A Review of Research Progress in the Preparation and Application of Ferrate(VI)
Abstract
:1. Introduction
2. Properties of Ferrate(VI)
2.1. Structure of Ferrate(VI)
2.2. Stability of Ferrate(VI)
2.3. Oxidation of Ferrate(VI)
3. Preparation of Ferrate(VI)
3.1. Dry Oxidation
3.2. Wet Oxidation
3.3. Electrochemical Method
4. Application of Ferrate(VI) in Water Treatment
4.1. Ferrate(VI) as an Oxidant
4.1.1. PPCPs
4.1.2. Phenolic Compounds
4.1.3. Algae
4.1.4. Reduction Products of Ferrate(VI)
4.2. Ferrate(VI) as a Disinfectant
4.2.1. Water Disinfection
4.2.2. Control Application of Disinfection By-Products
5. Hyphenated Techniques of Ferrate(VI)
5.1. Ferrate(VI)–Photocatalysis
5.2. Ferrate(VI)–PAA
5.3. Ferrate(VI)–PMS
Combined Technology | pH | Pollutants | Removal Rate/% | Active Species | References |
---|---|---|---|---|---|
Ferrate(VI)–UV | 6 | 2,4-DCP | 75.8 | Fe(IV), Fe(V) and·O2− | [116] |
6 | BPA | 79.2 | Fe(IV), Fe(V) and·O2− | ||
2 | Formaldehyde | 100 | Fe(IV), Fe(V) and·O2− | [136] | |
9 | DMP | 40 | Fe(IV), Fe(V) and·O2− | [117] | |
711 | P-nitrophenol | 62.6576.31 | Fe(IV), Fe(V) and·O2− | [91] | |
Ferrate(VI)–PAA | 8 | CBZ | 100 | Fe(IV), Fe(V) and CH3C(O)O· | [124] |
6–9 | CBZ | 100 | Fe(IV), Fe(V) and CH3C(O)O· | [125] | |
Ferrate(VI)–aluminum salt | — | CODMnUV254 | 4060 | — | [29] |
— | DOCUV254Protein | 35.933.771.8 | Fe(IV), Fe(V) | [137] | |
— | Microcystic aeruginosa | 59.3 | Fe(IV), Fe(V) | ||
— | Thallium | 92 | — | [138] | |
Ferrate(VI)–PMS | 6 | Atrazine | 100 | Fe(IV), Fe(V),·OH and SO4−· | [113] |
5 | SMX | 80 | [139] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhavya, G.; Belorkar, S.A.; Mythili, R.; Geetha, N.; Shetty, H.S.; Udikeri, S.S.; Jogaiah, S. Remediation of Emerging Environmental Pollutants: A Review Based on Advances in the Uses of Eco-Friendly Biofabricated Nanomaterials. Chemosphere 2021, 275, 129975. [Google Scholar] [CrossRef] [PubMed]
- Satapute, P.; Paidi, M.K.; Kurjogi, M.; Jogaiah, S. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environ. Pollut. 2019, 251, 555–563. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Gros, M.; Ahrens, L.; Wiberg, K. Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters. Sci. Total. Environ. 2017, 601–602, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Klatte, S.; Schaefer, H.C.; Hempel, M. Pharmaceuticals in the Environment—A Short Review on Options to Minimize the Exposure of Humans, Animals and Ecosystems. Sustain. Chem. Pharm. 2016, 5, 61–66. [Google Scholar] [CrossRef]
- Yang, Z.; Su, R.; Luo, S.; Spinney, R.; Cai, M.; Xiao, R.; Wei, Z. Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: An experimental and theoretical study. Sci. Total. Environ. 2017, 590-591, 751–760. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Shang, Y.; Qi, Z.; Zhao, W.; Peng, Y. Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical. Water Res. 2017, 116, 106–115. [Google Scholar]
- Wang, Y.; Gao, Z.; Shang, Y.; Qi, Z.; Zhao, W.; Peng, Y. Proportional Modulation of Zinc-Based Mof/Carbon Nanotube Hybrids for Simultaneous Removal of Phosphate and Emerging Organic Contaminants with High Efficiency. Chem. Eng. J. 2020, 417, 128063. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Wang, G.; Qin, L.; Ma, X.; Hu, Y.; Cheng, H. Facile synthesis of flower-like CoFe2O4 particles for efficient sorption of aromatic organoarsenicals from aqueous solution. J. Colloid Interface Sci. 2020, 568, 63–75. [Google Scholar] [CrossRef]
- Ghattas, A.K.; Fischer, F.; Wick, A.; Ternes, T.A. Anaerobic Biodegradation of (Emerging) Organic Contaminants in the Aquatic Environment. Water Res. 2017, 116, 268–295. [Google Scholar] [CrossRef]
- Annamalai, J.; Vasudevan, N. Enhanced biodegradation of an endocrine disrupting micro-pollutant: Di (2-ethylhexyl) phthalate using biogenic self-assembled monolayer of silver nanoparticles. Sci. Total. Environ. 2020, 719, 137115. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhao, W.; Hu, Y.; Xu, X.; Cheng, H. Permanganate oxidation and ferric ion precipitation (KMnO4-Fe(III)) process for treating phenylarsenic compounds. Chem. Eng. J. 2018, 357, 600–610. [Google Scholar] [CrossRef]
- Kennedy, A.M.; Reinert, A.M.; Knappe, D.R.; Ferrer, I.; Summers, R. Full- and pilot-scale GAC adsorption of organic micropollutants. Water Res. 2015, 68, 238–248. [Google Scholar] [CrossRef]
- Aris, A.Z.; Hir, Z.A.M.; Razak, M.R. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review. Appl. Mater. Today 2020, 21, 100796. [Google Scholar] [CrossRef]
- Mir-Tutusaus, J.A.; Baccar, R.; Caminal, G.; Sarrà, M. Can White-Rot Fungi Be a Real Wastewater Treatment Alternative for Organic Micropollutants Removal? A Review. Water Res. 2018, 138, 137–151. [Google Scholar] [CrossRef]
- Usman, M.; Ho, Y.-S. A bibliometric study of the Fenton oxidation for soil and water remediation. J. Environ. Manag. 2020, 270, 110886. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Zhang, K.; Lichtfouse, E.; Li, C.; Zhang, Y. Fe-biochar as a safe and efficient catalyst to activate peracetic acid for the removal of the acid orange dye from water. Chemosphere 2022, 307, 135686. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.A.; Wang, X.; Wang, S.; Ge, J.; Shad, A.; Ai, F.; Wang, Z. Ozonation of Pentabromophenol in Aqueous Basic Medium: Kinetics, Pathways, Mechanism, Dimerization and Toxicity Assessment. Chemosphere 2019, 220, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.A.; Pan, B.; Qin, J.; Zhu, Q.; Lichtfouse, E.; Usman, M.; Wang, C. Sustainable Ferrate Oxidation: Reaction Chemistry, Mechanisms and Removal of Pollutants in Wastewater. Environ. Pollut. 2021, 290, 117957. [Google Scholar] [CrossRef]
- Yang, T.; Wang, L.; Liu, Y.-L.; Zhang, W.; Cheng, H.-J.; Liu, M.-C.; Ma, J. Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles. Chem. Eng. J. 2019, 383, 123167. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, N.; Qu, R.; Albasher, G.; Cao, W.; Li, B.; Alsultan, N.; Wang, Z. Kinetics and reaction pathways for the transformation of 4-tert-butylphenol by ferrate(VI). J. Hazard. Mater. 2020, 401, 123405. [Google Scholar] [CrossRef]
- Liu, J.; Mulenos, M.R.; Hockaday, W.C.; Sayes, C.M.; Sharma, V.K. Ferrate(VI) pretreatment of water containing natural organic matter, bromide, and iodide: A potential strategy to control soluble lead release from PbO2(s). Chemosphere 2020, 263, 128035. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J. Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 2007, 146, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Alsheyab, M.; Jiang, J.-Q.; Stanford, C. Electrochemical generation of ferrate (VI): Determination of optimum conditions. Desalination 2010, 254, 175–178. [Google Scholar] [CrossRef]
- Wood, R.H. The Heat, Free Energy and Entropy of the Ferrate(VI) Ion. J. Am. Chem. Soc. 1958, 80, 2038–2041. [Google Scholar] [CrossRef]
- You, K.; Fu, J.X.; Tang, Y.L.; Zhao, Y.H.; Lan, Y.Y. Study on Stability of Ferrate (VI) under the Effect of the Buffering Agent and the Strong Oxidizer. Adv. Mater. Res. 2010, 113–116, 2319–2322. [Google Scholar] [CrossRef]
- Han, Q.; Wang, H.; Dong, W.; Liu, T.; Yin, Y. WITHDRAWN: Suppression of bromate formation in ozonation process by using ferrate(VI): Batch study. Chem. Eng. J. 2014, 236, 110–120. [Google Scholar] [CrossRef]
- Shao, B.; Dong, H.; Sun, B.; Guan, X. Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants. Environ. Sci. Technol. 2018, 53, 894–902. [Google Scholar] [CrossRef]
- Sailo, L.; Tiwari, D.; Lee, S.-M. Degradation of some micro-pollutants from aqueous solutions using ferrate (VI): Physico-chemical studies. Sep. Sci. Technol. 2017, 52, 2756–2766. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Z.; Liu, J.; Peng, W.; Peng, X.; Han, Y.; Xiao, P. Removal of Microcystis aeruginosa and control of algal organic matters by potassium ferrate(VI) pre-oxidation enhanced Fe(II) coagulation. Korean J. Chem. Eng. 2019, 36, 1587–1594. [Google Scholar] [CrossRef]
- Huang, X.; Deng, Y.; Liu, S.; Song, Y.; Li, N.; Zhou, J. Formation of Bromate During Ferrate(Vi) Oxidation of Bromide in Water. Chemosphere 2016, 155, 528–533. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Talaei, M.R.; Rezania, S. An Overview on Production and Application of Ferrate (Vi) for Chemical Oxidation, Coagulation and Disinfection of Water and Wastewater. J. Environ. Chem. Eng. 2017, 5, 1828–1842. [Google Scholar] [CrossRef]
- Tong, R.; Zhang, P.; Yang, Y.; Zhang, R.; Sun, X.; Ma, X.; Sharma, V.K. On line continuous chemical synthesis of ferrate(VI): Enhanced yield and removal of pollutants. J. Environ. Chem. Eng. 2021, 9, 106512. [Google Scholar] [CrossRef]
- Munyengabe, A.; Zvinowanda, C. Production, Characterization and Application of Ferrate(VI) in Water and Wastewater Treatments. Braz. J. Anal. Chem. 2019, 6, 40–57. [Google Scholar] [CrossRef]
- Martinez-Tamayo, E.; Beltran-Porter, A.; Beltran-Porter, D. Iron Compounds in High Oxidation States: Ii. Reaction between Na2o2 and Feso4. Thermochim. Acta 1986, 97, 243–255. [Google Scholar] [CrossRef]
- Ninane, L.; Kanari, N.; Criado, C.; Jeannot, C.; Evrard, O.; Neveux, N. New Processes for Alkali Ferrate Synthesis. In Ferrates; American Chemical Society: Washington, DC, USA, 2008; pp. 102–111. [Google Scholar]
- Kanari, N.; Ostrosi, E.; Ninane, L.; Neveux, N.; Evrard, O. Synthesizing alkali ferrates using a waste as a raw material. Jom 2005, 57, 39–42. [Google Scholar] [CrossRef]
- Sharma, V.K. Potassium ferrate(VI): An environmentally friendly oxidant. Adv. Environ. Res. 2002, 6, 143–156. [Google Scholar] [CrossRef]
- Song, Y.; Men, B.; Wang, D.; Ma, J. On-line batch production of ferrate with an chemical method and its potential application for greywater recycling with Al(III) salt. J. Environ. Sci. 2017, 52, 1–7. [Google Scholar] [CrossRef]
- Yang, W.; Vollertsen, J.; Hvitved-Jacobsen, T. Anoxic sulfide oxidation in wastewater of sewer networks. Water Sci. Technol. 2005, 52, 191–199. [Google Scholar] [CrossRef]
- Tiwari, D.; Kim, H.U.; Choi, B.J.; Lee, S.M.; Kwon, O.H.; Choi, K.M.; Yang, J.K. Ferrate(Vi): A Green Chemical for the Oxidation of Cyanide in Aqueous/Waste Solutions. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 803–810. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Yu, X.; Licht, S. Advances in electrochemical Fe(VI) synthesis and analysis. J. Appl. Electrochem. 2008, 38, 731–742. [Google Scholar] [CrossRef]
- Delaude, L.; Laszlo, P. A Novel Oxidizing Reagent Based on Potassium Ferrate(Vi)(1). J. Org. Chem. 1996, 61, 6360–6370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zheng, L.; Li, Z.; Pi, K.; Deng, Y. One-step Ferrate(VI) treatment as a core process for alternative drinking water treatment. Chemosphere 2019, 242, 125134. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Yang, C.; Wu, Q. The Electrochemical Generation of Ferrate at Porous Magnetite Electrode. Electrochim. Acta 2004, 49, 3155–3159. [Google Scholar] [CrossRef]
- Diaz, M.; Doederer, K.; Keller, J.; Cataldo, M.; Donose, B.-C.; Ali, Y.; Ledezma, P. Towards in situ electro-generation of ferrate for drinking water treatment: A comparison of three low-cost sacrificial iron electrodes. J. Electroanal. Chem. 2021, 880, 114897. [Google Scholar] [CrossRef]
- He, T.; Zhou, B.; Chen, H.; Yuan, R. Degradation of organic chemicals in aqueous system through ferrate-based processes: A review. J. Environ. Chem. Eng. 2022, 10, 108706. [Google Scholar] [CrossRef]
- Barışçı, S. Electrochemical Ferrate(VI) Synthesis with Cast Iron Shavings and Its Potential Application for Household Graywater Recycling. J. Environ. Eng. 2018, 144, 04018073. [Google Scholar] [CrossRef]
- Hu, Y.; Jensen, J.O.; Pan, C.; Cleemann, L.N.; Shypunov, I.; Li, Q. Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions. Appl. Catal. B: Environ. 2018, 234, 357–364. [Google Scholar] [CrossRef]
- Cataldo-Hernández, M.A.; Govindarajan, R.; Bonakdarpour, A.; Mohseni, M.; Wilkinson, D.P. Electrosynthesis of ferrate in a batch reactor at neutral conditions for drinking water applications. Can. J. Chem. Eng. 2018, 96, 1648–1655. [Google Scholar] [CrossRef]
- Pi, R.; Liu, H.; Sun, X.; Zhang, R.; Zhang, J.; Sharma, V.K. Strategy of periodic reverse current electrolysis to synthesize Ferrate(VI): Enhanced yield and removal of sulfachloropyridazine. Sep. Purif. Technol. 2021, 263, 118420. [Google Scholar] [CrossRef]
- Goodwill, J.E.; Jiang, Y.; Reckhow, D.A.; Gikonyo, J.; Tobiason, J.E. Characterization of Particles from Ferrate Preoxidation. Environ. Sci. Technol. 2015, 49, 4955–4962. [Google Scholar] [CrossRef]
- Jiang, Y.; Goodwill, J.E.; Tobiason, J.E.; Reckhow, D.A. Bromide oxidation by ferrate(VI): The formation of active bromine and bromate. Water Res. 2016, 96, 188–197. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total. Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Banjac, Z.; Ginebreda, A.; Kuzmanovic, M.; Marcé, R.; Nadal, M.; Riera, J.M.; Barceló, D. Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain). Sci. Total. Environ. 2015, 520, 241–252. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, J.; Pang, S.; Ma, J.; Xue, M.; Li, J.; Liu, Y.; Yuan, Y. Oxidation of theophylline by Ferrate (VI) and formation of disinfection byproducts during subsequent chlorination. Sep. Purif. Technol. 2018, 201, 283–290. [Google Scholar] [CrossRef]
- Mackuľak, T.; Grabic, R.; Špalková, V.; Belišová, N.; Škulcová, A.; Slavík, O.; Horký, P.; Gál, M.; Filip, J.; Híveš, J.; et al. Hospital Wastewaters Treatment: Fenton Reaction Vs. Bdde Vs. Ferrate(Vi). Environ. Sci. Pollut. Res. 2019, 26, 31812–31821. [Google Scholar] [CrossRef]
- Luo, C.; Feng, M.; Sharma, V.K.; Huang, C.-H. Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents. Environ. Sci. Technol. 2019, 53, 5272–5281. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rangel, A.; Sánchez-Polo, M.; Rozalen, M.; Rivera-Utrilla, J.; Polo, A.M.S.; Berber-Mendoza, M.S.; López-Ramón, M.V. Oxidation of Sulfonamides by Ferrate(Vi): Reaction Kinetics, Transformation Byproducts and Toxicity Assesment. J. Environ. Manag. 2020, 255, 109927. [Google Scholar] [CrossRef]
- Sun, X.; Feng, M.; Dong, S.; Qi, Y.; Sun, L.; Nesnas, N.; Sharma, V.K. Removal of Sulfachloropyridazine by Ferrate(Vi): Kinetics, Reaction Pathways, Biodegradation, and Toxicity Evaluation. Chem. Eng. J. 2019, 372, 742–751. [Google Scholar] [CrossRef]
- Yang, B.; Ying, G.G.; Zhao, J.L.; Liu, S.; Zhou, L.J.; Chen, F. Removal of Selected Endocrine Disrupting Chemicals (Edcs) and Pharmaceuticals and Personal Care Products (Ppcps) During Ferrate(Vi) Treatment of Secondary Wastewater Effluents. Water Res. 2012, 46, 2194–2204. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; Feng, M.; McDonald, T.J.; Marsalek, B.; Sharma, V.K. Oxidation of Antibiotics by Ferrate(Vi) in Water: Evaluation of Their Removal Efficiency and Toxicity Changes. Chemosphere 2021, 277, 130365. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, N.; Li, C. Degradation and Pathway of Tetracycline Hydrochloride in Aqueous Solution by Potassium Ferrate. Environ. Eng. Sci. 2012, 29, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, Y.; Wang, S.; Liu, W.; Zhou, G.; Xie, Y.; Guan, X. Both Fe(Iv) and Radicals Are Active Oxidants in the Fe(Ii)/Peroxydisulfate Process. Environ. Sci. Technol. Lett. 2020, 7, 219–224. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Lin, C.; Zhou, Z.; He, M.; Ouyang, W. Catalytic Oxidation of Contaminants by Fe-0 Activated Peroxymonosulfate Process: Fe(Iv) Involvement, Degradation Intermediates and Toxicity Evaluation. Chem. Eng. J. 2020, 382. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu, W.; Jiang, C. Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(Ii) for Environmental Decontamination? Environ. Sci. Technol. 2018, 52, 11276–11284. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wu, H.; Wang, S.; Liu, Y.; Wang, H. Removal of Sulfapyridine by Ferrate(Vi): Efficiency, Influencing Factors and Oxidation Pathway. Environ. Technol. 2019, 40, 1585–1591. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Graham, N.; Gao, N. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res. 2008, 42, 109–120. [Google Scholar] [CrossRef]
- Widhiastuti, F.; Fan, L.; Paz-Ferreiro, J.; Chiang, K. Oxidative Degradation of Bisphenol a in Municipal Wastewater Reverse Osmosis Concentrate (Roc) Using Ferrate(Vi)/Hydrogen Peroxide. Process Saf. Environ. Prot. 2022, 163, 58–67. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Liang, H.; Ying, L.; Xiangxu, M.; Sharma, V.K. Ferrate(Vi) as a Greener Oxidant: Electrochemical Generation and Treatment of Phenol. J. Hazard. Mater. 2016, 319, 130–136. [Google Scholar] [CrossRef]
- Yang, T.; Wang, L.; Liu, Y.; Huang, Z.; He, H.; Wang, X.; Jiang, J.; Gao, D.; Ma, J. Comparative Study on Ferrate Oxidation of Bps and Bpaf: Kinetics, Reaction Mechanism, and the Improvement on Their Biodegradability. Water Res. 2019, 148, 115–125. [Google Scholar] [CrossRef]
- Bullerjahn, G.S.; McKay, R.M.; Davis, T.W.; Baker, D.B.; Boyer, G.L.; D’Anglada, L.V.; Doucette, G.J.; Ho, J.C.; Irwin, E.G.; Kling, C.L.; et al. Global Solutions to Regional Problems: Collecting Global Expertise to Address the Problem of Harmful Cyanobacterial Blooms. A Lake Erie Case Study. Harmful Algae 2016, 54, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Kubiňáková, E.; Híveš, J.; Gál, M.; Fašková, A. Effect of Ferrate on Green Algae Removal. Environ. Sci. Pollut. Res. 2017, 24, 21894–21901. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-Y.; Zhang, Z.-H.; Li, Q.-S.; Hu, S.-F.; Wang, H.-Y.; Li, J.; Chen, J.-M. Simultaneous removal of algae and its odor metabolites in raw water by potassium ferrate. Desalination Water Treat. 2013, 52, 357–364. [Google Scholar] [CrossRef]
- Addison, E.L.; Gerlach, K.T.; Spellman, C.D.; Santilli, G.; Fairbrother, A.R.; Shepard, Z.; Dudle, J.D.; Goodwill, J.E. Physicochemical implications of cyanobacteria oxidation with Fe(VI). Chemosphere 2021, 266, 128956. [Google Scholar] [CrossRef]
- Ma, J.; Liu, W. Effectiveness and mechanism of potassium ferrate(VI) preoxidation for algae removal by coagulation. Water Res. 2001, 36, 871–878. [Google Scholar] [CrossRef]
- He, H.-Y.; Qiu, W.; Liu, Y.-L.; Yu, H.-R.; Wang, L.; Ma, J. Effect of ferrate pre-oxidation on algae-laden water ultrafiltration: Attenuating membrane fouling and decreasing formation potential of disinfection byproducts. Water Res. 2021, 190, 116690. [Google Scholar] [CrossRef]
- Dong, F.; Liu, J.; Li, C.; Lin, Q.; Zhang, T.; Zhang, K.; Sharma, V.K. Ferrate(VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts. Environ. Int. 2019, 133, 105195. [Google Scholar] [CrossRef] [PubMed]
- Aslani, H.; Nabizadeh, R.; Nasseri, S.; Mesdaghinia, A.; Alimohammadi, M.; Mahvi, A.H.; Rastkari, N.; Nazmara, S. Application of response surface methodology for modeling and optimization of trichloroacetic acid and turbidity removal using potassium ferrate(VI). Desalination Water Treat. 2016, 57, 25317–25328. [Google Scholar] [CrossRef]
- Tiwari, D.; Sailo, L.; Pachuau, L. Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI). Sep. Purif. Technol. 2014, 132, 77–83. [Google Scholar] [CrossRef]
- Lan, B.; Wang, Y.; Wang, X.; Zhou, X.; Kang, Y.; Li, L. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate. Chem. Eng. J. 2016, 292, 389–397. [Google Scholar] [CrossRef]
- Prucek, R.; Jan, K.; Tucek, J. Ferrate(Vi)-Lnduced Arsenite and Arsenate Removal by in Situ Structural Incorporation into Magnetic Iron(Iii) Oxide Nanoparticles. Environ. Sci. Technol. EST 2013, 47, 3283–3292. [Google Scholar] [CrossRef]
- Yu, M.; Chang, Y.; Tiwari, D.; Pachuau, L.; Lee, S.; Yang, J. Treatment of wastewater contaminated with Cd(II)–NTA using Fe(VI). Desalination Water Treat. 2012, 50, 43–50. [Google Scholar] [CrossRef]
- Yang, J.; Tiwari, D.; Yu, M.; Pachuau, L.; Kim, W.; Lee, S. Application of Fe(VI) in the treatment of Zn(II)-NTA complexes in aqueous solutions. Environ. Technol. 2010, 31, 791–798. [Google Scholar] [CrossRef]
- Prucek, R.; Solar, M.; Panacek, A.; Tucek, J.; Filip, J.; Zboril, R. Study of Antimony Removal Efficiency Using Ferrate (Vi). In Proceedings of the 10th Anniversary International Conference on Nanomaterials—Research & Application (Nanocon 2018 (R)), Brno, Czech Republic, 17–19 October 2018; 2019; pp. 214–219. [Google Scholar]
- Kolařík, J.; Prucek, R.; Tuček, J.; Filip, J.; Sharma, V.K.; Zbořil, R. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Water Res. 2018, 141, 357–365. [Google Scholar] [CrossRef]
- Huang, Z.-S.; Wang, L.; Liu, Y.-L.; Zhang, H.-Y.; Zhao, X.-N.; Bai, Y.; Ma, J. Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate. Water Res. 2021, 197, 117094. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.G.; Perfiliev, Y.D.; Dedushenko, S.K.; Kuchinskaya, T.S.; Kalmykov, S.N. Radionuclide Removal from Aqueous Solutions Using Potassium Ferrate(Vi). J. Radioanal. Nucl. Chem. 2016, 310, 347–352. [Google Scholar] [CrossRef]
- Sun, X.; Zu, K.; Liang, H.; Sun, L.; Zhang, L.; Wang, C.; Sharma, V.K. Electrochemical synthesis of ferrate(VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. J. Hazard. Mater. 2017, 344, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shu, J.; Wang, S.; Hong, T.; Xu, X.; Wang, H. Efficient electrochemical generation of ferrate(VI) by iron coil anode imposed with square alternating current and treatment of antibiotics. J. Hazard. Mater. 2020, 384, 121458. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.H.; Wang, J.Q.; Zhu, C.Z.; Li, Y.X. Study on Potassium Ferrate Oxidative Degradation to Solution of P-Nitrophenol. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 26–28 June 2010; pp. 1–4. [Google Scholar]
- Homolková, M.; Hrabák, P.; Kolář, M.; Černík, M. Degradability of chlorophenols using ferrate(VI) in contaminated groundwater. Environ. Sci. Pollut. Res. 2015, 23, 1408–1413. [Google Scholar] [CrossRef]
- Han, Q.; Wang, H.; Dong, W.; Liu, T.; Yin, Y.; Fan, H. Degradation of Bisphenol a by Ferrate(Vi) Oxidation: Kinetics, Products and Toxicity Assessment. Chem. Eng. J. 2015, 262, 34–40. [Google Scholar] [CrossRef]
- Manoli, K.; Maffettone, R.; Sharma, V.K.; Santoro, D.; Ray, A.K.; Passalacqua, K.D.; Carnahan, K.E.; Wobus, C.E.; Sarathy, S. Inactivation of Murine Norovirus and Fecal Coliforms by Ferrate(VI) in Secondary Effluent Wastewater. Environ. Sci. Technol. 2020, 54, 1878–1888. [Google Scholar] [CrossRef]
- Poduska, R.A.; Anderson, B.D. Successful Storage Lagoon Odor Control. J. Water Pollut. Control Fed. 1981, 53, 299–310. [Google Scholar]
- Wang, Y.-Y.; Jin, Z.-S.; Song, H.-L.; Song, H.-L. Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites. Russ. J. Phys. Chem. A 2016, 90, 1931–1935. [Google Scholar] [CrossRef]
- Fatimah, S.; Widyawati, S.; Jannah, N.; Mei, A. Ferrate As an Advance Oxidator Materials (AOM) for Removing the Congo Red Dyes: Study of Optimization and Kinetics Degradation. J. Physics: Conf. Ser. 2021, 1858, 012060. [Google Scholar] [CrossRef]
- Lei, B.; Zhou, G.; Cheng, T.; Du, J. Synthesis of Potassium Ferrate by Chemical Dry Oxidation and Its Properties in Degradation of Methyl Orange. Asian J. Chem. 2013, 25, 27–31. [Google Scholar] [CrossRef]
- Dong, F.; Lin, Q.; Li, C.; He, G.; Deng, Y. Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: A review. Sci. Total. Environ. 2021, 754, 141955. [Google Scholar] [CrossRef]
- Sharma, V.K.; Zboril, R.; Varma, R.S. Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies. Accounts Chem. Res. 2015, 48, 182–191. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Fulazzaky, M.A.; Ponraj, M.; Majid, M.Z.A. Removal of formaldehyde from polluted air in a biotrickling filter reactor. Desalination Water Treat. 2014, 52, 3663–3671. [Google Scholar] [CrossRef]
- Li, C.; Dong, F.; Feng, L.; Zhao, J.; Zhang, T.; Cizmas, L.; Sharma, V.K. Bacterial community structure and microorganism inactivation following water treatment with ferrate(VI) or chlorine. Environ. Chem. Lett. 2017, 15, 525–530. [Google Scholar] [CrossRef]
- Seidel, C.J.; Samson, C.C.; Bartrand, T.; Ergul, A.; Summers, R.S. Disinfection Byproduct Occurrence at Large Water Systems after Stage 2 Dbpr. J. Am. Water Work. Assoc. 2017, 109, 17–30. [Google Scholar] [CrossRef]
- Jiang, Y.; Goodwill, J.E.; Tobiason, J.E.; Reckhow, D.A. Comparison of Ferrate and Ozone Pre-Oxidation on Disinfection Byproduct Formation from Chlorination and Chioramination. Water Res. 2019, 156, 110–124. [Google Scholar] [CrossRef]
- Li, C.; Luo, F.; Dong, F.; Zhao, J.; Zhang, T.; He, G.; Cizmas, L.; Sharma, V.K. Chlorine decay and trihalomethane formation following ferrate(VI) preoxidation and chlorination of drinking water. Chemosphere 2017, 187, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gan, W.; Zhang, X.; Huang, H.; Sharma, V.K. Effect of pH on the formation of disinfection byproducts in ferrate(VI) pre-oxidation and subsequent chlorination. Sep. Purif. Technol. 2015, 156, 980–986. [Google Scholar] [CrossRef]
- Barışçı, S. The disinfection and natural organic matter removal performance of electro-synthesized ferrate (VI). J. Water Process Eng. 2017, 20, 84–89. [Google Scholar] [CrossRef]
- Farré, M.J.; Day, S.; Neale, P.A.; Stalter, D.; Tang, J.Y.; Escher, B.I. Bioanalytical and chemical assessment of the disinfection by-product formation potential: Role of organic matter. Water Res. 2013, 47, 5409–5421. [Google Scholar] [CrossRef] [PubMed]
- Muellner, M.G.; Wagner, E.D.; McCalla, K.; Richardson, S.D.; Woo, Y.T.; Plewa, M.J. Haloacetonitriles Vs. Regulated Haloacetic Acids: Are Nitrogen-Containing Dbps More Toxic? Environ. Sci. Technol. 2007, 41, 645–651. [Google Scholar] [CrossRef]
- Zhang, M.-S.; Xu, B.; Wang, Z.; Zhang, T.-Y.; Gao, N.-Y. Formation of iodinated trihalomethanes after ferrate pre-oxidation during chlorination and chloramination of iodide-containing water. J. Taiwan Inst. Chem. Eng. 2016, 60, 453–459. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Graham, N. A study of the preparation and reactivity of potassium ferrate. Chemosphere 2005, 61, 537–543. [Google Scholar] [CrossRef]
- Feng, M.; Sharma, V.K. Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism. Chem. Eng. J. 2018, 341, 137–145. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Li, X.; He, H.; Yang, C. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants. Chem. Eng. J. 2018, 353, 533–541. [Google Scholar] [CrossRef]
- Tian, S.-Q.; Wang, L.; Liu, Y.-L.; Ma, J. Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species. Water Res. 2020, 183, 116054. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Huang, W.; Cheng, H.; Ma, J.; Kong, Y.; Komarneni, S. Degradation of Dye in Wastewater by Homogeneous Fe(Vi)/Nahso3 System. Chemosphere 2019, 228, 595–601. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Lin, Y.; Yang, C.; Lou, W.; Sun, J.; Du, C.; Zhang, D.; Nie, L.; Yin, K.; et al. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals. Chemosphere 2020, 244, 125490. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.L.; Li, X.Z.; Graham, N. Aqueous Oxidation of Dimethyl Phthalate in a Fe(Vi)-Tio2-Uv Reaction System. Water Res. 2008, 42, 413–420. [Google Scholar] [CrossRef]
- Xia, T.; Qiu, Y.; Li, Y.; Wang, S.; Zhu, L.; Bi, J.; Zhou, J. Ceramsite sand and lime modified lake bottom sediments coupled with potassium ferrate pre-oxidation as emergency control of Microcystis aeruginosa blooms. J. Water Process Eng. 2021, 44, 102412. [Google Scholar] [CrossRef]
- Dunkin, N.; Weng, S.; Coulter, C.G.; Jacangelo, J.G.; Schwab, K.J. Reduction of Human Norovirus GI, GII, and Surrogates by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent. Environ. Sci. Technol. 2017, 51, 11918–11927. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Jinadatha, C.; McDonald, T.J.; Sharma, V.K. Accelerated Oxidation of Organic Contaminants by Ferrate(Vi): The Overlooked Role of Reducing Additives. Environ. Sci. Technol. 2018, 52, 11319–11327. [Google Scholar] [CrossRef]
- Pan, B.; Feng, M.; McDonald, T.J.; Manoli, K.; Wang, C.; Huang, C.-H.; Sharma, V.K. Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality. Chem. Eng. J. 2020, 398, 125607. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, J.; Qiu, L.; Pang, S.; Li, J.; Liu, C.; Wang, L.; Xue, M.; Ma, J. Activation of Ferrate by Carbon Nanotube for Enhanced Degradation of Bromophenols: Kinetics, Products, and Involvement of Fe(V)/Fe(Iv). Water Res. 2019, 156, 1–8. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, T.; Liu, W.; Du, P.; Dobson, J.T.; Huang, C.-H. Advanced Oxidation Process with Peracetic Acid and Fe(II) for Contaminant Degradation. Environ. Sci. Technol. 2019, 53, 13312–13322. [Google Scholar] [CrossRef]
- Wang, J.; Kim, J.; Ashley, D.C.; Sharma, V.K.; Huang, C.H. Peracetic Acid Enhances Micropollutant Degradation by Ferrate(Vi) through Promotion of Electron Transfer Efficiency. Environ. Sci. Technol. 2022, 56, 11683–11693. [Google Scholar] [CrossRef]
- Manoli, K.; Li, R.; Kim, J.; Feng, M.; Huang, C.-H.; Sharma, V.K. Ferrate(VI)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water. Chem. Eng. J. 2022, 429, 132384. [Google Scholar] [CrossRef]
- Li, C.; Lin, H.; Armutlulu, A.; Xie, R.; Zhang, Y.; Meng, X. Hydroxylamine-assisted catalytic degradation of ciprofloxacin in ferrate/persulfate system. Chem. Eng. J. 2018, 360, 612–620. [Google Scholar] [CrossRef]
- Shao, B.; Dong, H.; Feng, L.; Qiao, J.; Guan, X. Influence of [Sulfite]/[Fe(Vi)] Molar Ratio on the Active Oxidants Generation in Fe(Vi)/Sulfite Process. J. Hazard. Mater. 2020, 384, 121303. [Google Scholar] [CrossRef]
- Yang, T.; Wu, S.; Mai, J.; Chen, L.; Huang, C.; Zeng, G.; Wu, Y.; Zhu, M.; Huang, Y.; Mo, Z.; et al. Activation of ferrate(VI) by sulfite for effectively degrading iodinated contrast media and synchronously controlling I-DBPs formation. Chem. Eng. J. 2022, 442, 136011. [Google Scholar] [CrossRef]
- He, C.; Zhang, X.; Lv, P.; Sui, H.; Li, X.; He, L. Efficient remediation of o-dichlorobenzene-contaminated soil using peroxomonosulfate-ferrate-FeS hybrid oxidation system. J. Taiwan Inst. Chem. Eng. 2021, 119, 23–32. [Google Scholar] [CrossRef]
- Mohammadi, S.; Moussavi, G.; Shekoohiyan, S.; Marín, M.L.; Boscá, F.; Giannakis, S. A continuous-flow catalytic process with natural hematite-alginate beads for effective water decontamination and disinfection: Peroxymonosulfate activation leading to dominant sulfate radical and minor non-radical pathways. Chem. Eng. J. 2021, 411, 127738. [Google Scholar] [CrossRef]
- He, H.; Zhao, J. The Efficient Degradation of Diclofenac by Ferrate and Peroxymonosulfate: Performances, Mechanisms, and Toxicity Assessment. Environ. Sci. Pollut. Res. 2022, 30, 11959–11977. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Liu, Z.; Meng, L.; Liu, G.; Kong, D.; Pan, X.; Zhu, F.; Lu, J.; Chen, J. Experimental and theoretical study on Fe(VI) oxidative degradation of dichlorophen in water: Kinetics and reaction mechanisms. Environ. Pollut. 2022, 306, 119394. [Google Scholar] [CrossRef]
- Feng, M.; Cizmas, L.; Wang, Z.; Sharma, V.K. Synergistic Effect of Aqueous Removal of Fluoroquinolones by a Combined Use of Peroxymonosulfate and Ferrate(Vi). Chemosphere 2017, 177, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Kralchevska, R.P.; Prucek, R.; Kolařík, J.; Tuček, J.; Machala, L.; Filip, J.; Sharma, V.K.; Zbořil, R. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Res. 2016, 103, 83–91. [Google Scholar] [CrossRef] [PubMed]
- López-Vinent, N.; Cruz-Alcalde, A.; Moussavi, G.; Gonzalez, I.D.C.; Lehmann, A.H.; Giménez, J.; Giannakis, S. Improving ferrate disinfection and decontamination performance at neutral pH by activating peroxymonosulfate under solar light. Chem. Eng. J. 2022, 450, 137904. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Salari, M.; Talaei, M.R.; Bagheri, M.; Eskandari, Z. Formaldehyde Removal from Wastewater and Air by Using Uv, Ferrate(Vi) and Uv/Ferrate(Vi). J. Environ. Manag. 2016, 184, 204–209. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, B.; Wen, Q.; Tang, Y. Application of potassium ferrate combined with poly-aluminum chloride for mitigating ultrafiltration (UF) membrane fouling in secondary effluent: Comparison of oxidant dosing strategies. Chemosphere 2021, 274, 129862. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Huang, H.; Huang, Z.; Xu, C.; Guo, G.; He, H.; Ma, J. Treatment of Trace Thallium in Contaminated Source Waters by Ferrate Pre-Oxidation and Poly Aluminium Chloride Coagulation. Sep. Purif. Technol. 2019, 227, 115663. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Li, H.; Wang, C.; Zhang, T. Combination of Peroxymonosulfate and Fe(Vi) for Enhanced Degradation of Sulfamethoxazole: The Overlooked Roles of High-Valent Iron Species. Chem. Eng. J. 2023, 453, 139742. [Google Scholar] [CrossRef]
Oxidants/Disinfectants | Reaction Type | E0/V |
---|---|---|
Cl2 | 1.358 | |
ClO2 | 0.854 | |
O3 | 2.076 | |
KMnO4 | 1.679 | |
1.507 | ||
Ferrate(VI) | 2.20 | |
0.76 |
Type of Pollutant | Name of Pollutant | pH | Molar Ratio of Ferrate(VI) to Pollutants | Time/min | Removal Rate/% | References |
---|---|---|---|---|---|---|
Medicine | SMZ: | 5–9 | 20:1 | — | 100 | [89] |
Mycin | 4–9 | 5:1 | — | 80 | [90] | |
SDZ | 7 | 20:1 | — | 75 | [59] | |
Sulfonamide | 3 | 6:1 | 15 | 100 | ||
Cotinine | 6.5 | — | — | 90 | ||
Sulfachloropyridazine | 7 | 10:1 | 40 | 90 | [51] | |
Atrazine | 7 | 25:1 | — | 100 | [32] | |
Phenolic compounds | 4-tBP | — | 10:1 | 5 | 100 | [20] |
p-Nitrophenol | 5 | 3:1 | 50 | 80 | [91] | |
Pentachlorophenol | 9 | — | — | — | [92] | |
BPA | 8 | — | 60 | 99 | [69] | |
Tetrabromobisphenol A | 7 | 4:1 | 3 | 99.06 | [93] | |
Bisphenol F | 7.5–10 | 3.33:1 | 5 | 94 | [94] | |
Alcohols | Ethanol | 6 | 15:1 | 30 | 80 | [95] |
Chain hydrocarbon derivatives | Iminodiacetic acid | 8–10 | — | — | 90 | [80] |
Organophosphorus pesticides | Clorpyrifos | 7 | 100:1 | 5 | 100 | [47] |
Aldehydes | Benzaldehyde | — | — | — | 96 | [96] |
Dye wastewater | Rhodamine B | 7 | — | 8 | 100 | [97] |
Congo Red | 9.2 | 5:1 | 20 | 98.2 | ||
Methyl Orange | 6 | — | 60 | 99.2 | [98] | |
Algae | Aeruginosa suspension | 7 | 7:15 | — | 70.25 | [99] |
Chlorella sp. | 8–9 | 3:1 | — | 46.2 | [78] | |
P. limnetica | 8–9 | 3:1 | — | 58.1 |
Disinfectant Name | Advantages | Disadvantages |
---|---|---|
Chlorine | Low cost Strong disinfection ability Raw materials are readily available Long-term preservation | Produces toxic DBPs Dechlorination is required Harm to health |
Ozone | The by-product is oxygen, which is non-toxic and harmless Strong disinfection capacity and fast rate Remove odors | High cost A small amount of virus is produced Harmful to the human body Corrosive equipment |
Ferrate(VI) | Strong disinfection ability No disinfection by-products The reaction product has a coagulation effect The process is simple, the footprint is small, and the cost is low | Ferrate(VI) yields are low Ferrate(VI) has poor stability and is difficult to store for a long time |
Disinfection Method | Type of DBPs | Name of DBPs | Precursors | Mechanism of Action | References |
---|---|---|---|---|---|
Chlorine disinfection | THMs | Chloroform | NOM, AOM, Phenols, Benzene, Amino acids | The action of ferrate(VI) completely removes hydrophobic organic molecules and partially removes hydrophilic organic molecules, and reduces the formation potential of THMs, thus controlling the amount of THMs produced | [107] |
Bromodichloromethane | |||||
Bromomimetic | |||||
HAAs | Chloroacetic acid | Ferrate(VI) reduces the amount of DBPs produced by chlorine disinfection by oxidizing organic matter in the water to acids that are highly tolerant to chlorine | [108] | ||
Dichloroacetic acid | |||||
HANs | Chloroacetonitrile | Ferrate(VI) oxidizes organic matter in water to acids that are highly resistant to chlorine, thereby reducing the amount of DBPs produced by chlorine disinfection | [109] | ||
Bromoacetonitrile | |||||
Ozone disinfection | Bromate | Sodium bromate | Bromide (Br−) | Ferrate(VI) has no reaction properties against Br− under medium-alkaline conditions, so controlling the pH of the reaction is a crucial condition for ferrate(VI) control of bromate | [30] |
Chloramine disinfection | Iodine-substituted DBPs | Dichloroiodomethane | Iodide (I−) | High doses of ferrate(VI) oxidize iodide directly to iodate, which does not react with chlorine, thereby reducing the amount of iodosterilization by-products | [110] |
Dibromoiodomethane | |||||
Iodoform |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Sumita; Zhang, K.; Zhu, Q.; Wu, C.; Huang, S.; Zhang, Y.; Yao, S.; Pang, W. A Review of Research Progress in the Preparation and Application of Ferrate(VI). Water 2023, 15, 699. https://doi.org/10.3390/w15040699
Yu J, Sumita, Zhang K, Zhu Q, Wu C, Huang S, Zhang Y, Yao S, Pang W. A Review of Research Progress in the Preparation and Application of Ferrate(VI). Water. 2023; 15(4):699. https://doi.org/10.3390/w15040699
Chicago/Turabian StyleYu, Jianping, Sumita, Kai Zhang, Qijia Zhu, Chengzhang Wu, Saikai Huang, Yunshu Zhang, Sijing Yao, and Weihai Pang. 2023. "A Review of Research Progress in the Preparation and Application of Ferrate(VI)" Water 15, no. 4: 699. https://doi.org/10.3390/w15040699
APA StyleYu, J., Sumita, Zhang, K., Zhu, Q., Wu, C., Huang, S., Zhang, Y., Yao, S., & Pang, W. (2023). A Review of Research Progress in the Preparation and Application of Ferrate(VI). Water, 15(4), 699. https://doi.org/10.3390/w15040699