The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant Light Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Source of Phototrophic Biofilms
2.2. The Cultivation of Raw Phototrophic Biofilms
2.3. The Compositions of Micro-Polluted Water
2.4. The Setup of Treatment Experiments
2.5. The Development of Pilot-Scale Phototrophic Biofilm Equipment
2.6. Analysis Methods
3. Results and Discussions
3.1. The Characterization of Cultured Phototrophic Biofilms
3.2. The Ability of Phototrophic Biofilms to Pretreat Synthetic Micro-Polluted Water
3.3. The Pretreatment of Actual Micro-Polluted Water under Varying Light Spectra
3.4. The Practical Applications of Phototrophic Biofilms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Shaikh, I.A.; Abbasi, N.A.; Firdous, N.; Ashraf, M.N. Enhancing water efficiency and wastewater treatment using sustainable technologies: A laboratory and pilot study for adhesive and leather chemicals production. J. Water Process. Eng. 2020, 36, 10. [Google Scholar] [CrossRef]
- Espinoza-Tofalos, A.; Daghio, M.; Palma, E.; Aulenta, F.; Franzetti, A. Structure and Functions of Hydrocarbon-Degrading Microbial Communities in Bioelectrochemical Systems. Water 2020, 12, 343. [Google Scholar] [CrossRef]
- Wan, Y.; Huang, X.; Shi, B.; Shi, J.; Hao, H. Reduction of organic matter and disinfection byproducts formation potential by titanium, aluminum and ferric salts coagulation for micro-polluted source water treatment. Chemosphere 2019, 219, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xiao, E.; He, F.; Xu, D.; Zhang, Y.; Wang, Y.; Wu, Z. High performance of integrated vertical-flow constructed wetland for polishing low C/N ratio river based on a pilot-scale study in Hangzhou, China. Environ. Sci. Pollut. Res. 2019, 26, 22431–22449. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Wang, B.; Qiu, L.; Zhang, S.; Wang, J.; Liu, G.; Sun, S. Performance and bacterial community composition of volcanic scoria particles (VSP) in a biological aerated filter (BAF) for micro-polluted source water treatment. Water Environ. Res. 2019, 91, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, Q.; Zhang, J.; Wang, S.; Song, B.; Huang, Z. Purification of Micro-Polluted Lake Water by Biofortification of Vertical Subsurface Flow Constructed Wetlands in Low-Temperature Season. Water 2022, 14, 896. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Wu, C.; Muylaert, K.; Vyverman, W.; Yu, H.Q.; Munoz, R.; Rittmann, B. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresour. Technol. 2017, 241, 1127–1137. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Wang, J.; Wang, J.J.; Wang, J.X.L. Seasonal dependency of controlling factors on the phytoplankton production in Taihu Lake, China. J. Environ. Sci. 2019, 76, 278–288. [Google Scholar] [CrossRef]
- Adey, W.H.; Kangas, P.C.; Mulbry, W. Algal Turf Scrubbing: Cleaning Surface Waters with Solar Energy while Producing a Biofuel. BioScience 2011, 61, 434–441. [Google Scholar] [CrossRef]
- Gao, F.; Yang, Z.H.; Li, C.; Zeng, G.M.; Ma, D.H.; Zhou, L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour. Technol. 2015, 179, 8–12. [Google Scholar] [CrossRef]
- Amini, E.; Babaei, A.; Mehrnia, M.R.; Shayegan, J.; Safdari, M.S. Municipal wastewater treatment by semi -continuous and membrane algal-bacterial photo-bioreactors. J. Water Process. Eng. 2020, 36, 8. [Google Scholar] [CrossRef]
- Shangguan, H.; Liu, J.; Zhu, Y.; Tong, Z.; Wu, Y. Start-up of a spiral periphyton bioreactor (SPR) for removal of COD and the characteristics of the associated microbial community. Bioresour. Technol. 2015, 193, 456–462. [Google Scholar] [CrossRef]
- Borderie, F.; Denis, M.; Barani, A.; Alaoui-Sosse, B.; Aleya, L. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): Investigation at the single-cell level. Environ. Sci. Pollut. Res. 2016, 23, 12039–12049. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Wang, C.; Qin, H.J.; Li, Y.X.; Zheng, J.L.; Peng, C.R.; Li, D.H. Influence of phosphorus availability on the community structure and physiology of cultured biofilms. J. Environ. Sci. 2016, 42, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shi, W.; Fang, F.; Guo, J.; Lu, L.; Xiao, Y.; Jiang, X. Exploring the feasibility of sewage treatment by algal-bacterial consortia. Crit. Rev. Biotechnol. 2020, 40, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Zammit, G. Phototrophic biofilm communities and adaptation to growth on ancient archaeological surfaces. Ann. Microbiol. 2019, 69, 1047–1058. [Google Scholar] [CrossRef]
- Liu, J.; Sun, P.; Sun, R.; Wang, S.; Gao, B.; Tang, J.; Wu, Y.; Dolfing, J. Carbon-nutrient stoichiometry drives phosphorus immobilization in phototrophic biofilms at the soil-water interface in paddy fields. Water Res. 2019, 167, 115129. [Google Scholar] [CrossRef]
- Liu, X.Y.; Xu, X.Y.; Ma, Q.I.; Wu, W.H. Biological formation of 5-aminolevulinic acid by photosynthetic bacteria. J. Environ. Sci. 2005, 17, 152–155. [Google Scholar]
- Ma, X.Y.Y.; Dong, K.; Tang, L.; Wang, Y.K.; Wang, X.C.C.; Ngo, H.H.; Chen, R.; Wang, N. Investigation and assessment of micropollutants and associated biological effects in wastewater treatment processes. J. Environ. Sci. 2020, 94, 119–127. [Google Scholar] [CrossRef]
- Stal, L.J.; Bolhuis, H.; Cretoiu, M.S. Phototrophic marine benthic microbiomes: The ecophysiology of these biological entities. Environ. Microbiol. 2019, 21, 1529–1551. [Google Scholar] [CrossRef]
- ZoBell, C.E. The Effect of Solid Surfaces upon Bacterial Activity. J. Bacteriol. 1943, 46, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Zhao, Q.; Wu, Y.; Wu, C.; Xiang, W. Removal of nutrients and pharmaceuticals and personal care products from wastewater using periphyton photobioreactors. Bioresour. Technol. 2018, 248, 113–119. [Google Scholar] [CrossRef]
- Miranda, A.F.; Ramkumar, N.; Andriotis, C.; Höltkemeier, T.; Yasmin, A.; Rochfort, S.; Wlodkowic, D.; Morrison, P.; Roddick, F.; Spangenberg, G.; et al. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol. Biofuels 2017, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tahir, N.; Cao, W.; Zhang, Q.; Lee, D.J. Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production. Bioresour. Technol. 2019, 291, 121806. [Google Scholar] [CrossRef]
- Zippel, B.; Rijstenbil, J.; Neu, T.R. A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J. Microbiol. Methods 2007, 70, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-l.; Yu, X.; Zhu, L.; Liu, B.; Shen, B.; Fu, L. Microbial biomass and activity in a full-scale O3-BAC filter. Huanjing Kexue 2010, 31, 1211–1214. [Google Scholar]
- Jiang, X.C.; Tu, Q.Y. Specification of Investigation of Lake Eutrophication; Chinese Environmental Science Publishing: Beijing, China, 1990. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Fang, F.; Lu, W.T.; Shan, Q.; Cao, J.S. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats. Carbohydr. Polym. 2014, 106, 1–6. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Luo, S. Aquatic Life Monitoring Manual; Southeast University Press: Nanjing, China, 1993. [Google Scholar]
- Wagner, K.; Bengtsson, M.M.; Findlay, R.H.; Battin, T.J.; Ulseth, A.J. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms. J. Geophys. Res-Biogeo. 2017, 122, 1806–1820. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Silva, S.O.; Baptista, J.M.; Malcata, F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Laspidou, C.S.; Rittmann, B.E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 2002, 36, 2711–2720. [Google Scholar] [CrossRef]
- Xiao, R.; Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 2016, 34, 1225–1244. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Micheletti, E.; Bruno, L.; Adhikary, S.P.; Albertano, P.; Philippis, R.D. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 2012, 28, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.; Xu, R.Z.; Wang, S.N.; Zhang, L.L.; Huang, Y.Q.; Luo, J.Y.; Feng, Q.; Cao, J.S. Characterization of interactions between a metabolic uncoupler O-chlorophenol and extracellular polymeric substances of activated sludge. Environ. Pollut. 2019, 247, 1020–1027. [Google Scholar] [CrossRef]
- Foulquier, A.; Morin, S.; Dabrin, A.; Margoum, C.; Mazzella, N.; Pesce, S. Effects of mixtures of dissolved and particulate contaminants on phototrophic biofilms: New insights from a PICT approach combining toxicity tests with passive samplers and model substances. Environ. Sci. Pollut. Res. 2015, 22, 4025–4036. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.-J.; Yu, H.-Q. Microbial Products of Activated Sludge in Biological Wastewater Treatment Systems: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2011, 42, 187–223. [Google Scholar] [CrossRef]
- Kesaano, M.; Sims, R.C. Algal biofilm based technology for wastewater treatment. Algal Res. 2014, 5, 231–240. [Google Scholar] [CrossRef]
- Carvalheira, M.; Oehmen, A.; Carvalho, G.; Reis, M.A.M. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Res. 2014, 64, 149–159. [Google Scholar] [CrossRef]
- Kumari, S.; Jose, S.; Jagadevan, S. Optimization of phosphate recovery as struvite from synthetic distillery wastewater using a chemical equilibrium model. Environ. Sci. Pollut. Res. 2019, 26, 30452–30462. [Google Scholar] [CrossRef]
- Li, S.-S.; Li, J.-H.; Xia, M.-S.; Meng, Y.-Y.; Zhang, H. Adsorption of nitrogen and phosphorus by intact cells and cell wall polysaccharides of Microcystis. J. Appl. Phycol. 2013, 25, 1539–1544. [Google Scholar] [CrossRef]
- Sharp, C.E.; Urschel, S.; Dong, X.; Brady, A.L.; Slater, G.F.; Strous, M. Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities. Biotechnol. Biofuels 2017, 10, 84. [Google Scholar] [CrossRef]
- Mantzorou, A.; Ververidis, F. Microalgal biofilms: A further step over current microalgal cultivation techniques. Sci. Total Environ. 2019, 651, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Guzzon, A.; Bohn, A.; Diociaiuti, M.; Albertano, P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res. 2008, 42, 4357–4367. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Liu, T. Biofilm based attached cultivation technology for microalgal biorefineries-A review. Bioresour. Technol. 2017, 244, 1245–1253. [Google Scholar] [CrossRef]
- Coutaud, M.; Méheut, M.; Viers, J.; Rols, J.-L.; Pokrovsky, O.S. Copper isotope fractionation during excretion from a phototrophic biofilm. Chem. Geol. 2019, 513, 88–100. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef] [PubMed]
Light Intensity | Chl-a (mg/m2) | Chl-b (mg/m2) | Chl-c (mg/m2) | Chl-a/Chl-b |
---|---|---|---|---|
1500 lx | 70.4 ± 4.5 | 2.6 ± 0.2 | 7.7 ± 0.6 | 25.48 |
3000 lx | 72.6 ± 1.6 | 1.2 ± 0.1 | 8.0 ± 0.5 | 60.82 |
4500 lx | 90.1 ± 2.6 | 1.2 ± 0.1 | 8.0 ± 0.4 | 75.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-Y.; Xu, R.; Liu, T.-F.; Hu, Z.-X. The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant Light Conditions. Water 2023, 15, 621. https://doi.org/10.3390/w15040621
Li H-Y, Xu R, Liu T-F, Hu Z-X. The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant Light Conditions. Water. 2023; 15(4):621. https://doi.org/10.3390/w15040621
Chicago/Turabian StyleLi, Hong-Yi, Runze Xu, Ting-Feng Liu, and Zhi-Xin Hu. 2023. "The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant Light Conditions" Water 15, no. 4: 621. https://doi.org/10.3390/w15040621
APA StyleLi, H. -Y., Xu, R., Liu, T. -F., & Hu, Z. -X. (2023). The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant Light Conditions. Water, 15(4), 621. https://doi.org/10.3390/w15040621