynamics. J. Waterw. Port Coast. Ocean Eng. 2006, 132, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Nezu, I.; Sanjou, M. PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows. J. Hydro-Environ. Res. 2011, 5, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.; Qiu, H.; Xia, J.X.; Sobota, J. Distribution of Solid Volume Concentration in the Cross-section of a Square Conduit during Hydrotransport of a Coarse Mixture. Ochr. Srodowiska 2018, 40, 47–52. [Google Scholar]
- Guney, M.S.; Bombar, G.; Aksoy, A.O. Experimental Study of the Coarse Surface Development Effect on the Bimodal Bed-Load Transport under Unsteady Flow Conditions. J. Hydraul. Eng. -ASCE 2013, 139, 12–21. [Google Scholar] [CrossRef]
- Diplas, P.; Celik, A.O.; Dancey, C.L.; Valyrakis, M. Non-intrusive method for Detecting Particle Movement Characteristics near Threshold Flow Conditions. J. Irrig. Drain. Eng. 2010, 136, 774–780. [Google Scholar] [CrossRef]
- Diplas, P.; Dancey, C.L.; Celik, A.O.; Valyrakis, M.; Greer, K.; Akar, T. The role of impulse on the initiation of particle movement under turbulent flow conditions. Science 2008, 322, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Valyrakis, M.; Diplas, P.; Dancey, C.L.; Greer, K.; Celik, A.O. Role of instantaneous force magnitude and duration on particle entrainment. J. Geophys. Res. 2010, 115, F02006. [Google Scholar] [CrossRef]
- Valyrakis, M.; Diplas, P.; Dancey, C.L. Entrainment of coarse grains in turbulent flows: An extreme value theory approach. Water Resour. Res. 2011, 47, W09512. [Google Scholar] [CrossRef]
No. | Fine Sand Diameter df/mm | Coarse Sand Diameter dc/mm | dc/df |
---|---|---|---|
1 | 0.6~0.9 | 3.0~4.0 | 4.67 |
2 | 0.6~0.9 | 5.0~6.0 | 7.33 |
3 | 1.2~2.0 | 6.0~8.0 | 4.35 |
4 | 2.0~3.0 | 6.0~8.0 | 2.80 |
5 | 2.0~3.0 | 8.0~10.0 | 3.60 |
Sets | Groups | Mixture Ratio η | Flow Discharge Q/(m3s−1) | Fr | Sample Sand Diameter d/mm | |
---|---|---|---|---|---|---|
Coarse Sands | Fine Sands | |||||
Set 1 | Case 1~3 | 6:4 | 0.016~0.027 | 0.79~0.95 | 6~7 | 2.5~4 |
Case 4~6 | 6:4 | 0.016~0.027 | 0.69~0.8 | 8~10 | 2~3 | |
Case 7 | 6:4 | 0.027 | 0.8 | 8~10 | 2~3 | |
Set 2 | Case 1~3 | 4:6 | 0.027~0.030 | 0.72~0.76 | 8~10 | 2~3 |
Case 4~6 | 4:6 | 0.025~0.034 | 0.70~0.78 | 6~7 | 2.5~4 | |
Set 3~13 | Each Set (Case1~6) | 10:0 (9:1~0:10) | 0.024~0.034 | 0.86~0.95 | 8~10 | 2~3 |
Set 14~24 | Each Set (Case1~6) | 10:0 (9:1~0:10) | 0.024~0.034 | 0.86~0.95 | 6~8 | 2~3 |
Set 25~35 | Each Set (Case1~3) | 10:0 (9:1~0:10) | 0.020~0.024 | 0.82~0.88 | 5~6 | 0.6~0.9 |
Set 36~46 | Each Set (Case1~3) | 10:0 (9:1~0:10) | 0.016~0.020 | 0.92~0.96 | 3~4 | 0.6~0.9 |
η | Φc | φ |
---|---|---|
7:3 | 0.3623 | 0.1097 |
6:4 | 0.6549 | 0.4874 |
5:5 | 0.6866 | 0.6080 |
4:6 | 0.8932 | 0.6999 |
3:7 | 1.0000 | 0.7791 |
2:8 | 0.4624 | 0.8146 |
1:9 | 0.3623 | 0.8706 |
0:10 | 0.0000 | 1.0000 |
Flow condition: | Q = 0.026m3/s, Fr = 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhu, Y.; Zhou, Z.; Sun, D. Bimodal Bed Load Transport Characteristics under the Influence of Mixture Ratio. Water 2023, 15, 487. https://doi.org/10.3390/w15030487
Liu M, Zhu Y, Zhou Z, Sun D. Bimodal Bed Load Transport Characteristics under the Influence of Mixture Ratio. Water. 2023; 15(3):487. https://doi.org/10.3390/w15030487
Chicago/Turabian StyleLiu, Mingxiao, Yongjie Zhu, Zixi Zhou, and Dongpo Sun. 2023. "Bimodal Bed Load Transport Characteristics under the Influence of Mixture Ratio" Water 15, no. 3: 487. https://doi.org/10.3390/w15030487
APA StyleLiu, M., Zhu, Y., Zhou, Z., & Sun, D. (2023). Bimodal Bed Load Transport Characteristics under the Influence of Mixture Ratio. Water, 15(3), 487. https://doi.org/10.3390/w15030487