Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
3. Results
3.1. Exposure Space
3.2. Performance of the Hydrological Model
3.3. System Performance Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Global Warming of 1.5°; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; in press.
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; MassonDelmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 2000, 50, 753–765. [Google Scholar] [CrossRef]
- Blöschl, G.; Montanari, A. Climate change impacts—Throwing the dice? Hydrol. Process. 2010, 24, 374–381. [Google Scholar]
- Larocque, M.; Levison, J.; Martin, A.; Chaumont, D. A review of simulated climate change impacts on groundwater resources in Eastern Canada. Can. Water Resour. J. 2019, 44, 22–41. [Google Scholar] [CrossRef]
- Paton, F.; Maier, H.; Dandy, G. Relative magnitudes of sources of uncertainty in assessing climate change impacts on water supply security for the southern Adelaide water supply system. Water Resour. Res. 2013, 49, 1643–1667. [Google Scholar] [CrossRef]
- Brown, C.; Ghile, Y.; Laverty, M.; Li, K. Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Diaz-Nieto, J.; Wilby, R.L. A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Clim. Change 2005, 69, 245–268. [Google Scholar] [CrossRef]
- Ekström, M.; Grose, M.; Whetton, P. An appraisal of downscaling methods used in climate change research: An appraisal of downscaling methods. Wiley Interdiscip. Rev. Clim. Change 2015, 6. [Google Scholar] [CrossRef]
- Garedew, G.; Eshetu, Z.; Argaw, M. Statistical downscaling (Delta method) of precipitation and temperature for Bilate watershed, Ethiopia. Int. J. Water Res. Environ. Eng. 2021, 13, 20–29. [Google Scholar] [CrossRef]
- Hay, L.; Wilby, R.; Leavesley, G. A Comparison of Delta Change and Downscaled GCM Scenarios for Three Mountainous Basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Pourmokhtarian, A.; Driscoll, C.T.; Campbell, J.L.; Hayhoe, K.; Stoner, A.M. The effects of climate downscaling technique and observational data set on modeled ecological responses. Ecol. Appl. 2016, 26, 1321–1337. [Google Scholar] [CrossRef]
- Räisänen, J.; Ruokolainen, L. Probabilistic forecasts of near-term climate change based on a resampling ensemble technique. Tellus A 2006, 58, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections. In African and Latin American Resilience to Climate Change (ARCC); USAID: Washington, DC, USA, 2014. [Google Scholar]
- Wilby, R.L.; Dawson, C.W.; Murphy, C.; Connor, P.; Hawkins, E. The statistical downscaling model-decision centric (SDSM-DC): Conceptual basis and applications. Clim. Res. 2014, 61, 259–276. [Google Scholar] [CrossRef]
- Cloke, H.; Wetterhall, F.; He, Y.; Freer, J.; Pappenberger, F. Modelling climate impact on floods with ensemble climate projections. Q. J. R. Meteorol. Soc. 2013, 139, 282–297. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Olsson, J.; Arheimer, B.; Borris, M.; Donnelly, C.; Foster, K.; Nikulin, G.; Persson, M.; Perttu, A.-M.; Uvo, C.B.; Viklander, M.; et al. Hydrological Climate Change Impact Assessment at Small and Large Scales: Key Messages from Recent Progress in Sweden. Climate 2016, 4, 39. [Google Scholar] [CrossRef]
- Rabezanahary Tanteliniaina, M.F.; Rahaman, M.H.; Zhai, J. Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT. Water 2021, 13, 1239. [Google Scholar] [CrossRef]
- Vano, J.A.; Kim, J.B.; Rupp, D.E.; Mote, P.W. Selecting climate change scenarios using impact-relevant sensitivities. Geophys. Res. Lett. 2015, 42, 5516–5525. [Google Scholar] [CrossRef]
- Weiß, M. Future water availability in selected European catchments: A probabilistic assessment of seasonal flows under the IPCC A1B emission scenario using response surfaces. Nat. Hazards Earth Syst. Sci. 2011, 11, 2163–2171. [Google Scholar] [CrossRef]
- Wetterhall, F.; Graham, L.; Andréasson, J.; Rosberg, J.; Yang, W. Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region. Nat. Hazards Earth Syst. Sci. 2011, 11, 2295–2306. [Google Scholar] [CrossRef]
- Poulin, A.; Brissette, F.; Leconte, R.; Arsenault, R.; Malo, J.-S. Uncertainty of Hydrological Modelling in Climate Change Impact Studies in a Canadian, Snow-Dominated River Basin. J. Hydrol. 2011, 409, 626–636. [Google Scholar] [CrossRef]
- Gombault, C.; Sottile, M.-F.; Ngwa, F.F.; Madramootoo, C.A.; Michaud, A.R.; Beaudin, I.; Chikhaoui, M. Modelling climate change impacts on the hydrology of an agricultural watershed in southern Québec. Can. Water Resour. J. 2015, 40, 71–86. [Google Scholar] [CrossRef]
- Guay, C.; Minville, M.; Braun, M. A global portrait of hydrological changes at the 2050 horizon for the province of Québec. Can. Water Resour. J. 2015, 40, 285–302. [Google Scholar] [CrossRef]
- Jiang, Q.; Qi, Z.; Tang, F.; Xue, L.; Bukovsky, M. Modeling climate change impact on streamflow as affected by snowmelt in Nicolet River Watershed, Quebec. Comput. Electron. Agric. 2020, 178. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Khalil, B.; Biswas, A. Inter-annual to inter-decadal streamflow variability in Quebec and Ontario in relation to dominant large-scale climate indices. J. Hydrol. 2016, 536, 426–446. [Google Scholar] [CrossRef]
- Quilbé, R.; Rousseau, A.N.; Moquet, J.-S.; Trinh, N.B.; Dibike, Y.; Gachon, P.; Chaumont, D. Assessing the effect of climate change on river flow using general circulation models and hydrological modelling—Application to the Chaudière River, Quebec, Canada. Can. Water Resour. J. 2008, 33, 73–94. [Google Scholar] [CrossRef]
- Rouhani, H.; Leconte, R. A methodological framework to assess PMP and PMF in snow-dominated watersheds under changing climate conditions–A case study of three watersheds in Québec (Canada). J. Hydrol. 2018, 561, 796–809. [Google Scholar] [CrossRef]
- Troin, M.; Arsenault, R.; Martel, J.-L.; Brissette, F. Uncertainty of Hydrological Model Components in Climate Change Studies over Two Nordic Quebec Catchments. J. Hydrometeorol. 2018, 19, 27–46. [Google Scholar] [CrossRef]
- García, L.E.; Matthews, J.H.; Rodriguez, D.J.; Wijnen, M.; DiFrancesco, K.N.; Ray, P. Beyond Downscaling: “A Bottom-Up Approach to Climate Adaptation for Water Resources Management”; World Bank Publications: Herndon, VA, USA, 2014. [Google Scholar]
- Prudhomme, C.; Wilby, R.L.; Crooks, S.; Kay, A.L.; Reynard, N.S. Scenario-neutral approach to climate change impact studies: Application to flood risk. J. Hydrol. 2010, 390, 198–209. [Google Scholar] [CrossRef]
- Keller, L.; Rossler, O.; Martius, O.; Weingartner, R. Comparison of scenario-neutral approaches for estimation of climate change impacts on flood characteristics. Hydrol. Process. 2019, 33, 535–550. [Google Scholar] [CrossRef]
- Nazemi, A.; Wheater, H.S. Assessing the vulnerability of water supply to changing streamflow conditions. Eos Trans. Am. Geophys. Union 2014, 95, 288. [Google Scholar] [CrossRef]
- Brown, C.; Boltz, F.; Freeman, S.; Tront, J.; Rodriguez, D. Resilience by design: A deep uncertainty approach for water systems in a changing world. Water Secur. 2020, 9, 100051. [Google Scholar] [CrossRef]
- Brown, C.; Wilby, R.L. An alternate approach to assessing climate risks. Eos Trans. Am. Geophys. Union 2012, 93, 401–402. [Google Scholar] [CrossRef]
- Ben-Haim, Y. Info-Gap Decision Theory (IG); Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–115. [Google Scholar]
- Olsen, J.; Gilroy, K. Risk Informed Decision-Making in a Changing Climate. In Proceedings of the 3rd International Interdisciplinary Conference on Predictions for Hydrology, Vienna, Austria, 24–27 September 2012; pp. 24–27. [Google Scholar]
- Adeloye, A.J.; Soundharajan, B.-S.; Ojha, C.S.; Remesan, R. Effect of hedging-integrated rule curves on the performance of the pong reservoir (India) during scenario-neutral climate change perturbations. Water Resour. Manag. 2016, 30, 445–470. [Google Scholar] [CrossRef]
- Bastola, S.; Murphy, C.; Sweeney, J. The sensitivity of fluvial flood risk in Irish catchments to the range of IPCC AR4 climate change scenarios. Sci. Total Environ. 2011, 409, 5403–5415. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.; Culley, S.; Westra, S.; Maier, H.R. An R tool for scenario-neutral climate impact analysis of water resource systems. In Proceedings of the International Congress on Environmental Modelling and Software, Fort Collins, CO, USA, 24–28 June 2018. [Google Scholar]
- Broderick, C.; Murphy, C.; Wilby, R.L.; Matthews, T.; Prudhomme, C.; Adamson, M. Using a Scenario-Neutral Framework to Avoid Potential Maladaptation to Future Flood Risk. Water Resour. Res. 2019, 55, 1079–1104. [Google Scholar] [CrossRef]
- Bussi, G.; Dadson, S.J.; Prudhomme, C.; Whitehead, P.G. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). J. Hydrol. 2016, 542, 357–372. [Google Scholar] [CrossRef]
- Culley, S.; Bennett, B.; Westra, S.; Maier, H.R. Generating realistic perturbed hydrometeorological time series to inform scenario-neutral climate impact assessments. J. Hydrol. 2019, 576, 111–122. [Google Scholar] [CrossRef]
- Culley, S.; Maier, H.R.; Westra, S.; Bennett, B. Identifying critical climate conditions for use in scenario-neutral climate impact assessments. Environ. Model. Softw. 2021, 136, 104948. [Google Scholar] [CrossRef]
- Culley, S.; Noble, S.; Yates, A.; Timbs, M.; Westra, S.; Maier, H.; Giuliani, M.; Castelletti, A. A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resour. Res. 2016, 52, 6751–6768. [Google Scholar] [CrossRef]
- Culley, S.; Westra, S.; Maier, H.R.; Bennett, B. Identifying the climate variables to which water resource systems are most sensitive. In Proceedings of the International Congress on Environmental Modelling and Software, Fort Collins, CO, USA, 24–28 June 2018. [Google Scholar]
- Danner, A.G.; Safeeq, M.; Grant, G.E.; Wickham, C.; Tullos, D.; Santelmann, M.V. Scenario-Based and Scenario-Neutral Assessment of Climate Change Impacts on Operational Performance of a Multipurpose Reservoir. J. Am. Water Resour. Assoc. 2017, 53, 1467–1482. [Google Scholar] [CrossRef]
- Guo, D. Practical Implementation of the Scenario-Neutral Approach to Climate Impact Assessments for Hydrological Systems. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2017. [Google Scholar]
- Guo, D.; Westra, S.; Maier, H.R. Use of a scenario-neutral approach to identify the key hydro-meteorological attributes that impact runoff from a natural catchment. J. Hydrol. 2017, 554, 317–330. [Google Scholar] [CrossRef]
- Guo, D.; Westra, S.; Maier, H.R. An inverse approach to perturb historical rainfall data for scenario-neutral climate impact studies. J. Hydrol. 2018, 556, 877–890. [Google Scholar] [CrossRef]
- Kim, D.; Chun, J.A.; Aikins, C.M. An hourly-scale scenario-neutral flood risk assessment in a mesoscale catchment under climate change. Hydrol. Process. 2018, 32, 3416–3430. [Google Scholar] [CrossRef]
- Macdonald, D.; Ascott, M.; Lapworth, D.; Tindimugaya, C. Application of scenario-neutral methods to quantify impacts of climate change on water resources in East Africa. In Proceedings of the American Geophysical Union, Fall Meeting, New Orleans, LA, USA, 11 December 2017. [Google Scholar]
- Prudhomme, C.; Crooks, S.; Kay, A.; Reynard, N. Climate change and river flooding: Part 1 Classifying the sensitivity of British catchments. Clim. Change 2013, 119. [Google Scholar] [CrossRef]
- Prudhomme, C.; Sauquet, E.; Watts, G. Low flow response surfaces for drought decision support: A case study from the UK. J. Extrem. Events 2015, 2, 1550005. [Google Scholar] [CrossRef]
- Quinn, J.D.; Hadjimichael, A.; Reed, P.M.; Steinschneider, S. Can Exploratory Modeling of Water Scarcity Vulnerabilities and Robustness Be Scenario Neutral? Earth’s Future 2020, 8, e2020EF001650. [Google Scholar] [CrossRef]
- Sauquet, E.; Prudhomme, C. A scenario neutral approach to assess low flow sensitivity to climate change. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 5450. [Google Scholar]
- Aygün, O.; Kinnard, C.; Campeau, S.; Krogh, S.A. Shifting Hydrological Processes in a Canadian Agroforested Catchment due to a Warmer and Wetter Climate. Water 2020, 12, 739. [Google Scholar] [CrossRef]
- Kay, A.L.; Crooks, S.M.; Reynard, N.S. Using response surfaces to estimate impacts of climate change on flood peaks: Assessment of uncertainty. Hydrol. Process. 2014, 28, 5273–5287. [Google Scholar] [CrossRef]
- Taner, M.Ü.; Ray, P.; Brown, C. Robustness-based evaluation of hydropower infrastructure design under climate change. Clim. Risk Manag. 2017, 18, 34–50. [Google Scholar] [CrossRef]
- Turner, S.W.; Marlow, D.; Ekström, M.; Rhodes, B.G.; Kularathna, U.; Jeffrey, P.J. Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system. Water Resour. Res. 2014, 50, 3553–3567. [Google Scholar] [CrossRef]
- Null, S.E.; Viers, J.H.; Mount, J.F. Hydrologic response and watershed sensitivity to climate warming in California’s Sierra Nevada. PLoS ONE 2010, 5, e9932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricard, S.; Anctil, F. Forcing the penman-montheith formulation with humidity, radiation, and wind speed taken from reanalyses, for hydrologic modeling. Water 2019, 11, 1214. [Google Scholar] [CrossRef]
- Bergeron, O. Grilles Climatiques Quotidiennes du Programme de Surveillance du Climat du Québec, Version 1.2—Guide D’utilisation; Direction du Suivi de l’État de l’Environnement; Ministère du Développement Durable de l’Environnement et de la Lutte Contre les Changements Climatiques: Quebec, QC, Canada, 2015; Volume 33.
- MELCC. Utilisation du Territoire. Méthodologie et Description de la Couche D’information Géographique; Version 1.4; MELCC: Quebec, QC, Canada, 2016; Volume 24.
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Bush, E.; Lemmen, D.S. Rapport sur le Climat Changeant du Canada; Gouvernement du Canada: Ottawa, ON, USA, 2019.
- OURANOS. Vers l’adaptation–Synthèse des Connaissances sur les Changements Climatiques au Québec. Partie 1: Évolution Climatique au Québec; Ouranos: Montréal, QC, Canada, 2015; p. 114. [Google Scholar]
- Ricard, S.; Sylvain, J.-D.; Anctil, F. Asynchronous Hydroclimatic Modeling for the Construction of Physically Based Streamflow Projections in a Context of Observation Scarcity. Front. Earth Sci. 2020, 8, 556781. [Google Scholar] [CrossRef]
- Fowler, K.; Peel, M.; Western, A.; Zhang, L. Improved Rainfall-Runoff Calibration for Drying Climate: Choice of Objective Function. Water Resour. Res. 2018, 54, 3392–3408. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Q.; Zhang, S.; Zhai, X.; She, D. Multi-metric calibration of hydrological model to capture overall flow regimes. J. Hydrol. 2016, 539, 525–538. [Google Scholar] [CrossRef]
- Garcia, F.; Folton, N.; Oudin, L. Which objective function to calibrate rainfall–runoff models for low-flow index simulations? Hydrol. Sci. J. 2017, 62, 1149–1166. [Google Scholar] [CrossRef]
- Pfannerstill, M.; Guse, B.; Fohrer, N. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. J. Hydrol. 2014, 510, 447–458. [Google Scholar] [CrossRef]
- Seiller, G.; Roy, R.; Anctil, F. Influence of three common calibration metrics on the diagnosis of climate change impacts on water resources. J. Hydrol. 2017, 547, 280–295. [Google Scholar] [CrossRef]
- Schulla, J. Model Description WaSiM; Hydrology Software Consulting: Zürich, Switzerland, 2019. [Google Scholar]
- Hock, R. Temperature Index Melt Modelling in Mountain Areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Hamon, W.R. Estimating potential evapotranspiration. J. Hydraul. Div. 1961, 87, 107–120. [Google Scholar] [CrossRef]
- Asadzadeh, M.; Tolson, B. A new multi-objective algorithm, pareto archived DDS. In Proceedings of the GECCO09: Genetic and Evolutionary Computation Conference, Montreal, QC, Canada, 8–12 July 2009; pp. 1963–1966. [Google Scholar]
- Pushpalatha, R.; Perrin, C.; Moine, N.; Andréassian, V. A Review of Efficiency Criteria Suitable for Evaluating Low-Flow Simulations. J. Hydrol. 2012, 420, 171–182. [Google Scholar] [CrossRef]
- Santos, L.; Thirel, G.; Perrin, C. Technical note: Pitfalls in using log-transformed flows within the KGE criterion. Hydrol. Earth Syst. Sci. 2018, 22, 4583–4591. [Google Scholar] [CrossRef]
- Trudel, M.; Doucet-Généreux, P.-L.; Leconte, R. Assessing river low-flow uncertainties related to hydrological model calibration and structure under climate change conditions. Climate 2017, 5, 19. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Salis, H.; da Costa, A.; Vianna, J.; Schuler, A.; Künne, A.; Fernandes, L.; Pacheco, F. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. Int. J. Environ. Res. Public. Health. 2019, 16, 2542. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef]
- Ndhlovu, G.Z.; Woyessa, Y.E. Modelling impact of climate change on catchment water balance, Kabompo River in Zambezi River Basin. J. Hydrol. Reg. Stud. 2020, 27, 100650. [Google Scholar] [CrossRef]
- Doell, P.; Müller Schmied, H. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 2012, 7, 014037. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Lee, H.; Jun, S.-M.; Hwang, S.; Song, J.-H.; Kang, M.-S. Development and Assessment of Watershed Management Indicators Using the Budyko Framework Parameter. Sustainability 2021, 13, 3864. [Google Scholar] [CrossRef]
- Liu, J.; You, Y.; Zhang, Q.; Gu, X. Attribution of streamflow changes across the globe based on the Budyko framework. Sci. Total Environ. 2021, 794, 148662. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X. The Impact of Climate Change and Human Management on the Water Cycle of China: Dealing with Uncertainties. Ph.D. Thesis, Université Paris-Saclay (ComUE), Paris, France, 2018. [Google Scholar]
- Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; DeGaetano, A. Past and future changes in climate and hydrological indicators in the US Northeast. Clim. Dyn. 2007, 28, 381–407. [Google Scholar] [CrossRef]
- Aygün, O.; Kinnard, C.; Campeau, S. Impacts of climate change on the hydrology of northern midlatitude cold regions. Prog. Phys. Geogr. Earth Environ. 2020, 44, 338–375. [Google Scholar] [CrossRef]
- Gosling, S.N.; Taylor, R.G.; Arnell, N.W.; Todd, M.C. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sci. 2011, 15, 279–294. [Google Scholar] [CrossRef]
- Kirono, D.G.C.; Larson, S.; Tjandraatmadja, G.; Leitch, A.; Neumann, L.; Maheepala, S.; Barkey, R.; Achmad, A.; Selintung, M. Adapting to climate change through urban water management: A participatory case study in Indonesia. Reg. Environ. Change 2014, 14, 355–367. [Google Scholar] [CrossRef]
- Sheffield, J.; Barrett, A.; Colle, B.; Fernando, D.; Fu, R.; Geil, K.; Hu, Q.; Kinter, J.; Kumar, S.; Langenbrunner, B.; et al. North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology. J. Clim. 2013, 26, 9209–9245. [Google Scholar] [CrossRef]
- Ekström, M.; Gutmann, E.D.; Wilby, R.L.; Tye, M.R.; Kirono, D.G.C. Robustness of hydroclimate metrics for climate change impact research. WIREs Water 2018, 5, e1288. [Google Scholar] [CrossRef]
- Bush, E.; Bonsal, B.; Derksen, C.; Flato, G.; Fyfe, J.; Gillett, N.; Greenan, B.J.W.; James, T.S.; Kirchmeier-Young, M.; Mudryk, L.; et al. Rapport sur le Climat Changeant du Canada à la Lumière de la plus Récente Évaluation Scientifique Mondiale; Government of Canada: Ottawa, ON, USA, 2022; 42p.
- Oudin, L.; Andréassian, V.; Mathevet, T.; Perrin, C.; Michel, C. Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- MDDELCC. Guide de Conception des Installations de Production d’eau Potable, Volume 1; Ministere de l’Environnement et de la Lutte contre les Changements Climatiques: Quebec, QC, Canada, 2015.
- Najafi, M.; Moradkhani, H.; Jung, I. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol. Process. 2011, 25, 2814–2826. [Google Scholar] [CrossRef]
- Mateo, G.U. Sensibilidad del Recurso Hídrico en el Páramo Romerales ante Cambio Climático. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2016. [Google Scholar]
- Meyer, S.; Blaschek, M.; Duttmann, R.; Ludwig, R. Improved hydrological model parametrization for climate change impact assessment under data scarcity—The potential of field monitoring techniques and geostatistics. Sci. Total Environ. 2016, 543, 906–923. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Marcy, N. Comparison of simple and complex hydrological models for predicting catchment discharge under climate change. AIMS Geosci 2017, 3, 467–497. [Google Scholar] [CrossRef]
- Schnorbus, M.; Werner, A.; Bennett, K. Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol. Process. 2014, 28, 1170–1189. [Google Scholar] [CrossRef]
- Boyer, C.; Chaumont, D.; Chartier, I.; Roy, A. Impact of Climate Change on the Hydrology of St. Lawrence Tributaries. J. Hydrol. 2010, 384, 65–83. [Google Scholar] [CrossRef]
- Aygün, O.; Kinnard, C.; Campeau, S.; Pomeroy, J.W. Landscape and climate conditions influence the hydrological sensitivity to climate change in eastern Canada. J. Hydrol. 2022, 615, 128595. [Google Scholar] [CrossRef]
ID | Name | Area (km2) | Forest Land Cover (%) | Slope (%) | P (mm) | T (°C) | ET (mm) | SWE (mm) |
---|---|---|---|---|---|---|---|---|
022507 | Du Loup | 512 | 77 | 5.9 | 1000 | 3.0 | 435 | 219 |
023422 | Famine | 695 | 75 | 4.1 | 1160 | 3.6 | 482 | 225 |
030101 | Nicolet Sud–Ouest | 549 | 60 | 5.8 | 1170 | 5.0 | 557 | 191 |
030282 | Au Saumon | 736 | 79 | 7.9 | 1260 | 4.4 | 549 | 204 |
052233 | L’Achigan | 633 | 59 | 6.4 | 1110 | 5.1 | 573 | 219 |
052805 | Du Loup | 761 | 83 | 13.4 | 1030 | 3.0 | 485 | 210 |
ID | Calibration | Validation | ||||
---|---|---|---|---|---|---|
KGE | NRMSE | PBias (%) | KGE | NRMSE | PBias (%) | |
022507 | 0.86 | 0.78 | −0.35 | 0.81 | 0.72 | 4.61 |
023422 | 0.82 | 0.87 | 2.96 | 0.82 | 0.94 | −2.46 |
030101 | 0.80 | 0.92 | 2.03 | 0.73 | 0.90 | 11.9 |
030282 | 0.79 | 0.87 | 2.79 | 0.67 | 0.89 | 14.0 |
052233 | 0.88 | 0.76 | 0.27 | 0.81 | 0.91 | 4.20 |
052805 | 0.89 | 0.55 | 1.07 | 0.84 | 0.61 | 3.72 |
ID | Scenario Target (−15%7Q2) (T, P) | Current SDE | Additional SDE | Current MDE | Additional MDE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
022507 | 1 °C, 0% | 3 °C, 10% | 5 °C, 20% | 3 | 1 | 2 | 2 | 0 | 1 | 1 | 0 |
023422 | 1 °C, 0% | 3 °C, 10% | 5 °C, 20% | 4 | 1 | 2 | 2 | 1 | 0 | 0 | 0 |
030101 | 2 °C, 0% | 6 °C, 10% | 7 | 3 | 4 | 0 | 1 | 1 | |||
030282 | 1 °C, 0% | 2 | 2 | 0 | 0 | ||||||
052233 | 4 °C, 0% | 1 | 10 | 0 | 1 | ||||||
052805 | 1 °C, 0% | 3 °C, 10% | 5 °C, 20% | 9 | 1 | 1 | 1 | 0 | 0 | 2 | 0 |
ID | Scenario (0% QInAnn) | Scenario (−15% QInAnn) | Scenario (−28% QInAnn) | ||||||
---|---|---|---|---|---|---|---|---|---|
(5 °C T, 10% P) | (5 °C T, 0% P) | (5 °C T, −10% P) | |||||||
% Change 7Q2 | Additional | % Change 7Q2 | Additional | % Change 7Q2 | Additional | ||||
SDE | MDE | SDE | MDE | SDE | MDE | ||||
22507 | −27 | 5 | 1 | −40 | 13 | 4 | −49 | 18 | 7 |
23422 | −27 | 7 | 0 | −40 | 12 | 0 | −49 | 16 | 0 |
30101 | −8 | 1 | 1 | −27 | 13 | 4 | −44 | 23 | 12 |
30282 | −35 | 6 | 1 | −47 | 7 | 2 | −54 | 18 | 4 |
52233 | −6 | 0 | 0 | −19 | 14 | 1 | −28 | 25 | 3 |
52805 | −31 | 7 | 4 | −45 | 20 | 10 | −53 | 30 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia Giraldo, M.d.C.; Ricard, S.; Anctil, F. Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach. Water 2023, 15, 584. https://doi.org/10.3390/w15030584
Valencia Giraldo MdC, Ricard S, Anctil F. Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach. Water. 2023; 15(3):584. https://doi.org/10.3390/w15030584
Chicago/Turabian StyleValencia Giraldo, Marinela del Carmen, Simon Ricard, and François Anctil. 2023. "Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach" Water 15, no. 3: 584. https://doi.org/10.3390/w15030584
APA StyleValencia Giraldo, M. d. C., Ricard, S., & Anctil, F. (2023). Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach. Water, 15(3), 584. https://doi.org/10.3390/w15030584