Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. Remote Sensing Imagery and DEM
2.2.3. Hydrological Soil Grouping
2.3. Methods
2.3.1. Invest Model and Settings
2.3.2. Modified Morris Sensitivity Analysis
2.3.3. Timing Analysis
2.3.4. Attribution Analysis
2.3.5. Contribution Rate Model Based on the Budyko Assumption
3. Results
3.1. Parameter Sensitivity Analysis and Validation
3.1.1. Parameter Sensitivity Analysis
3.1.2. Parameter Validation
3.2. Spatiotemporal Evolution of Water Yield
3.2.1. Spatiotemporal Evolution Characteristics
3.2.2. Spatial Autocorrelation Analysis
3.3. Impact of Climate Change and Land-Use Change on Water Yield
3.3.1. Impact of Climate Change on Water Yield
3.3.2. Impact of Land-Use Change on Water Yield
3.3.3. Attribution Quantitative Identification
4. Discussion
4.1. Comparison with Others
4.2. Contribution Rate Based on the Budyko Assumption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, Y.Q.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Wang, J.H.; Shang, Y.Z.; Wang, H.; Zhao, Y.; Yin, Y. Beijing’s Water Resources: Challenges and Solutions. J. Am. Water Resour. Assoc. 2015, 51, 614–623. [Google Scholar] [CrossRef]
- Deng, X.Z.; Zhao, C.H. Identification of Water Scarcity and Providing Solutions for Adapting to Climate Changes in the Heihe River Basin of China. Adv. Meteorol. 2015, 2015, 279173. [Google Scholar] [CrossRef] [Green Version]
- Shomar, B.; Dare, A. Ten key research issues for integrated and sustainable wastewater reuse in the Middle East. Environ. Sci. Pollut. Res. 2015, 22, 5699–5710. [Google Scholar] [CrossRef]
- Ako, A.A.; Eyong, G.E.T.; Nkeng, G.E. Water Resources Management and Integrated Water Resources Management (IWRM) in Cameroon. Water Resour. Manag. 2010, 24, 871–888. [Google Scholar] [CrossRef]
- Lu, H.T.; Yan, Y.; Zhu, J.Y.; Jin, T.T.; Liu, G.H.; Wu, G.; Stringer, L.C.; Dallimer, M. Spatiotemporal Water Yield Variations and Influencing Factors in the Lhasa River Basin, Tibetan Plateau. Water 2020, 12, 1498. [Google Scholar] [CrossRef]
- Li, G.Y.; Jiang, C.H.; Zhang, Y.H.; Jiang, G.H. Whether land greening in different geomorphic units are beneficial to water yield in the Yellow River Basin? Ecol. Indic. 2021, 120, 106926. [Google Scholar] [CrossRef]
- Niu, P.T.; Zhang, E.C.; Feng, Y.; Peng, P.H. Spatial-Temporal Pattern Analysis of Land Use and Water Yield in Water Source Region of Middle Route of South-to-North Water Transfer Project Based on Google Earth Engine. Water 2022, 14, 2535. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18, Erratum in Agric. Ecosyst. Environ. 2016, 221, 285. [Google Scholar] [CrossRef]
- Marques, M.; Bangash, R.F.; Kumar, V.; Sharp, R.; Schuhmacher, M. The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin. J. Hazard. Mater. 2013, 263, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.B.; Zhang, X.L. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Wang, J.X.; Huang, J.K.; Yan, T.T. Impacts of Climate Change on Water and Agricultural Production in Ten Large River Basins in China. J. Integr. Agric. 2013, 12, 1267–1278. [Google Scholar] [CrossRef]
- Wei, P.J.; Chen, S.Y.; Wu, M.H.; Deng, Y.F.; Xu, H.J.; Jia, Y.L.; Liu, F. Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Yin, G.D.; Wang, X.; Zhang, X.; Fu, Y.S.; Hao, F.H.; Hu, Q.H. InVEST Model-Based Estimation of Water Yield in North China and Its Sensitivities to Climate Variables. Water 2020, 12, 1692. [Google Scholar] [CrossRef]
- Villamizar, S.R.; Pineda, S.M.; Carrillo, G.A. The Effects of Land Use and Climate Change on the Water Yield of a Watershed in Colombia. Water 2019, 11, 285. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Wu, J.S.; Li, W.F. Assessing relationships of ecosystem services on multi-scale: A case study of soil erosion control and water yield in the Pearl River Delta. Ecol. Indic. 2019, 99, 193–202. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.S.; Long, X.; Zhang, Q.; Liu, D.S.; Wu, H.J.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Goshime, D.W.; Haile, A.T.; Absi, R.; Ledésert, B. Impact of water resource development plan on water abstraction and water balance of Lake Ziway, Ethiopia. Sustain. Water Resour. Manag. 2021, 7, 36. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Xu, Y.; Bao, Z.; Yang, X. Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios. Water Sci. Eng. 2017, 10, 87–96. [Google Scholar] [CrossRef]
- Xu, X.; Sheng, D.; Li, G.; Chen, X.; Wang, X.; Xiao, C.; Gao, X.; Hu, C. Comprehensive Assessment of the Water Ecological Security of the Xiangjiang River Basin Based on Physico-Chemistry and Organism Indices. Appl. Ecol. Environ. Res. 2019, 17, 4547–4574. [Google Scholar] [CrossRef]
- Rey, J.M. Modelling potential evapotranspiration of potential vegetation. Ecol. Model. 1999, 123, 141–159. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Peng, Y.; Ren, J. Spatial Pattern of Water Retetnion in Dujiangyan County. Acta Ecol. Sin. 2013, 33, 789–797. [Google Scholar] [CrossRef]
- Khzr, B.O.; Ibrahim, G.R.F.; Hamid, A.A.; Ail, S.A. Runoff estimation using SCS-CN and GIS techniques in the Sulaymaniyah sub-basin of the Kurdistan region of Iraq. Environ. Dev. Sustain. 2022, 24, 2640–2655. [Google Scholar] [CrossRef]
- Auerswald, K.; Gu, Q.L. Reassessment of the hydrologic soil group for runoff modelling. Soil Tillage Res. 2021, 212, 105034. [Google Scholar] [CrossRef]
- Stewart, D.; Canfield, E.; Hawkins, R. Curve Number Determination Methods and Uncertainty in Hydrologic Soil Groups from Semiarid Watershed Data. J. Hydrol. Eng. 2012, 17, 1180–1187. [Google Scholar] [CrossRef]
- Feng, K.X.; Lu, Z.Z.; Yang, C.Q. Enhanced Morris method for global sensitivity analysis: Good proxy of Sobol’ index. Struct. Multidiscip. Optim. 2019, 59, 373–387. [Google Scholar] [CrossRef]
- Gao, Y.; Sha, X.; Xiangyang, X.U.; Yin, Y.; Peng, L.I. Sensitivity analysis of SWMM model parameters based on Morris method. J. Water Resour. Water Eng. 2016, 27, 87–90. [Google Scholar] [CrossRef]
- Huo, A.D.; Huang, Z.K.; Cheng, Y.X.; Van Liew, M.W. Comparison of two different approaches for sensitivity analysis in Heihe River basin (China). Water Supply 2020, 20, 319–327. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Gui, Y.P.; Wang, Q.M.; Zhao, Y.; Dong, Y.Y.; Li, H.H.; Jiang, S.; He, X.; Liu, K. Attribution analyses of reference evapotranspiration changes in China incorporating surface resistance change response to elevated CO2. J. Hydrol. 2021, 599, 126387. [Google Scholar] [CrossRef]
- Sun, X.Y.; Wang, Y.D. Attribution Analysis of Annual Precipitation Simulation Differences and Its Correction of CMIP5 Climate Models on the Chinese Mainland. Atmosphere 2022, 13, 382. [Google Scholar] [CrossRef]
- Tabari, H.; Asr, N.M.; Willems, P. Developing a framework for attribution analysis of urban pluvial flooding to human-induced climate impacts. J. Hydrol. 2021, 598, 126352. [Google Scholar] [CrossRef]
- Lian, X.H.; Qi, Y.; Wang, H.W.; Zhang, J.L.; Yang, R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water 2020, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.J.; Chang, J.X.; Wang, Y.M.; Huang, Q.; Guo, Z.H.; Li, Y.Y. Uncertainty analysis of water availability assessment through the Budyko framework. J. Hydrol. 2019, 576, 396–407. [Google Scholar] [CrossRef]
- Gan, G.J.; Liu, Y.B.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Gou, J.J.; Miao, C.Y.; Duan, Q.Y.; Tang, Q.H.; Di, Z.H.; Liao, W.H.; Wu, J.W.; Zhou, R. Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China. Water Resour. Res. 2020, 56, e2019WR025968. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, Z.J.; Zhang, K.; Jiang, T.T. Impacts of precipitation and topographic conditions on the model simulation in the north of China. Water Supply 2021, 21, 1025–1035. [Google Scholar] [CrossRef]
- Chen, X.Y.; Quan, Q.; Zhang, K.; Wei, J.H. Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years. Environ. Modell. Softw. 2021, 143, 105116. [Google Scholar] [CrossRef]
- Liu, N.; Sun, P.S.; Caldwell, P.V.; Harper, R.; Liu, S.R.; Sun, G. Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. J. Hydrol. 2020, 590, 125449. [Google Scholar] [CrossRef]
- Ma, S.; Li, Y.; Zhang, Y.H.; Wang, L.J.; Jiang, J.; Zhang, J.C. Distinguishing the relative contributions of climate and land use/cover changes to ecosystem services from a geospatial perspective. Ecol. Indic. 2022, 136, 108645. [Google Scholar] [CrossRef]
- Rohatyn, S.; Rotenberg, E.; Ramati, E.; Tatarinov, F.; Tas, E.; Yakir, D. Differential Impacts of Land Use and Precipitation on “Ecosystem Water Yield”. Water Resour. Res. 2018, 54, 5457–5470. [Google Scholar] [CrossRef]
- Li, J.H.; Zhou, K.C.; Xie, B.G.; Xiao, J.Y. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecol. Indic. 2021, 133, 108372. [Google Scholar] [CrossRef]
- Han, Z.L.; Cui, S.X.; Yan, X.L.; Liu, C.H.; Li, X.Y.; Zhong, J.Q.; Wang, X.Z. Guiding sustainable urban development via a multi-level ecological framework integrating natural and social indicators. Ecol. Indic. 2022, 141, 109142. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Qin, K.; Zhou, Z.; Yang, X.; Li, T. Changes in land-uses and ecosystem services under multi-scenarios simulation. Sci. Total Environ. 2017, 586, 522–526. [Google Scholar] [CrossRef]
- Wu, C.X.; Qiu, D.X.; Gao, P.; Mu, X.M.; Zhao, G.J. Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China. J. Arid. Land 2022, 14, 426–440. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Liu, S.R.; Wei, X.H.; Liu, J.T.; Zhang, G.B. Potential Impact of Afforestation on Water Yield in the Subalpine Region of Southwestern China. J. Am. Water Resour. Assoc. 2008, 44, 1144–1153. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Luo, W.J.; Tian, Y.C.; Zeng, C.; Luo, G.J.; He, S.Y. Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China. Sci. Total Environ. 2017, 601, 1449–1465. [Google Scholar] [CrossRef]
- Ghimire, U.; Shrestha, S.; Neupane, S.; Mohanasundaram, S.; Lorphensri, O. Climate and land-use change impacts on spatiotemporal variations in groundwater recharge: A case study of the Bangkok Area, Thailand. Sci. Total Environ. 2021, 792, 148370. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.Y.; Chen, L.; Li, X.Z.; Xu, X.L. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H.; Huntingford, C.; Ciais, P.; Piao, S. Strong direct and indirect influences of climate change on water yield confirmed by the Budyko framework. Geogr. Sustain. 2021, 2, 281–287. [Google Scholar] [CrossRef]
- Li, H.J.; Shi, C.X.; Zhang, Y.S.; Ning, T.T.; Sun, P.C.; Liu, X.F.; Ma, X.Q.; Liu, W.; Collins, A.L. Using the Budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle Yellow River basin, China. Sci. Total Environ. 2020, 703, 135588. [Google Scholar] [CrossRef] [PubMed]
Data | Data Brief | Data Sources |
---|---|---|
Meteorological data | Precipitation, maximum temperature, minimum temperature, atmospheric radiation, rainfall days | China Meteorological Science Data Network |
Elevation (DEM) data | 30 m resolution | Geospatial Data Cloud |
Land-use data | 30 m resolution | Landsat Remote Sensing Image Data |
Soil data | Soil texture, soil type | Cold and Arid Region Scientific Data Center |
Normalized vegetation index (NDVI) | 1 km resolution | Resource and Environmental Science and Data Center, Chinese Academy of Sciences |
Actual surface-water yield | 2006–2020 year | Hunan Province Water Resources Bulletin |
>180 | 18–180 | 1.8–18 | <1.8 | |
---|---|---|---|---|
Hydrological soil grouping | A | B | C | D |
Land Use | CN_A | CN_B | CN_C | CN_D | |
---|---|---|---|---|---|
Farmland | 68 | 78 | 84 | 86 | 0.65 |
Woodland | 47 | 75 | 80 | 84 | 1 |
Grassland | 72 | 80 | 87 | 90 | 0.65 |
Water | 98 | 98 | 98 | 98 | 1.1 |
Construction land | 97 | 97 | 97 | 97 | 0.3 |
Unused land | 97 | 97 | 97 | 97 | 0.5 |
Classification | Sensitivity Interval | Sensitivity |
---|---|---|
Ⅰ | Not sensitive | |
Ⅱ | Generally sensitive | |
Ⅲ | Sensitive | |
Ⅳ | Very sensitive |
Parameters | CN_A | CN_B | CN_C | CN_D | Kc | γ | ||
---|---|---|---|---|---|---|---|---|
Value range | [0, 100] | [0, 100] | [0, 100] | [0, 100] | [0, 1.5] | [0, 1] | [0, 1] | [0, 1] |
Initial value | 50 | 50 | 50 | 50 | 0.75 | 0.5 | 0.5 | 0.5 |
Number | Scenario Settings | Climate | Land Use |
---|---|---|---|
S1 | Baseline scenario | N | N |
S2 | Climate change scenario | Y | N |
S3 | Land-use change scenario | N | Y |
S4 | Comprehensive scenario | Y | Y |
Study Period | NSE | R2 |
---|---|---|
Calibration period | 0.80 | 0.81 |
Verification period | 0.71 | 0.72 |
Climate Factor | R | R2 | Sig. |
---|---|---|---|
Precipitation Potential evapotranspiration | 0.994 −0.454 | 0.987 0.206 | 0.0001 0.0001 |
Land Use | R | R2 | Sig. |
---|---|---|---|
Farmland | −0.138 | 0.028 | 0.236 |
Woodland | −0.132 | 0.015 | 0.296 |
Grassland | −0.078 | 0.006 | 0.369 |
Water | 0.078 | 0.006 | 0.369 |
Construction land | 0.166 | 0.019 | 0.275 |
Unused land | −0.128 | 0.016 | 0.290 |
Change Factors | Contribution/mm | Contribution Rate/% |
---|---|---|
Climate change | 64.86 | 67.08 |
Land use | −31.83 | 32.92 |
Research Period | R/mm | P/mm | E/mm | |
---|---|---|---|---|
Calibration period | 843.83 | 1457.96 | 2132.63 | 1.390 |
Verification period | 862.22 | 1504.94 | 2076.75 | 1.414 |
Changing Factors | Contribution/mm | Contribution Rate/% |
---|---|---|
Land use | −24.34 | 36.29 |
Climate change | 42.73 | 63.71 |
Evapotranspiration | 7.15 | 10.66 |
Precipitation | 35.58 | 53.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, Q.; Liu, L.; Zhao, H.; Ru, H.; Wu, J.; Deng, Y. Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model. Water 2023, 15, 514. https://doi.org/10.3390/w15030514
Wang Z, Li Q, Liu L, Zhao H, Ru H, Wu J, Deng Y. Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model. Water. 2023; 15(3):514. https://doi.org/10.3390/w15030514
Chicago/Turabian StyleWang, Zongmin, Qizhao Li, Lin Liu, Hongling Zhao, Hongen Ru, Jiapeng Wu, and Yanli Deng. 2023. "Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model" Water 15, no. 3: 514. https://doi.org/10.3390/w15030514
APA StyleWang, Z., Li, Q., Liu, L., Zhao, H., Ru, H., Wu, J., & Deng, Y. (2023). Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model. Water, 15(3), 514. https://doi.org/10.3390/w15030514