Seasonal Variations of Mineralogical and Chemical Composition of Particulate Matter in a Large Boreal River and Its Tributaries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site: The Ob River Middle Course and Its Two Small Tributaries
2.2. Sampling of RSM
2.3. Analyses
2.4. Data Treatment and Discharge Assessment
3. Results
3.1. Total Concentration and Mineral Composition of RSM
3.2. Element Concentration in the RSM as a Function of Season and River Discharge
3.3. Annual Riverine Export of Major and Trace Elements in the Suspended Form
4. Discussion
4.1. Total Concentration and Mineral Composition of the Ob’s and Small Tributaries Suspended Load
4.2. Chemical Composition of the Suspended Matter of the Ob River and Small Tributaries in Comparison to Other WSL Rivers and World Average
4.3. Seasonal Variation of RSM Elemental Composition in the Ob River and Its Small Tributaries
4.4. Annual Export of Particulate versus Dissolved Elements by the Ob River and Its Tributaries
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hobbie, J.E.; Peterson, B.J.; Bettez, N.; Deegan, L.; O’Brien, W.J.; Kling, G.W.; Kipphut, G.W.; Bowden, W.B.; Hershey, A.E. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res. 1999, 18, 207–214. [Google Scholar] [CrossRef]
- Holmes, R.M.; Peterson, B.J.; Gordeev, V.V.; Zhulidov, A.V.; Meybeck, M.; Lammers, R.B.; Vorosmarty, C.J. Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes? Water Resour. Res. 2000, 36, 2309–2320. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, J.Z.; Guéguen, C. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob. Biogeochem. Cycles 2004, 18, GB1038. [Google Scholar] [CrossRef]
- Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Chang, N.; Le Quéré, C.; Bakker, D.C.E. The ocean carbon—Sinkimpacts, vulnerabilities and challenges. Earth Syst. Dynam. 2015, 6, 327–358. [Google Scholar] [CrossRef]
- Toohey, R.C.; Herman-Mercer, N.M.; Schuster, P.F.; Mutter, E.A.; Koch, J.C. Multi-decadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef]
- Cooper, L.W.; McClelland, J.W.; Holmes, R.M.; Raymond, P.A.; Gibson, J.J.; Guay, C.K.; Peterson, B.J. Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billet, M.F.; Canário, J.; Cory, R.M.; et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef]
- Tank, S.E.; Striegl, R.G.; McClelland, J.W.; Kokelj, S.V. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ. Res. Lett. 2016, 11, 54015. [Google Scholar] [CrossRef]
- Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R.M.W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 2017, 7, 13064. [Google Scholar] [CrossRef]
- Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 1982, 282, 401–450. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Melack, J.M. Transport of organic carbon in the world’s rivers. Tellus 1981, 33, 172–187. [Google Scholar] [CrossRef]
- Gislason, S.R.; Oelkers, E.H.; Snorrason, A. Role of river-suspended material in the global carbon cycle. Geology 2006, 34, 49–52. [Google Scholar] [CrossRef]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–863. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Lisitzin, A.P. Geochemical interaction between the freshwater and marine hydrospheres. Russ. Geol. Geophys. 2014, 55, 561–581. [Google Scholar] [CrossRef]
- Gordeev, V.V. River Input of Water, Sediment, Major Elements, Nutrients and Trace Metals from Russian Territory to the Arctic Ocean. In The Freshwater Budget of the Arctic; Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 297–322. [Google Scholar]
- Lobbes, J.M.; Fitznar, H.P.; Kattner, G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim. Cosmochim. Acta 2000, 64, 2973–2983. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Amon, R.M.W.; Rinehart, A.J.; Walker, S.A. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Raymond, P.A.; Striegl, R.G.; Zhulidov, A.V.; Zimov, S.A.; Zimov, N.; Tank, S.E.; Spencer, R.G.M.; Staples, R.; et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 2016, 30, 629–643. [Google Scholar] [CrossRef]
- Tank, S.E.; Manizza, M.; Holmes, R.M.; McClelland, J.W.; Peterson, B.J. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coasts 2012, 35, 401–415. [Google Scholar] [CrossRef]
- Gebhardt, A.C.; Gaye-Haake, B.; Unger, D.; Lahajnar, N.; Ittekkot, V. Recent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Mar. Geol. 2004, 207, 225–245. [Google Scholar] [CrossRef]
- Morozov, N.P.; Baturin, G.N.; Gordeev, V.V.; Gurvich, E.G. On the composition of suspended and bottom sediments in the mouth areas of the Severnaya Dvina, Mezen, Pechora and Ob’. Hydrochem. Mater. 1974, 60, 60–73. [Google Scholar]
- Shevchenko, V.P.; Pokrovsky, O.S.; Filippov, A.S.; Lisitsyn, A.P.; Bobrov, V.A.; Bogunov, A.Y.; Zavernina, N.N.; Zolotykh, E.O.; Isaeva, A.B.; Kokryatskaya, N.M.; et al. On the elemental composition of suspended matter of the Severnaya Dvina River (White Sea region). Dokl. Earth Sci. 2010, 430, 228–234. [Google Scholar] [CrossRef]
- Savenko, V.S.; Pokrovskii, O.S.; Dupré, B.; Baturin, G.N. The chemical composition of suspended matter of major rivers of Russia and adjacent countries. Dokl. Earth Sci. 2004, 398, 938–942. [Google Scholar]
- Pokrovsky, O.S.; Viers, J.; Shirokova, L.S.; Shevchenko, V.P.; Filipov, A.S.; Dupré, B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary. Chem. Geol. 2010, 273, 136–149. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Dara, O.M.; Filippov, A.S.; Belorukov, S.K.; Lokhov, A.S.; Kotova, E.I.; Kochenkova, A.I. Mineralogy of Particulate Suspended Matter of the Severnaya Dvina River (White Sea, Russia). Minerals 2022, 12, 1600. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Loiko, S.; Shirokova, L.S.; Krickov, I.A.; Pokrovsky, B.G.; Kolesnichenko, L.G.; Kopysov, S.G.; Zemtzov, V.A.; Kulizhsky, S.P.; et al. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences 2015, 12, 6301–6320. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Loiko, S.; Krickov, I.A.; Kopysov, S.G.; Kolesnichenko, L.G.; Vorobyev, S.N.; Kirpotin, S.N. Trace element transport in western Siberia rivers across a permafrost gradient. Biogeosciences 2016, 13, 1877–1900. [Google Scholar] [CrossRef]
- Kutscher, L.; Mörth, C.-M.; Porcelli, D.; Hirst, C.; Maximov, T.C.; Petrov, R.E.; Andersson, P.S. Spatial variation in concentration and sources of organic carbon in the Lena River, Siberia. J. Geophys. Res. Biogeosciences 2017, 122, 1999–2016. [Google Scholar] [CrossRef]
- Gaillardet, J.; Millot, R.; Dupré, B. Chemical denudation rates of the western Canadian orogenic belt: The Stikine terrane. Chem. Geol. 2003, 201, 257–279. [Google Scholar] [CrossRef]
- Javed, M.B.; Shotyk, W. Estimatin bioaccessibility of trace elements in particles suspended in the Athabasca River using sequential extraction. Environ. Pollut. 2018, 240, 466–474. [Google Scholar] [CrossRef]
- Millot, R.; Vigier, N.; Gaillardet, J. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim. Cosmochim. Acta 2010, 74, 3897–3912. [Google Scholar] [CrossRef]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Shiklomanov, I.A.; Shiklomanov, A.I.; Zhulidov, A.V.; Gordeev, V.V.; Bobrovitskaya, N.N. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Glob. Biogeochem. Cycles 2002, 16, 45-1–45-14. [Google Scholar] [CrossRef]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Tank, S.E.; Bulygina, E.; Eglinton, T.I.; Gordeev, V.V.; Gurtovaya, T.Y.; Raymond, P.A.; Repeta, D.J.; et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 2012, 35, 369–382. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Martin, J.M.; Sidorov, I.S.; Sidorova, M.V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am. J. Sci. 1996, 296, 664–691. [Google Scholar] [CrossRef]
- Nikanorov, A.M.; Smirnov, M.P.; Klimenko, O.A. Long-term trends in total and anthropogenic discharge of organic and biogenic substances by Russian rivers into the Arctic and Pacific Seas. Water Res. 2010, 37, 361–371. [Google Scholar] [CrossRef]
- Magritsky, D.V. Annual suspended matter flow of the Russian rivers belonging to the Arctic Ocean basin and its anthropogenic transformation. Vestn. Mosk. Univ. Ser. Geogr. 2010, 5, 17–24. (In Russian) [Google Scholar]
- Ivanova, A.A.; Konovalov, G.S. On mechanical and mineralogical composition of suspended material of several rivers of the Soviet Union. Hydrochem. Mater. 1971, 55, 79–89. [Google Scholar]
- Stein, R.; Grobe, H.; Wahsner, M. Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Mar. Geol. 1994, 119, 269–285. [Google Scholar] [CrossRef]
- Dethleff, D.; Rachold, V.; Tintelnot, M.; Antonov, M. Sea-ice of riverine particles from the Laptev Sea to Fram Strait based on clay mineral studies. Intern. J. Earth Sci. 2000, 89, 496–502. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J.; Kudryavtsev, D.I.; Dupré, B. Basalts weathering in Central Siberia under permafrost conditions. Geochim. Cosmochim. Acta 2005, 69, 5659–5680. [Google Scholar] [CrossRef]
- Saukel, C.; Stein, R.; Vogt, C.; Shevchenko, V.P. Clay-mineral and grain-size distributions in surface sediments of the White Sea (Arctic Ocean): Indicators of sediment sources and transport processes. Geo-Mar. Lett. 2010, 30, 605–616. [Google Scholar] [CrossRef]
- Krivonosova, N.M.; Medvedev, V.N.; Rateev, M.A.; Kheirov, M.B. Clay minerals in suspended matter of the White Sea coastal zone. Izv. Vuzov. Geol. Prospect 1974, N3, 52–60. [Google Scholar]
- Kalinenko, V.V.; Rateev, M.A.; Kheirov, M.B.; Shevchenko, A.Y. Clay minerals in the White Sea bottom sediments. Lithol. Miner. Resourses 1974, N4, 10–23. [Google Scholar]
- Lisitzin, A.P. The marginal filter of the oceans. Oceanology 1994, 34, 735–747. [Google Scholar]
- Lisitzin, A.P. The Continent-Ocean Boundary as a Marginal Filter in the World Ocean. In Biogeochemical Cycling and Sediment Ecology; Gray, J.S., Ambrose, W., Szaniawska, A., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 69–104. [Google Scholar]
- Gordeev, V.V.; Chul’tsova, A.L.; Kochenkova, A.I.; Belorukov, S.K.; Chupakova, A.A.; Moreva, O.Y.; Neverova, N.V.; Chupakov, A.V. Seasonal variations of dissolved inorganic forms of biogenic element concentrations in the lower stream of the Northern Dvina river and in the river and sea water mixing zone. Water Chem. Ecol. 2018, 4–6, 75–85. (In Russian) [Google Scholar]
- Gordeev, V.V.; Dara, O.M.; Alekseeva, T.N.; Kochenkova, A.I.; Boev, A.G.; Lokhov, A.S.; Belorukov, S.K. Seasonal varia-tions in the grain size distribution and in mineralogical composition of suspended particulate matter in the Northern Dvina river. Oceanology 2020, 60, 384–392. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Kochenkova, A.I.; Lokhov, A.S.; Yakovlev, A.E.; Belorukov, S.K.; Fedulov, V.Y. Seasonal and inter annual variations of concentrations and fluxes of dissolved and particulate organic carbon, iron and manganese from the Northern Dvina river to the White Sea. Oceanology 2021, 61, 34–47. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Kochenkova, A.I.; Starodymova, D.P.; Shevchenko, V.P.; Belorukov, S.K.; Lokhov, A.S.; Yakovlev, A.E.; Chernov, V.A.; Pokrovsky, O.S. Major and trace elements in water and suspended matter of the Northern Dvina river and their annual discharges into the White Sea. Oceanology 2021, 61, 994–1005. [Google Scholar] [CrossRef]
- Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Loiko, S.V.; Vorobyev, S.N.; Shevchenko, V.P.; Dara, O.M.; Gordeev, V.V.; Pokrovsky, O.S. Major and trace elements in suspended matter of western Siberian rivers: First assessment across permafrost zones and landscape parameters of watersheds. Geochim. Cosmochim. Acta 2020, 269, 429–450. [Google Scholar] [CrossRef]
- Kremenetski, K.V.; Velichko, A.A.; Borisova, O.K.; MacDonald, G.M.; Smith, L.C.; Frey, K.E.; Orlova, L.A. Peatlands of the West Siberian Lowlands: Current knowledge on zonation, carbon content, and Late Quaternary history. Quat. Sci. Rev. 2003, 22, 703–723. [Google Scholar] [CrossRef]
- Attermeyer, K.; Catalán, N.; Einarsdottir, K.; Freixa, A.; Groeneveld, M.; Hawkes, J.A.; Hawkes, J.A.; Bergquist, J.; Tranvik, L.J. Organic carbon processing during transport through boreal inland waters: Particles as important sites. J. Geophys. Res. Biogeosciences 2018, 123, 2412–2428. [Google Scholar] [CrossRef]
- Karlsson, J.; Serikova, S.; Vorobyev, S.N.; Rocher-Ros, G.; Denfeld, B.; Pokrovsky, O.S. Carbon emission from Western Siberian inland waters. Nat. Commun. 2021, 12, 825. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W.; Holmes, R.M.; Smith, L.C. Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J. Geophys. Res. Biogeosciences 2007, 112, G04S58. [Google Scholar] [CrossRef]
- Frey, K.E.; Siegel, D.I.; Smith, L.C. Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour. Res. 2007, 43, W03406. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Güntner, A.; Susanna, W.; Ramillien, G.; Prigent, C.; Rossow, W.B.; Bonnet, M.P. Interannual variations of the terrestrial water storage in the Lower Ob’ Basin from a multisatellite approach. Hydrol. Earth Syst. Sci. 2010, 14, 2443–2453. [Google Scholar] [CrossRef]
- Sabrekov, A.F.; Runkle, B.R.K.; Glagolev, M.V.; Terentieva, I.E.; Stepanenko, V.M.; Kotsyurbenko, O.R.; Maksyutov, S.S.; Pokrovsky, O.S. Variability in methane emissions from West Siberia’s shallow boreal lakes. Biogeosciences 2017, 14, 3715–3742. [Google Scholar] [CrossRef]
- Serikova, S.; Pokrovsky, O.S.; Ala-Aho, P.; Kazantsev, V.; Kirpotin, S.N.; Kopysov, S.G.; Krickov, I.V.; Laudon, H.; Manasypov, R.M.; Shirokova, L.S.; et al. High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nat. Geosci. 2018, 11, 825–829. [Google Scholar] [CrossRef]
- Serikova, S.; Pokrovsky, O.S.; Laudon, H.; Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Karlsson, J. High carbon emissions from thermokarst lakes of Western Siberia. Nat. Comm. 2019, 10, 1552. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Drozdov, D.S.; Oberman, N.G.; Malkova, G.V.; Kholodov, A.L.; Marchenko, S.S.; Moskalenko, N.G.; Sergeev, D.O.; Ukraintseva, N.G.; Abramov, A.A.; et al. Thermal state of permafrost in Russia. Permafr. Periglac. 2010, 21, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mard, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M.-K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosciences 2016, 121, 621–649. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Rachold, V.; Vlasova, I.E. Geochemical behaviour of major and trace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river, Siberia. Appl. Geochem. 2004, 19, 593–610. [Google Scholar] [CrossRef]
- Vorobyev, S.N.; Pokrovsky, O.S.; Kirpotin, S.N.; Kolesnichenko, L.G.; Shirokova, L.S.; Manasypov, R.M. Flood zone biogeochemistry of the Ob River middle course. Appl. Geochem. 2015, 63, 133–145. [Google Scholar] [CrossRef]
- Vorobyev, S.N.; Pokrovsky, O.S.; Kolesnichenko, L.G.; Manasypov, R.M.; Shirokova, L.S.; Karlsson, J.; Kirpotin, S.N. Biogeochemistry of dissolved carbon, major and trace elements during spring flood periods on the Ob River. Hydrol. Process. 2019, 33, 1579–1594. [Google Scholar] [CrossRef]
- Krickov, I.V.; Serikova, S.; Pokrovsky, O.S.; Vorobyev, S.N.; Lim, A.G.; Siewert, M.B.; Karlsson, J. Sizable carbon emission from the floodplain of Ob River. Ecol. Indic. 2021, 131, 108164. [Google Scholar] [CrossRef]
- Yeghicheyan, D.; Bossy, C.; Le Coz, M.B.-L.; Douchet, C.; Granier, G.; Heimburger, A.; Lacan, F.; Lanzanova, A.; Rousseau, T.C.C.; Seidel, J.-L.; et al. A Compilation of silicon, rare earth element and twenty-one other trace element concentrations in the natural river water reference material SLRS-5 (NRC-CNRC). Geostand. Geoanal. Res. 2013, 37, 449–467. [Google Scholar] [CrossRef]
- Gurvich, E.G.; Isaeva, A.B.; Dyomina, L.V.; Levitan, M.A.; Muravyov, K.G. Chemical composition of bottom sediments from the Kara Sea and estuaries of the Ob and Yenisey Rivers. Oceanology 1995, 34, 701–709. [Google Scholar]
- Baturin, G.N.; Gordeev, V.V. Geochemistry of suspended matter in the Amazon River waters. Geochem. Int. 2019, 57, 197–205. [Google Scholar] [CrossRef]
- Lisitzin, A.P.; Lukashin, V.N.; Dara, O.M. Composition and fluxes of minerals in suspended particulate matter from the water column of the Caspian Sea. Dokl. Earth Sci. 2015, 463, 733–737. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1989; p. 380. [Google Scholar]
- Pokrovsky, O.S.; Manasypov, R.M.; Kopysov, S.; Krickov, I.V.; Shirokova, L.S.; Loiko, S.V.; Lim, A.G.; Kolesnichenko, L.G.; Vorobyev, S.N.; Kirpotin, S.N. Impact of permafrost thaw and climate warming on riverine export fluxes of carbon, nutrients and metals in western Siberia. Water 2020, 12, 1817. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Chupakov, A.V.; Kopysov, S. Element transport in the Taz River, western Siberia. Chem. Geol. 2022, 614, 121180. [Google Scholar] [CrossRef]
- Chupakov, A.V.; Pokrovsky, O.S.; Shirokova, L.S.; Moreva, O.Y.; Neverova, N.V.; Chupakova, A.A.; Kotova, A.I.; Vorobyeva, T.Y. High resolution multi-annual riverine fluxes of organic carbon, nutrient and trace element from the largest European Arctic river, Severnaya Dvina. Chem. Geol. 2020, 538, 119491. [Google Scholar] [CrossRef]
- Rudmin, M.; Ruban, A.; Savichev, O.; Mazurov, A.; Dauletova, A.; Savinova, O. Authigenic and Detrital Minerals in Peat Environment of Vasyugan Swamp, Western Siberia. Minerals 2018, 8, 500. [Google Scholar] [CrossRef]
- Anisimova, N.P. Cryohydrochemical Features of Permafrost Region (Kriogidrokhimicheskie Osobennosti Merzlotnoi Zony); Nauka Publ. House: Novosibirsk, Russia, 1981; p. 9. (In Russian) [Google Scholar]
- Savenko, V.S. Principal features of the chemical composition of suspended load in world rivers. Dokl. Earth Sci. 2006, 407, 450–454. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Shevchenko, V.P. Chemical Composition of Suspended Sediments in the Lena River and Its Mixing Zone. Rep. Polar Res. 1995, 176, 154–169. [Google Scholar]
- Lukashin, V.N.; Ljutsarev, S.V.; Krasnjuk, A.D.; Shevchenko, V.P.; Rusakov, V.Y. Suspended Particulate Matter in the Ob and Yenisey Estuaries. In The Kara Sea Expedition of RV Akademik Boris Petrov 1997: First Results of a Joint Russian-German Pilot Study; Matthiessen, J., Stepanets, O.V., Stein, R., Fütterer, D.K., Galimov, E.M., Eds.; Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 1999; Volume 300, pp. 155–178. [Google Scholar]
- Rachold, V.; Alabyan, A.; Hubberten, H.W.; Korotaev, V.N.; Zaitsev, A.A. Sediment transport to the Laptev Sea–hydrology and geochemistry of the Lena River. Polar Res. 1996, 15, 183–196. [Google Scholar] [CrossRef]
- Rachold, V.; Hubberten, H.-W. Carbon Isotope Composition of Particulate Organic Material in East Siberian Rivers. In Land-Ocean Systems in the Siberian Arctic; Springer: Berlin/Heidelberg, Germany, 1999; pp. 223–238. [Google Scholar] [CrossRef]
- Rachold, V. Major, Trace and Rare Earth Element Geochemistry of Suspended Particulate Material of East Siberian Rivers Draining to the Arctic Ocean. In Land-Ocean Systems in the Siberian Arctic; Springer: Berlin/Heidelberg, Germany, 1999; pp. 199–222. [Google Scholar] [CrossRef]
- Krickov, I.V.; Pokrovsky, O.S.; Manasypov, R.M.; Lim, A.G.; Shirokova, L.S.; Viers, J. Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient. Geochim. Cosmochim. Acta 2019, 265, 221–241. [Google Scholar] [CrossRef]
- Krickov, I.; Lim, A.; Manasypov, R.M.; Loiko, S.V.; Shirokova, L.S.; Kirpotin, S.N.; Karlsson, J.; Pokrovsky, O.S. Riverine particulate C and N generated at the permafrost thaw front: Case study of western Siberian rivers across a 1700-km latitudinal transect. Biogeosciences 2018, 15, 6867–6884. [Google Scholar] [CrossRef]
- Ponter, C.; Ingri, J.; Boström, K. Geochemistry of manganese in the Kalix River, northern Sweden. Geochim. Cosmochim. Acta 1992, 56, 1485–1494. [Google Scholar] [CrossRef]
- Andersson, P.S.; Porcelli, D.; Wasserburg, G.J.; Ingri, J. Particle transport of 234U-238U in the Kalix River and in the Baltic Sea. Geochim. Cosmochim. Acta 1998, 62, 385–392. [Google Scholar] [CrossRef]
- Takahashi, Y.; Tada, A.; Shimizu, H. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions. Anal. Sci. 2004, 20, 1301–1306. [Google Scholar] [CrossRef]
- Viers, J.; Prokushkin, A.S.; Pokrovsky, O.S.; Beaulieu, E.; Oliva, P.; Dupré, B. Seasonal and spatial variability of elemental concentrations in boreal forest larch folliage of Central Siberia on continuous permafrost. Biogeochemistry 2013, 113, 435–449. [Google Scholar] [CrossRef]
- Liu, H.; Pourret, O.; Guo, H.; Bonhoure, J. Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater. Appl. Geochem. 2017, 87, 158–166. [Google Scholar] [CrossRef]
- Shevchenko, V.P.; Starodymova, D.P.; Vorobyev, S.N.; Aliev, R.A.; Borilo, L.P.; Kolesnichenko, L.G.; Lim, A.G.; Osipov, A.I.; Trufanov, V.V.; Pokrovsky, O.S. Trace Elements in Sediments of Two Lakes in the Valley of the Middle Courses of the Ob River (Western Siberia). Minerals 2022, 12, 1497. [Google Scholar] [CrossRef]
- Shevchenko, V.P.; Pokrovsky, O.S.; Vorobyev, S.N.; Krickov, I.V.; Manasypov, R.M.; Politova, N.V.; Kopysov, S.G.; Dara, O.M.; Auda, Y.; Shirokova, L.S.; et al. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient. Hydrol. Earth Syst. Sci. 2017, 21, 5725–5746. [Google Scholar] [CrossRef]
- Shevchenko, V.P.; Vorobyev, S.N.; Krickov, I.V.; Boev, A.G.; Lim, A.G.; Novigatsky, A.N.; Starodymova, D.P.; Pokrovsky, O.S. Insoluble particles in the snowpack of the Ob river basin (Western Siberia) a 2800 km submeridional profile. Atmosphere 2020, 11, 1184. [Google Scholar] [CrossRef]
Element | Ob River | Small Tributaries | WSL Rivers [50] |
---|---|---|---|
Si | 177,000 ± 41,500 | 129,000 ± 52,900 | 209,000 ± 53,400 |
Li | 25.2 ± 10.6 | 13.4 ± 13.3 | 11.6 ± 9.46 |
Be | 1.93 ± 0.776 | 0.890 ± 0.837 | – |
B | 33.3 ± 15.3 | 18.4 ± 16.4 | 11.7 ± 12.8 |
Na | 4570 ± 2560 | 3220 ± 3100 | 3750 ± 2710 |
Mg | 6680 ± 4180 | 5290 ± 3570 | 4430 ± 2810 |
Al | 43,200 ± 27,100 | 35,400 ± 39,300 | 25,900 ± 18,400 |
P | 4060 ± 3630 | 13,200 ± 10,700 | 4920 ± 4180 |
K | 13800 ± 4090 | 5130 ± 4520 | 6480 ± 4270 |
Ca | 37,700 ± 40,300 | 27,900 ± 18,900 | 8930 ± 8270 |
Ti | 2210 ± 1140 | 1340 ± 1720 | 8110 ± 5730 |
V | 159.3 ± 92.8 | 76.6 ± 82.1 | 57.9 ± 33.8 |
Cr | 123.7 ± 89.4 | 55.5 ± 66.4 | 41.5 ± 32.2 |
Mn | 4560 ± 3880 | 34,700 ± 28,100 | 8020 ± 11,700 |
Fe | 60,400 ± 35,100 | 237,000 ± 195,000 | 69,800 ± 44,700 |
Co | 18.6 ± 5.03 | 52.8 ± 37 | 24.6 ± 27.6 |
Ni | 58.3 ± 22.7 | 23.8 ± 20.2 | 24.1 ± 18.7 |
Cu | 45.5 ± 17.4 | 13.0 ± 9.35 | 14.6 ± 11.5 |
Zn | 156 ± 105 | 119 ± 46.8 | 90.1 ± 65.0 |
Ga | 16.8 ± 6.90 | 10.2 ± 8.50 | 6.65 ± 3.80 |
Ge | 1.19 ± 0.563 | 0.802 ± 0.865 | 0.330 ± 0.270 |
As | 55.6 ± 54.8 | 223 ± 264 | 19.3 ± 20.0 |
Rb | 19.7 ± 15.5 | 14.2 ± 8.03 | 28.8 ± 20.8 |
Sr | 252 ± 243 | 233 ± 167 | 132 ± 178 |
Y | 7.69 ± 5.91 | 8.22 ± 7.34 | 9.01 ± 4.63 |
Zr | 79.1 ± 41.9 | 47.9 ± 60.3 | 34.6 ± 21.7 |
Nb | 11.6 ± 6.2 | 6.73 ± 8.36 | 15.1 ± 10.7 |
Mo | 1.31 ± 1.22 | 1.01 ± 0.583 | 0.460 ± 0.34 |
Cd | 0.617 ± 0.279 | 0.484 ± 0.234 | 0.32 ± 0.19 |
Sn | 6.18 ± 6.11 | 2.13 ± 1.92 | nd |
Sb | 1.72 ± 1.1 | 1.13 ± 0.836 | 0.720 ± 1.17 |
Cs | 1.21 ± 1.21 | 0.825 ± 0.510 | 1.65 ± 1.33 |
Ba | 402 ± 203 | 942 ± 697 | 409 ± 285 |
La | 12.9 ± 10.2 | 11.5 ± 11.1 | 12.6 ± 6.68 |
Ce | 31.7 ± 21.9 | 28.0 ± 26.7 | 26.4 ± 14.7 |
Pr | 3.76 ± 2.49 | 3.21 ± 3.29 | 2.96 ± 1.66 |
Nd | 15.4 ± 9.82 | 12.9 ± 13.2 | 11.6 ± 6.37 |
Sm | 3.21 ± 1.96 | 2.69 ± 2.73 | 2.31 ± 1.25 |
Eu | 0.725 ± 0.425 | 0.682 ± 0.642 | 0.540 ± 0.280 |
Gd | 2.95 ± 1.83 | 2.60 ± 2.60 | 2.28 ± 1.21 |
Tb | 0.407 ± 0.247 | 0.360 ± 0.365 | 0.310 ± 0.170 |
Dy | 2.30 ± 1.39 | 2.08 ± 2.12 | 1.78 ± 0.950 |
Ho | 0.424 ± 0.254 | 0.383 ± 0.383 | 0.330 ± 0.180 |
Er | 1.19 ± 0.717 | 1.11 ± 1.12 | 0.990 ± 0.520 |
Tm | 0.162 ± 0.0975 | 0.157 ± 0.163 | 0.140 ± 0.070 |
Yb | 1.03 ± 0.622 | 1.03 ± 1.06 | 0.930 ± 0.490 |
Lu | 0.145 ± 0.0904 | 0.146 ± 0.150 | 0.140 ± 0.0700 |
Hf | 2.95 ± 1.60 | 1.87 ± 2.33 | 4.63 ± 2.98 |
Ta | 0.840 ± 0.454 | 0.505 ± 0.614 | 1.07 ± 0.760 |
W | 2.74 ± 1.76 | 1.48 ± 1.29 | 1.02 ± 1.94 |
Tl | 0.459 ± 0.165 | 0.205 ± 0.165 | 0.170 ± 0.110 |
Pb | 35.4 ± 33.2 | 15.2 ± 8.00 | 12.8 ± 8.16 |
Th | 3.90 ± 2.87 | 3.87 ± 3.95 | 3.02 ± 1.98 |
U | 2.33 ± 0.785 | 0.866 ± 0.860 | 0.720 ± 0.440 |
Ob | Rybnaya | Andreva | |
---|---|---|---|
Si | 2100 | 96.0 | 104 |
Li | 0.282 | 0.0180 | 0.0160 |
Be | 0.0241 | 0.00153 | 0.00114 |
B | 0.384 | 0.0416 | 0.0204 |
Na | 59.3 | 4.70 | 3.36 |
Mg | 63.0 | 13.1 | 6.37 |
Al | 515 | 49.8 | 43.5 |
P | 21.1 | 58.4 | 13.3 |
K | 170 | 8.75 | 6.18 |
Ca | 141 | 122 | 32.6 |
Ti | 29.4 | 1.35 | 1.59 |
V | 1.65 | 0.118 | 0.0965 |
Cr | 1.28 | 0.0720 | 0.0716 |
Mn | 17.9 | 199 | 51.8 |
Fe | 511 | 1050 | 250 |
Co | 0.199 | 0.302 | 0.106 |
Ni | 0.647 | 0.0520 | 0.0327 |
Cu | 0.394 | 0.0339 | 0.0176 |
Zn | 0.898 | 0.499 | 0.171 |
Ga | 0.200 | 0.0265 | 0.0136 |
Ge | 0.0121 | 0.00137 | 0.000868 |
As | 0.223 | 1.49 | 0.132 |
Rb | 0.151 | 0.0450 | 0.0217 |
Sr | 1.11 | 0.947 | 0.269 |
Y | 0.0701 | 0.0179 | 0.0106 |
Zr | 1.03 | 0.0546 | 0.0585 |
Nb | 0.152 | 0.00702 | 0.00790 |
Mo | 0.00869 | 0.00410 | 0.00136 |
Cd | 0.00448 | 0.00269 | 0.000734 |
Sn | 0.0413 | 0.00410 | 0.00297 |
Sb | 0.0155 | 0.00421 | 0.00209 |
Cs | 0.00768 | 0.00308 | 0.00129 |
Ba | 3.23 | 3.72 | 1.19 |
La | 0.107 | 0.0232 | 0.0152 |
Ce | 0.309 | 0.0541 | 0.0386 |
Pr | 0.0377 | 0.00525 | 0.00409 |
Nd | 0.160 | 0.0211 | 0.0162 |
Sm | 0.0349 | 0.00439 | 0.00335 |
Eu | 0.00788 | 0.00125 | 0.000838 |
Gd | 0.0312 | 0.00445 | 0.00326 |
Tb | 0.00436 | 0.000611 | 0.000450 |
Dy | 0.0245 | 0.00343 | 0.00261 |
Ho | 0.00447 | 0.000673 | 0.000472 |
Er | 0.0124 | 0.00187 | 0.00140 |
Tm | 0.00168 | 0.000270 | 0.000197 |
Yb | 0.0106 | 0.00175 | 0.00130 |
Lu | 0.00147 | 0.000254 | 0.000184 |
Hf | 0.0386 | 0.00202 | 0.00231 |
Ta | 0.0109 | 0.000463 | 0.000578 |
W | 0.0243 | 0.00328 | 0.00162 |
Tl | 0.00548 | 0.000592 | 0.000269 |
Pb | 0.250 | 0.0541 | 0.0250 |
Th | 0.0429 | 0.00620 | 0.00474 |
U | 0.0232 | 0.00156 | 0.00108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krickov, I.V.; Lim, A.G.; Shevchenko, V.P.; Starodymova, D.P.; Dara, O.M.; Kolesnichenko, Y.; Zinchenko, D.O.; Vorobyev, S.N.; Pokrovsky, O.S. Seasonal Variations of Mineralogical and Chemical Composition of Particulate Matter in a Large Boreal River and Its Tributaries. Water 2023, 15, 633. https://doi.org/10.3390/w15040633
Krickov IV, Lim AG, Shevchenko VP, Starodymova DP, Dara OM, Kolesnichenko Y, Zinchenko DO, Vorobyev SN, Pokrovsky OS. Seasonal Variations of Mineralogical and Chemical Composition of Particulate Matter in a Large Boreal River and Its Tributaries. Water. 2023; 15(4):633. https://doi.org/10.3390/w15040633
Chicago/Turabian StyleKrickov, Ivan V., Artem G. Lim, Vladimir P. Shevchenko, Dina P. Starodymova, Olga M. Dara, Yuri Kolesnichenko, Dmitri O. Zinchenko, Sergey N. Vorobyev, and Oleg S. Pokrovsky. 2023. "Seasonal Variations of Mineralogical and Chemical Composition of Particulate Matter in a Large Boreal River and Its Tributaries" Water 15, no. 4: 633. https://doi.org/10.3390/w15040633
APA StyleKrickov, I. V., Lim, A. G., Shevchenko, V. P., Starodymova, D. P., Dara, O. M., Kolesnichenko, Y., Zinchenko, D. O., Vorobyev, S. N., & Pokrovsky, O. S. (2023). Seasonal Variations of Mineralogical and Chemical Composition of Particulate Matter in a Large Boreal River and Its Tributaries. Water, 15(4), 633. https://doi.org/10.3390/w15040633