Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrogeological Characterization
2.3. Modeling Approach
3. Results and Discussion
3.1. Calibration and Validation Model
3.2. Validation of the Transient Model
3.2.1. Quantitative Evaluation
3.2.2. Improving Groundwater Quality
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahid, S.; Alamgir, M.; Wang, X.J.; Eslamian, S. Climate change impacts on and adaptation to groundwater. In Handbook of Drought and Water Scarcity; CRC Press: Boca Raton, FL, USA, 2017; pp. 107–124. [Google Scholar]
- Hassan, W.H.; Hussein, H.H.; Nile, B.K. The effect of climate change on groundwater recharge in unconfined aquifers in the western desert of Iraq. Groundw. Sustain. Dev. 2022, 16, 100700. [Google Scholar] [CrossRef]
- Hassan, W.H.; Nile, B.K.; Mahdi, K.; Wesseling, J.; Ritsema, C. A feasibility assessment of potential artificial recharge for increasing agricultural areas in the Kerbala desert in Iraq using numerical groundwater modeling. Water 2021, 13, 3167. [Google Scholar] [CrossRef]
- Seeyan, S.; Akrawi, H.; Alobaidi, M.; Mahdi, K.; Riksen, M.; Ritsema, C. Groundwater Quality Evaluation and the Validity for Agriculture Exploitation in the Erbil Plain in the Kurdistan Region of Iraq. Water 2022, 14, 2783. [Google Scholar] [CrossRef]
- Baaloudj, O.; Badawi, A.K.; Kenfoud, H.; Benrighi, Y.; Hassan, R.; Nasrallah, N.; Assadi, A.A. Techno-economic studies for a pilot-scale Bi12TiO20 based photocatalytic system for pharmaceutical wastewater treatment: From laboratory studies to commercial-scale applications. J. Water Process Eng. 2022, 48, 102847. [Google Scholar] [CrossRef]
- Hassan, W.H.; Hashim, F.S. The effect of climate change on the maximum temperature in Southwest Iraq using HadCM3 and CanESM2 modelling. SN Appl. Sci. 2020, 2, 1494. [Google Scholar] [CrossRef]
- Gaznayee, H.A.A.; Al-Quraishi, A.M.F.; Mahdi, K.; Messina, J.P.; Zaki, S.H.; Razvanchy, H.A.S.; Hakzi, K.; Huebner, L.; Ababakr, S.H.; Riksen, M.; et al. Drought Severity and Frequency Analysis Aided by Spectral and Meteorological Indices in the Kurdistan Region of Iraq. Water 2022, 14, 3024. [Google Scholar] [CrossRef]
- Hassan, W.H. Climate change impact on groundwater recharge of Umm er Radhuma unconfined aquifer Western Desert, Iraq. Int. J. Hydrol. Sci. Technol. 2020, 10, 392–412. [Google Scholar] [CrossRef]
- Jarraya Horriche, F.; Benabdallah, S. Assessing aquifer water level and salinity for a managed artificial recharge site using reclaimed water. Water 2020, 12, 341. [Google Scholar] [CrossRef]
- Abraham, M.; Mathew, R.A.; Jayapriya, J. Numerical Modeling as an Effective tool for Artificial Groundwater Recharge Assessment. J. Phys. Conf. Ser. 2021, 1770, 012097. [Google Scholar]
- Ranganathan, P.C.; Chuluke, D.; Chena, D.; Senapathi, V. Artificial recharge techniques in coastal aquifers. In Groundwater Contamination in Coastal Aquifers; Elsevier: Amsterdam, The Netherlands, 2022; pp. 279–283. [Google Scholar]
- Islam, H.; Abbasi, H.; Karam, A.; Chughtai, A.H.; Ahmed Jiskani, M. Geospatial analysis of wetlands based on land use/land cover dynamics using remote sensing and GIS in Sindh, Pakistan. Sci. Prog. 2021, 104, 00368504211026143. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Al-Assa’d, T.A.; Abdulla, F.A. Artificial groundwater recharge to a semi-arid basin: Case study of Mujib aquifer, Jordan. Environ. Earth Sci. 2010, 60, 845–859. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Zwain, H.M.; Hassan, W.H. Modeling the impacts of climate change and flooding on sanitary sewage system using SWMM simulation: A case study. Results Eng. 2021, 12, 100307. [Google Scholar] [CrossRef]
- Voudouris, K.; Diamantopoulou, P.; Giannatos, G.; Zannis, P. Groundwater recharge via deep boreholes in the Patras Industrial Area aquifer system (NW Peloponnesus, Greece). Bull. Eng. Geol. Environ. 2006, 65, 297–308. [Google Scholar] [CrossRef]
- Rambags, F.; Raat, K.J.; Zuurbier, K.G.; van den Berg, G.A.; Hartog, N. Aquifer Storage and Recovery (ASR): Design and Operational Experiences for Water Storage through Wells; PREPARED 2012.016, the Seventh Framework Programme; European Union/European Commission: Amsterdam, The Netherlands, 2013; 40p.
- Arya, S.; Subramani, T.; Karunanidhi, D. Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environ. Earth Sci. 2020, 79, 102. [Google Scholar] [CrossRef]
- Bouri, S.; Dhia, H.B. A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: The Teboulba aquifer system (Tunisian Sahel). Comptes Rendus Geosci. 2010, 342, 60–74. [Google Scholar] [CrossRef]
- Kareem, I.R. Artificial groundwater recharge in Iraq through rainwater harvesting (Case Study). Eng. Tech. J 2012, 31, 1069–1080. [Google Scholar]
- Ali, M.T.; Saleh, S.A.; Gweer, A.N. Experimental Study of Artificial Recharge of Unconfined Groundwater Aquifer for Elected Sites in Salahaddin, Iraq. Iraqi Geol. J. 2022, 55, 162–175. [Google Scholar] [CrossRef]
- Vandenbohede, A.; Van Houtte, E.; Lebbe, L. Groundwater flow in the vicinity of two artificial recharge ponds in the Belgian coastal dunes. Hydrogeol. J. 2008, 16, 1669–1681. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Kanyerere, T. Site assessment for MAR through GIS and modeling in West Coast, South Africa. Water 2019, 11, 1646. [Google Scholar] [CrossRef]
- El Ayni, F.; Manoli, E.; Cherif, S.; Jrad, A.; Assimacopoulos, D.; Trabelsi-Ayadi, M. Deterioration of a Tunisian coastal aquifer due to agricultural activities and possible approaches for better water management. Water Environ. J. 2013, 27, 348–361. [Google Scholar] [CrossRef]
- Hassan, W.H.; Khalaf, R.M. November. Optimum Groundwater use Management Models by Genetic Algorithms in Karbala Desert, Iraq. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 928, p. 022141. [Google Scholar]
- Al-Sudani, H.I.Z. Groundwater system of Dibdibba sandstone aquifer in south of Iraq. Appl. Water Sci. 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Abdulameer, A.; Thabit, J.M.; Kanoua, W.; Wiche, O.; Merkel, B. Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq. Water 2021, 13, 578. [Google Scholar] [CrossRef]
- Al-Ghanimy, M.A. Assessment of Hydrogeological Condition in Karbala—Najaf Plateau, Iraq. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 2018, unpublished. [Google Scholar]
- Nile, B.K.; Hassan, W.H.; Alshama, G.A. Analysis of the effect of climate change on rainfall intensity and expected flooding by using ANN and SWMM programs. ARPN J. Eng. Appl. Sci. 2019, 14, 974–984. [Google Scholar]
- Konikow, L.F. The secret to successful solute-transport modeling. Groundwater 2011, 49, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Hassan, W.H. Climate change projections of maximum temperatures for southwest Iraq using statistical downscaling. Clim. Res. 2021, 83, 187–200. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture, 1998; Food and Agriculture Organization, Fisheries Department: Rome, Italy, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, W.H.; Ghanim, A.A.J.; Mahdi, K.; Adham, A.; Mahdi, F.A.; Nile, B.K.; Riksen, M.; Ritsema, C. Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater. Water 2023, 15, 695. https://doi.org/10.3390/w15040695
Hassan WH, Ghanim AAJ, Mahdi K, Adham A, Mahdi FA, Nile BK, Riksen M, Ritsema C. Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater. Water. 2023; 15(4):695. https://doi.org/10.3390/w15040695
Chicago/Turabian StyleHassan, Waqed H., Abdulnoor A. J. Ghanim, Karrar Mahdi, Ammar Adham, Fatima A. Mahdi, Basim K. Nile, Michel Riksen, and Coen Ritsema. 2023. "Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater" Water 15, no. 4: 695. https://doi.org/10.3390/w15040695
APA StyleHassan, W. H., Ghanim, A. A. J., Mahdi, K., Adham, A., Mahdi, F. A., Nile, B. K., Riksen, M., & Ritsema, C. (2023). Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater. Water, 15(4), 695. https://doi.org/10.3390/w15040695