Simple Statistical Models for Predicting Overpressure Due to CO2 and Low-Salinity Waste-Fluid Injection into Deep Saline Formations
Abstract
:1. Introduction
2. Background
2.1. Injection in Kansas
2.2. Western Kansas
3. Methods
3.1. Workflow for Creating Models
3.2. Base Reservoir Model
3.3. Boundary Condition
3.4. Initial Condition
3.5. Defining the Response
3.6. Box—Behnken Design
3.7. Sensitivity Analysis
3.8. Regression Model
3.9. Model Reduction and Testing
3.10. Uncertainty Quantification
4. Results
4.1. Base Case and Response
4.2. Sensitivity Analysis
4.3. Proxy Models
4.4. Uncertainty Analysis
4.5. Comparison with Detailed Geological Modeling and Numerical Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BHP | Bottom Hole Pressure (kPa) |
Pres | Average reservoir pressure (kPa) |
K | Permeability (mD) |
KVH | Vertical to horizontal permeability ratio (unitless) |
ϕ | Porosity (unitless) |
Ri | Injection rate (m3/day) |
T | Temperature (°C) |
References
- Celia, M.A.; Bachu, S.; Nordbotten, J.M.; Bandilla, K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Carrera, J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc. Natl. Acad. Sci. USA 2015, 112, 5938–5943. [Google Scholar] [CrossRef] [PubMed]
- Zoback, M.D.; Gorelick, S.M. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. USA 2012, 109, 10164–10168. [Google Scholar] [CrossRef]
- Energy Futures Initiative (EFI). Advancing Large Scale Carbon Management: Expansion of the 45Q Tax Credit; EFI: Washington, DC, USA, 2018. [Google Scholar]
- Eames, F.; Lowman, D. Section 45Q Tax Credit Enhancements Could Boost CCS. 2018. Available online: https://www.huntonnickelreportblog.com/2018/02/section-45q-tax-credit-enhancements-could-boost-ccs/ (accessed on 6 January 2023).
- Zoback, M.D.; Gorelick, S.M. To prevent earthquake triggering, pressure changes due to CO2 injection need to be limited. Proc. Natl. Acad. Sci. USA 2015, 112, E4510. [Google Scholar] [CrossRef] [PubMed]
- Hornbach, M.J.; DeShon, H.R.; Ellsworth, W.L.; Stump, B.W.; Hayward, C.; Frohlich, C.; Oldham, H.R.; Olson, J.E.; Magnani, M.B.; Brokaw, C.; et al. Causal factors for seismicity near Azle, Texas. Nat. Commun. 2015, 6, 6728. [Google Scholar] [CrossRef]
- Langenbruch, C.; Weingarten, M.; Zoback, M.D. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Ansari, A.E.; Bidgoli, T.S.; Hollenbach, A. Accelerated fill-up of the Arbuckle Group aquifer and links to U.S. midcontinent seismicity. J. Geophys. Res. Solid Earth 2019, 124, 2670–2683. [Google Scholar] [CrossRef]
- Dempsey, D.; Kelkar, S.; Pawar, R. Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage. Int. J. Greenh. Gas Control 2014, 28, 96–113. [Google Scholar] [CrossRef]
- Jenkins, C.; Chadwick, A.; Hovorka, S.D. The state of the art in monitoring and verification—Ten years on. Int. J. Greenh. Gas Control 2015, 40, 312–349. [Google Scholar] [CrossRef]
- Ringrose, P.; Greenberg, S.; Whittaker, S.; Nazarian, B.; Oye, V. Building confidence in CO2 storage using reference datasets from demonstration projects. Energy Procedia 2017, 114, 3547–3557. [Google Scholar] [CrossRef]
- Ringrose, P. The CCS hub in Norway: Some insights from 22 years of saline aquifer storage. Energy Procedia 2018, 146, 166–172. [Google Scholar] [CrossRef]
- Franseen, E.K.; Byrnes, A.P. Arbuckle group platform strata in Kansas: A synthesis. In The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia; AAPG Memoir; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; Volume 98. [Google Scholar] [CrossRef]
- Edwards, R.W.J.; Celia, M.A. Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, E8815–E8824. [Google Scholar] [CrossRef] [PubMed]
- Holubnyak, Y.; Williams, E.; Watney, L.; Bidgoli, T.; Rush, J.; Fazelalavi, M.; Gerlach, P. Calculation of CO2 Storage Capacity for Arbuckle Group in Southern Kansas: Implications for a Seismically Active Region. Energy Procedia 2017, 114, 4679–4689. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transp. Porous Media 2005, 58, 339–360. [Google Scholar] [CrossRef]
- Dentz, M.; Tartakovsky, D.M. Abrupt-interface solution for carbon dioxide injection into porous media. Transp. Porous Media 2009, 79, 15–27. [Google Scholar] [CrossRef]
- Lu, C.; Lee, S.Y.; Han, W.S.; McPherson, B.J.; Lichtner, P.C. Comments on “Abrupt-interface solution for carbon dioxide injection into porous media” by M. Dentz and D. Tartakovsky. Transp. Porous Media 2009, 79, 29–37. [Google Scholar] [CrossRef]
- White, C.D.; Royer, S.A. Experimental design as a framework for reservoir studies. In Proceedings of the SPE Reservoir Simulation Symposium, Houston, TX, USA, 3–5 February 2003; pp. 17–20. [Google Scholar] [CrossRef]
- Schuetter, J.; Mishra, S.; Mooney, D. Evaluation of metamodeling techniques on a CO2 injection simulation study. In Proceedings of the 7th Internationl Congress of Environmental Modeling and Software, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- Anbar, S.; Akin, S. Development of a linear predictive model for carbon dioxide sequestration in deep saline carbonate aquifers. Comput. Geosci. 2011, 37, 1802–1815. [Google Scholar] [CrossRef]
- Schuetter, J.; Mishra, S. Experimental design or Monte Carlo simulation? strategies for building robust surrogate models. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar] [CrossRef]
- Ganesh, P.R.; Mishra, S. Simplified physics model of CO2 plume extent in stratified aquifer-caprock systems. Greenh. Gases Sci. Technol. 2016, 6, 70–82. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Protecting Underground Sources of Drinking Water from Underground Injection (UIC). 2020. Available online: https://www.epa.gov/uic (accessed on 6 January 2023).
- Ansari, E. Estimates of Permeability and CO2 Storage Capacity at the Patterson Field Using Analysis of City of Lakin Wastewater Injection Well Characteristics; Open-File Report 2019-22; Kansas Geological Survey, The University of Kansas: Lawrence, KS, USA, 2019. [Google Scholar]
- Fazel Alavi, M. Determination of Relative Permeability Curves in the Arbuckle; Open-File Report 2017-6; Kansas Geolgoical Survey, The University of Kansas: Lawrence, KS, USA, 2015. [Google Scholar]
- Kestin, J.; Khalifa, H.E.; Correia, R.J. Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 °C and the pressure range 0.1–35 MPa. J. Phys. Chem. Ref. Data 1981, 10, 71–88. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Carrera, J.; Olivella, S.; Rutqvist, J.; Laloui, L. Induced seismicity in geologic carbon storage. Solid Earth 2019, 10, 871–892. [Google Scholar] [CrossRef]
- Holubnyak, E.; Watney, L.; Hollenbach, J.; Birdie, T.; Fazelalavi, M.; Bidgoli, T.; Schwab, D.; Nolte, A.; Tsoflias, G.; Victoirne, J.; et al. Small Scale Field Test Demonstrating CO2 Sequestration in Arbuckle Aquifer and by CO2-EOR at Wellington Field, Sumner County, Kansas; The University of Kansas: Lawrence, KS, USA, 2017. Available online: https://www.netl.doe.gov/node/147 (accessed on 6 January 2023).
- Dake, L.P. Fundamentals of Reservoir Engineering; Elsevier Science: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; John Wiley & Sons, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 1119113474. [Google Scholar]
- Sobol’, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; Volume 103, ISBN 978-1-4614-7137-0. [Google Scholar]
- Zoback, M.D. Reservoir Geomechanics; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780511586477. [Google Scholar]
- Vilarrasa, V.; Carrera, J.; Bolster, D.; Dentz, M. Semianalytical solution for CO2 plume shape and pressure evolution during CO2 injection in deep saline formations. Transp. Porous Media 2013, 97, 43–65. [Google Scholar] [CrossRef]
- Franseen, E.K.; Byrnes, A.P.; Cansler, J.R.; Carr, T. The Geology of Kansas: Arbuckle Group. In Current Research in Earth Sciences; Bulletin 250, Part 2; Kansas Geological Survey, The University of Kansas: Lawrence, KS, USA, 2004. [Google Scholar]
- Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.C.; Ringrose, P.S.; Mathieson, A.S.; Wright, I.W. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett. 2010, 37, L03303. [Google Scholar] [CrossRef]
Parameter | Minimum | Base Case | Maximum |
---|---|---|---|
Rock compressibility (1/kPa) | 1 × 10−8 | 1 × 10−8 | 1 × 10−7 |
Injection rate (m3/day) | 300 | 450 | 600 |
0.05 | 0.1 | 1 | |
Permeability (mD) | 200 | 500 | 700 |
Porosity | 0.05 | 0.1 | 0.15 |
Temperature (°C) | 30 | 50 | 60 |
Pressure (kPa) | 12,000 | 15,000 | 18,000 |
Salinity (mg/L) | 1000 | 5000 | 30,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, E.; Holubnyak, E.; Hasiuk, F. Simple Statistical Models for Predicting Overpressure Due to CO2 and Low-Salinity Waste-Fluid Injection into Deep Saline Formations. Water 2023, 15, 648. https://doi.org/10.3390/w15040648
Ansari E, Holubnyak E, Hasiuk F. Simple Statistical Models for Predicting Overpressure Due to CO2 and Low-Salinity Waste-Fluid Injection into Deep Saline Formations. Water. 2023; 15(4):648. https://doi.org/10.3390/w15040648
Chicago/Turabian StyleAnsari, Esmail, Eugene Holubnyak, and Franciszek Hasiuk. 2023. "Simple Statistical Models for Predicting Overpressure Due to CO2 and Low-Salinity Waste-Fluid Injection into Deep Saline Formations" Water 15, no. 4: 648. https://doi.org/10.3390/w15040648
APA StyleAnsari, E., Holubnyak, E., & Hasiuk, F. (2023). Simple Statistical Models for Predicting Overpressure Due to CO2 and Low-Salinity Waste-Fluid Injection into Deep Saline Formations. Water, 15(4), 648. https://doi.org/10.3390/w15040648