Synoptic and Seasonal Variability of Small River Plumes in the Northeastern Part of the Black Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Observations
2.2. River Discharge in 2020–2021
2.3. INMOM
2.4. OpenDrift
2.5. Numerical Models Coupling
2.6. Plume Area Calculations
3. Results
3.1. Satellite Observations
3.2. Seasonal Freshwater Discharges in 2020–2021
3.3. Seasonal Variability of Plume Areas in 2020–2021
3.4. Synoptic Variability of Rain-Induced Floods in 2020–2021
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Osadchiev, A.A.; Barymova, A.A.; Sedakov, R.O.; Zhiba, R.Y.; Dbar, R.Y. Spatial Structure, Short-Temporal Variability, and Dynamical Features of Small River Plumes as Observed by Aerial Drones: Case Study of the Kodor and Bzyp River Plumes. Remote Sens. 2020, 12, 3079. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Barymova, A.A.; Sedakov, R.O.; Rybin, A.V.; Tanurkov, A.G.; Krylov, A.A.; Kremenetskiy, V.V.; Mosharov, S.A.; Polukhin, A.A.; Ulyantsev, A.S.; et al. Hydrophysical Structure and Current Dynamics of the Kodor River Plume. Oceanology 2021, 61, 1–14. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Sedakov, R.O.; Barymova, A.A. Response of a Small River Plume on Wind Forcing. Front. Mar. Sci. 2021, 8, 1910. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L.; Albertin, C.S. Flux and Fate of Fluvial Sediments Leaving Large Islands in the East Indies. J. Sea Res. 1999, 41, 97–107. [Google Scholar] [CrossRef]
- Mertes, L.A.K.; Warrick, J.A. Measuring Flood Output from 110 Coastal Watersheds in California with Field Measurements and SeaWiFS. Geology 2001, 29, 659–662. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A. The Role of Effective Discharge in the Ocean Delivery of Particulate Organic Carbon by Small, Mountainous River Systems. Limnol. Oceanogr. 2010, 55, 161–171. [Google Scholar] [CrossRef]
- Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goñi, M.A. Coherence of River and Ocean Conditions along the US West Coast during Storms. Cont. Shelf Res. 2011, 31, 789–805. [Google Scholar] [CrossRef]
- Saldías, G.S.; Largier, J.L.; Mendes, R.; Pérez-Santos, I.; Vargas, C.A.; Sobarzo, M. Satellite-Measured Interannual Variability of Turbid River Plumes off Central-Southern Chile: Spatial Patterns and the Influence of Climate Variability. Prog. Oceanogr. 2016, 146, 212–222. [Google Scholar] [CrossRef]
- Jaoshvili, S. The Rivers of the Black Sea; Technical Report No. 71; European Environment Agency: Brussels, Belgium, 2002. [Google Scholar]
- Balabanov, I.P.; Nikiforov, S.P.; Pashkovskiy, I.S. Imeretinskaya Lowland. Natural Geological Conditions, Problems of Development; Nedra Publishing Co.: Moscow, Russia, 2011. (In Russian) [Google Scholar]
- Alexeevsky, N.I.; Magritsky, D.V.; Koltermann, K.P.; Krylenko, I.N.; Toropov, P.A. Causes and Systematics of Inundations of the Krasnodar Territory on the Russian Black Sea Coast. Nat. Hazards Earth Syst. Sci. 2016, 16, 1289–1308. [Google Scholar] [CrossRef] [Green Version]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial Variation of the Rain–Snow Temperature Threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef]
- Lee, K.T.; Yen, B.C. Geomorphology and Kinematic-Wave–Based Hydrograph Derivation. J. Hydraul. Eng. 1997, 123, 73–80. [Google Scholar] [CrossRef]
- Lee, K.T.; Cheng, N.K.; Gartsman, B.I.; Bugayets, A.N. A Current Version of the Model of a Unit Hydrograph and Its Use in Taiwan and Russia. Geogr. Nat. Resour. 2009, 30, 79–85. [Google Scholar] [CrossRef]
- Gonchukov, L.V.; Bugaets, A.N.; Gartsman, B.I.; Lee, K.T. Weather Radar Data for Hydrological Modelling: An Application for South of Primorye Region, Russia. Water Resour. 2019, 46, S25–S30. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A high resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Korshenko, E.A.; Zhurbas, V.M.; Osadchiev, A.A.; Belyakova, P.A. Fate of River-Borne Floating Litter during the Flooding Event in the Northeastern Part of the Black Sea in October 2018. Mar. Pollut. Bull. 2020, 160, 111678. [Google Scholar] [CrossRef]
- Moshonkin, S.; Gusev, A.; Zalesny, V.; Byshev, V. Mixing parameterizations in ocean climate modeling. Izv. Atmos. Ocean. Phys. 2016, 52, 196–206. [Google Scholar] [CrossRef]
- Moshonkin, S.; Zalesny, V.; Gusev, A. Simulation of the Arctic-North Atlantic Ocean Circulation with a Two-Equation k-omega Turbulence Parameterization. J. Mar. Sci. Eng. 2018, 6, 95. [Google Scholar] [CrossRef]
- Zalesny, V.B.; Moshonkin, S.N.; Perov, V.L.; Gusev, A.V. Ocean Circulation Modeling with K-Omega and K-Epsilon Parameterizations of Vertical Turbulent Exchange. Phys. Oceanogr. 2019, 26, 455–466. [Google Scholar] [CrossRef]
- Diansky, N.A. Modelling of the Ocean Circulation and Study of Its Response to Short-Term and Long-Term Atmospheric Forcing, 1st ed.; Physmatlit: Moscow, Russia, 2013. (In Russian) [Google Scholar]
- Osadchiev, A.A.; Korshenko, E.A. Small River Plumes off the Northeastern Coast of the Black Sea under Average Climatic and Flooding Discharge Conditions. Ocean. Sci. 2017, 13, 465–482. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). Univ. Corp. Atmos. Res. 2008, 10, D68S4MVH. [Google Scholar] [CrossRef]
- Polonsky, A.B.; Shokurova, I.G.; Belokopytov, V.N. Desjatiletnjaja Izmenchivost’ Temperatury i Solenosti v Chernom More [Decadal Variability of Temperature and Salinity in the Black Sea]. Morskoy Gidrofiz. Zhurnal 2013, 6, 27–41. (In Russian) [Google Scholar]
- Dagestad, K.-F.; Röhrs, J.; Breivik, Ø.; Ådlandsvik, B. OpenDrift v1.0: A Generic Framework for Trajectory Modelling. Geosci. Model Dev. 2018, 11, 1405–1420. [Google Scholar] [CrossRef]
- Röhrs, J.; Dagestad, K.-F.; Mauritzen, C.; Strand, K.O.; Grøsvik, B.E.; Nogueira, L.A. Backtracing of Marine Litter and Microplastic from OSPAR Beaches in the North Atlantic. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020; p. 5977. [Google Scholar] [CrossRef]
- Osadchiev, A.; Sedakov, R. Spreading Dynamics of Small River Plumes off the Northeastern Coast of the Black Sea Observed by Landsat 8 and Sentinel-2. Remote Sens. Environ. 2019, 221, 522–533. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Zavialov, P.O. Lagrangian model of a surface-advected river plume. Cont. Shelf Res. 2013, 58, 96–106. [Google Scholar] [CrossRef]
- Osadchiev, A.A. Spreading of the Amur river plume in the Amur Liman, the Sakhalin Gulf, and the Strait of Tartary. Oceanology 2017, 57, 376–382. [Google Scholar] [CrossRef]
- Zavialov, I.B.; Osadchiev, A.A.; Sedakov, R.O.; Barnier, B.; Molines, J.-M.; Belokopytov, V.N. Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait. Ocean. Sci. 2020, 16, 15–30. [Google Scholar] [CrossRef]
- Brydon, D.; Sun, S.; Bleck, R. A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geophys. Res. Ocean. 1999, 104, 1537–1540. [Google Scholar] [CrossRef]
- Zalesny, V.; Marchuk, G.; Agoshkov, V.; Bagno, A.; Gusev, A.; Diansky, N.; Moshonkin, S.; Tamsalu, R.; Volodin, E. Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method. Russ. J. Numer. Anal. Math. Model. 2010, 25, 581–609. [Google Scholar] [CrossRef]
- Noh, Y.; Ok, H.; Lee, E.; Toyoda, T.; Hirose, N. Parameterization of Langmuir Circulation in the Ocean MixedLayer Model Using LES and Its Application to the OGCM. J. Phys. Oceanogr. 2016, 46, 57–78. [Google Scholar] [CrossRef]
- Miropolski, Y.Z. Non-stationary model of the layer of the convective-wind mixing in the ocean. Izv. Atmos. Ocean. Phys. 1970, 6, 1284–1294. [Google Scholar]
- Zaslavskii, M.; Zalesny, V.; Kabatchenko, I.; Tamsalu, R. On the self-adjusted description of the atmospheric boundary layer, wind waves, and sea currents. Oceanology 2006, 46, 159–169. [Google Scholar] [CrossRef]
- Gill, A. Atmosphere-Ocean Dynamics; Academic Press: New York, NY, USA, 1982; 662p. [Google Scholar]
- Bruciaferri, D.; Tonani, M.; Lewis, H.W.; Siddorn, J.R.; Saulter, A.; Castillo Sanchez, J.M.; Valiente, N.G.; Conley, D.; Sykes, P.; Ascione, I.; et al. The impact of ocean-wave coupling on the upper ocean circulation during storm events. J. Geophys. Res. Ocean. 2021, 126, e2021JC017343. [Google Scholar] [CrossRef]
River | 2020 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
w | sp | su | au | year | w | sp | su | au | year | |
Mzymta (km3) | 0.213 | 0.490 | 0.259 | 0.108 | 1.07 | 0.35 | 0.84 | 0.49 | 0.25 | 1.94 |
Sochi (km3) | 0.124 | 0.118 | 0.025 | 0.018 | 0.285 | 0.13 | 0.20 | 0.11 | 0.11 | 0.56 |
Mzymta (%) | 20 | 46 | 24 | 10 | 100 | 18 | 44 | 25 | 13 | 100 |
Sochi (%) | 43 | 41 | 9 | 6 | 100 | 24 | 36 | 20 | 19 | 100 |
Total | Washed Ashore | |
---|---|---|
2021, daily-mean discharge | 283,608 | 201,893 |
2021, hourly-mean discharge | 291,790 | 194,654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korshenko, E.; Panasenkova, I.; Osadchiev, A.; Belyakova, P.; Fomin, V. Synoptic and Seasonal Variability of Small River Plumes in the Northeastern Part of the Black Sea. Water 2023, 15, 721. https://doi.org/10.3390/w15040721
Korshenko E, Panasenkova I, Osadchiev A, Belyakova P, Fomin V. Synoptic and Seasonal Variability of Small River Plumes in the Northeastern Part of the Black Sea. Water. 2023; 15(4):721. https://doi.org/10.3390/w15040721
Chicago/Turabian StyleKorshenko, Evgeniya, Irina Panasenkova, Alexander Osadchiev, Pelagiya Belyakova, and Vladimir Fomin. 2023. "Synoptic and Seasonal Variability of Small River Plumes in the Northeastern Part of the Black Sea" Water 15, no. 4: 721. https://doi.org/10.3390/w15040721
APA StyleKorshenko, E., Panasenkova, I., Osadchiev, A., Belyakova, P., & Fomin, V. (2023). Synoptic and Seasonal Variability of Small River Plumes in the Northeastern Part of the Black Sea. Water, 15(4), 721. https://doi.org/10.3390/w15040721