Development and Demonstration of an Interactive Tool in an Agent-Based Model for Assessing Pluvial Urban Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrodinamic Sewer System Model
2.3. Interactive Tool within Agent-Based Model
2.3.1. GIS-Based Overland Diffusive Algorithm
2.3.2. Assessment of Impacts
2.3.3. Flood Mitigation Measures in ABM
3. Results
3.1. Flood Propagation and Its Impacts
3.2. Flooding and Its Impacts According to Manhole Distribution
3.3. Flood Barriers
Agents and Time Needed to Install the Flood Protection Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects the 2018 Revision; United Nations: San Francisco, CA, USA, 2018. [Google Scholar]
- World Bank Urban Development Overview. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 4 April 2020).
- Jacobson, C.R. Identification and Quantification of the Hydrological Impacts of Imperviousness in Urban Catchments: A Review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- IPCC. IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Bulti, D.T.; Abebe, B.G. A Review of Flood Modeling Methods for Urban Pluvial Flood Application. Model. Earth Syst. Environ. 2020, 6, 1293–1302. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Guo, S.; Lai, C.; Chen, X. A Simplified Approach for Flood Modeling in Urban Environments. Hydrol. Res. 2018, 49, 1804–1816. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Zhang, H. Urban Stormwater Inundation Simulation Based on SWMM and Diffusive Overland-Flow Model. Water Sci. Technol. 2017, 76, 3392–3403. [Google Scholar] [CrossRef]
- GebreEgziabher, M.; Demissie, Y. Modeling Urban Flood Inundation and Recession Impacted by Manholes. Water 2020, 12, 1160. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Whitworth, M.; Baily, B. A Review of the Current Status of Flood Modelling for Urban Flood Risk Management in the Developing Countries. Sci. Afr. 2020, 7, e00269. [Google Scholar] [CrossRef]
- Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.-N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, Composing and Experimenting Complex Spatial Models with the GAMA Platform. GeoInformatica 2019, 23, 299–322. [Google Scholar] [CrossRef]
- Dawson, R.J.; Peppe, R.; Wang, M. An Agent-Based Model for Risk-Based Flood Incident Management. Nat. Hazards 2011, 59, 167–189. [Google Scholar] [CrossRef]
- Zhu, J.; Dai, Q.; Deng, Y.; Zhang, A.; Zhang, Y.; Zhang, S. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling. Water 2018, 10, 622. [Google Scholar] [CrossRef]
- Kasereka, S.; Kasoro, N.; Kyamakya, K.; Doungmo Goufo, E.F.; Chokki, A.P.; Yengo, M.V. Agent-Based Modelling and Simulation for Evacuation of People from a Building in Case of Fire. Proc. Procedia Comput. Sci. 2018, 130, 10–17. [Google Scholar] [CrossRef]
- Terti, G.; Ruin, I.; Anquetin, S.; Gourley, J.J. Dynamic Vulnerability Factors for Impact-Based Flash Flood Prediction. Nat. Hazards 2015, 79, 1481–1497. [Google Scholar] [CrossRef]
- Yang, L.E.; Scheffran, J.; Süsser, D.; Dawson, R.; Chen, Y.D. Assessment of Flood Losses with Household Responses: Agent-Based Simulation in an Urban Catchment Area. Environ. Model. Assess. 2018, 23, 369–388. [Google Scholar] [CrossRef]
- Anshuka, A.; van Ogtrop, F.F.; Sanderson, D.; Leao, S.Z. A Systematic Review of Agent-Based Model for Flood Risk Management and Assessment Using the ODD Protocol. Nat. Hazards 2022, 112, 2739–2771. [Google Scholar] [CrossRef]
- Chapuis, K.; Amine Elwaqoudi, T.; Brugière, A.; Daudé, E.; Drogoul, A.; Gaudou, B.; Nguyen-Ngoc, D.; Quang Nghi, H.; Zucker, J.-D. An Agent-Based Co-Modeling Approach to Simulate the Evacuation of a Population in the Context of a Realistic Flooding Event: A Case Study in Hanoi (Vietnam). In Proceedings of the Modelling, Simulation and Applications of Complex Systems, Penang, Malaysia, 8–11 April 2019; Volume 978. [Google Scholar] [CrossRef]
- Dubbelboer, J.; Nikolic, I.; Jenkins, K.; Hall, J. An Agent-Based Model of Flood Risk and Insurance. J. Artif. Soc. Soc. Simul. 2017, 20, 6. [Google Scholar] [CrossRef]
- Huizinga, J.; De Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions; JRC Technical Reports; Publications Office of the European Union: Luxembourg, Luxembourg, 2017. [Google Scholar] [CrossRef]
- De Moel, H.; Aerts, J.C.J.H. Effect of Uncertainty in Land Use, Damage Models and Inundation Depth on Flood Damage Estimates. Nat. Hazards 2011, 58, 407–425. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model, User’s Manual, Version 5.1; National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2015. [Google Scholar]
- Sächsisches Staatsministerium für Energie, Klimaschutz, Umwelt und Landwirtschaft. Biotoptypen- Und Landnutzungskartierung (BTLNK)—Sachsen.De. Available online: https://www.natur.sachsen.de/biotoptypen-und-landnutzungskartierung-btlnk-22282.html#a-22291 (accessed on 13 August 2020).
- Reyes-Silva, J.D.; Bangura, E.; Helm, B.; Benisch, J.; Krebs, P. The Role of Sewer Network Structure on the Occurrence and Magnitude of Combined Sewer Overflows (CSOs). Water 2020, 12, 2675. [Google Scholar] [CrossRef]
- Malitz, G.; Ertel, H. KOSTRA-DWD-2010 Starkniederschlagshöhen Für Deutschland (Bezugszeitraum 1951 Bis 2010)—Abschlussbericht; Deutsche Wetterdienst DWD: Offenbach, Germany, 2015; pp. 1–40. [Google Scholar]
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall eV. Arbeitsblatt DWA-A 118; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2006; ISBN 978-3-939057-15-4. [Google Scholar]
- Leutnant, D.; Doering, A.; Henrichs, M.; Sonnenberg, H. Package “swmmr” Type Package Title R Interface for US EPA’s SWMM. 2020. Available online: https://cran.r-project.org/web/packages/swmmr/swmmr.pdf (accessed on 28 November 2022).
- Opiła, J. Role of Visualization in a Knowledge Transfer Process. Bus. Syst. Res. J. 2019, 10, 164–179. [Google Scholar] [CrossRef]
- Reyes-Silva, J.D.; Frauches, A.C.N.B.; Rojas-Gómez, K.L.; Helm, B.; Krebs, P. Determination of Optimal Meshness of Sewer Network Based on a Cost—Benefit Analysis. Water 2021, 13, 1090. [Google Scholar] [CrossRef]
- Duncan, A.P.; Chen, A.S.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. RAPIDS: Early Warning System for Urban Flooding and Water Quality Hazards. In Proceedings of the Machine Learning in Water Systems Symposium: Part of AISB Annual Convention 2013, Exeter, UK, 3–5 April 2013; pp. 25–29. [Google Scholar]
- Golding, B.W. Review Long Lead Time Flood Warnings: Reality or Fantasy? Meteorol. Appl. Meteorol. Appl. 2009, 16, 3–12. [Google Scholar] [CrossRef]
- Google LLC. Google Earth Pro; Google LLC: Menlo Park, CA, USA, 2020. [Google Scholar]
- Wagenaar, D.J.; de Bruijn1, K.M.; Bouwer, L.M.; De Moel, H. Uncertainty in Flood Damage Estimates and Its Potential Effect on Investment Decisions. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 3, 607–640. [Google Scholar] [CrossRef]
- Freni, G.; La Loggia, G.; Notaro, V. Uncertainty in Urban Flood Damage Assessment Due to Urban Drainage Modelling and Depth-Damage Curve Estimation. Water Sci. Technol. 2010, 61, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Copernicus-Landuberwachungsdienst CORINE Bodenbedeckung. Available online: https://land.copernicus.eu/de (accessed on 25 June 2020).
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Shirvani, M.; Kesserwani, G.; Richmond, P. Agent-Based Simulator of Dynamic Flood-People Interactions. arXiv 2019, arXiv:1908.0523. [Google Scholar] [CrossRef]
- Rand, W.; Herrmann, J.; Schein, B.; Vodopivec, N. An Agent-Based Model of Urgent Diffusion in Social Media. J. Artif. Soc. Soc. Simul. 2015, 18, 1–24. [Google Scholar] [CrossRef]
Node Name | Inundated Area [m2] | Final Depth [m] | Residential Damage [€] | Commercial Damage [€] | Infrastructure Damage [€] | Other LU Damages [€] | Total Damage [€] | % of Total Damage |
---|---|---|---|---|---|---|---|---|
17L141 | 4700 | 0.28 | 158,083 | - | - | - | 158,083 | 5.08% |
17Q108 | 14,200 | 0.05 | - | 136,398 | 2259 | - | 138,658 | 4.45% |
38B140 | 1700 | 0.74 | 30,394 | 96,818 | - | 4 | 127,217 | 4.09% |
17G25 | 30,600 | 0.05 | 10,863 | 89,500 | 22,284 | - | 122,647 | 3.94% |
17H120 | 11,400 | 0.05 | 104,937 | 8165 | - | - | 113,103 | 3.63% |
38G6 | 4700 | 0.09 | 1119 | 7435 | - | 88,431 | 96,986 | 3.12% |
38F65 | 1500 | 0.18 | 6704 | - | - | 75,049 | 81,753 | 2.63% |
39K169 | 12,400 | 0.05 | 58,352 | - | 12,672 | - | 71,024 | 2.28% |
17Q49 | 4300 | 0.07 | 58,835 | 5107 | 472 | - | 64,414 | 2.07% |
39P1 | 3900 | 0.05 | 28,509 | - | - | 33,555 | 62,064 | 1.99% |
17G25 | 17H120 | 39K169 | |||||||
---|---|---|---|---|---|---|---|---|---|
Return Period | Without Flood Barrier [m2] | With Flood Barrier [m2] | % Reduction | Without Flood Barrier [m2] | With Flood Barrier [m2] | % Reduction | Without Flood Barrier [m2] | With Flood Barrier [m2] | % Reduction |
10-year | 18,682 | 6394 | 65.78% | 3696 | 3796 | −2.70% | 6294 | 2098 | 66.67% |
20-year | 22,778 | 6394 | 71.93% | 5994 | 4695 | 21.67% | 8492 | 2098 | 75.29% |
50-year | 28,473 | 6394 | 77.54% | 8392 | 4695 | 44.05% | 10,989 | 2098 | 80.91% |
100-year | 30,427 | 6394 | 78.99% | 11,389 | 4695 | 58.77% | 12,388 | 2098 | 83.06% |
Return Period | 17G25 | 17H120 | 39K169 | ||||||
---|---|---|---|---|---|---|---|---|---|
Without Flood Barrier | With Flood Barrier | % Reduction | Without Flood Barrier | With Flood Barrier | % Reduction | Without Flood Barrier | With Flood Barrier | % Reduction | |
10-year | 122,778 € | 10,191 € | 91.70% | 45,328 € | 34,996 € | 22.79% | 34,384 € | 11,156 € | 67.55% |
20-year | 143,473 € | 12,169 € | 91.52% | 53,266 € | 39,616 € | 25.63% | 48,738 € | 12,556 € | 74.24% |
50-year | 178,560 € | 14,481 € | 91.89% | 77,815 € | 49,079 € | 36.93% | 60,538 € | 14,608 € | 75.87% |
100-year | 212,148 € | 16,562 € | 92.19% | 116,171 € | 59,891 € | 48.45% | 71,024 € | 15,880 € | 77.64% |
Manhole | 17G25 | 17H120 | 39K169 |
---|---|---|---|
Length of flood barrier needed in m | 270.71 | 227.26 | 185.76 |
Pairs of installers for 1 h of lead time | 5 | 4 | 4 |
Pairs of installers for 2 h of lead time | 3 | 2 | 2 |
Time for 5 available pairs of installers in hours | 0.90 | 0.76 | 0.62 |
Time for 10 available pairs of installers in hours | 0.45 | 0.38 | 0.31 |
Manhole | 17G25 | 17H120 | 39K169 | |||
---|---|---|---|---|---|---|
Lead Time in Minutes | Using Equation | Using GAMA | Using Equation | Using GAMA | Using Equation | Using GAMA |
30 | 9 | 11 | 8 | 5 | 6 | 8 |
45 | 6 | 6 | 5 | 4 | 4 | 5 |
60 | 5 | 5 | 4 | 3 | 3 | 4 |
75 | 4 | 4 | 3 | 3 | 2 | 3 |
90 | 3 | 4 | 3 | 2 | 2 | 3 |
105 | 3 | 3 | 2 | 2 | 2 | 2 |
120 | 2 | 3 | 2 | 2 | 2 | 2 |
Return Period | Flood Area [m2] | Damage Estimation [€] | ||
---|---|---|---|---|
Manhole Contribution | Final Raster Values | Manhole Contribution | Final Raster Value | |
10 | 145,164 | 142,566 | 1,624,959 | 1,575,603 |
20 | 187,624 | 182,828 | 2,213,519 | 2,094,293 |
50 | 224,490 | 218,395 | 2,569,950 | 2,461,961 |
100 | 278,194 | 268,646 | 3,112,808 | 2,981,186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoa, D.; Reyes-Silva, J.D.; Helm, B.; Krebs, P. Development and Demonstration of an Interactive Tool in an Agent-Based Model for Assessing Pluvial Urban Flooding. Water 2023, 15, 696. https://doi.org/10.3390/w15040696
Novoa D, Reyes-Silva JD, Helm B, Krebs P. Development and Demonstration of an Interactive Tool in an Agent-Based Model for Assessing Pluvial Urban Flooding. Water. 2023; 15(4):696. https://doi.org/10.3390/w15040696
Chicago/Turabian StyleNovoa, Diego, Julian David Reyes-Silva, Björn Helm, and Peter Krebs. 2023. "Development and Demonstration of an Interactive Tool in an Agent-Based Model for Assessing Pluvial Urban Flooding" Water 15, no. 4: 696. https://doi.org/10.3390/w15040696
APA StyleNovoa, D., Reyes-Silva, J. D., Helm, B., & Krebs, P. (2023). Development and Demonstration of an Interactive Tool in an Agent-Based Model for Assessing Pluvial Urban Flooding. Water, 15(4), 696. https://doi.org/10.3390/w15040696