Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width
Abstract
:1. Introduction
2. Engineering Background
3. Stress-Seepage Coupling Test on Coal Rock
3.1. Selection and Preparation of Coal Samples
3.2. Experimental Methods, Apparatus and Scheme
3.3. Experimental Results
4. Numerical Simulation of Stress-Seepage Coupling in the Coal Pillar
4.1. Simulation Schemes
4.2. Simulation Results
- (1)
- Mechanical distribution characteristics of the intact water-resisting coal pillar under mining stress
- (2)
- Distribution of mechanical characteristics of intact water-resisting coal pillar under the stress-seepage coupling
- (3)
- Distribution of mechanical characteristics of the water-resisting coal pillar with fractures under the stress-seepage coupling
5. Determination of the Reserved Width of the Water-Resisting Coal Pillar under the Stress-Seepage Coupling
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, Z.; Xia, Y.P.; Ji, Y.G.; Liu, Y.M.; Xiong, Z.M.; Lu, H. Study on risk control of water inrush in tunnel construction period considering uncertainty. J. Civ. Eng. Manag. 2019, 25, 757–772. [Google Scholar] [CrossRef]
- Jose, M.-M.F.; Fernando, D.-R.; Jesus, G.-Z.; Wenceslao, M.-R.; Manuel, L.-C.; Lourdes, G.-C. Identification of leakage and potential areas for internal erosion combining ERT and IP techniques at the Negratin Dam left abutment (Granada, southern Spain). Eng. Geol. 2018, 240, 74–80. [Google Scholar]
- Bo, K.; Wang, M.S.; Zhao, Z.Q. Numerical simulation on bottom hole flow fields of reverse circulation bit. Appl. Mech. Mater. 2013, 256–259, 2826–2830. [Google Scholar] [CrossRef]
- Zhang, J.C. Investigations of water inrushes from aquifers under coal seams. Int. J. Rock Mech. Min. Sci. 2005, 42, 350–360. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Zhang, J.X.; Bai, H.B. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines. Int. J. Coal Sci. Technol. 2022, 9, 50. [Google Scholar] [CrossRef]
- Li, C.; He, S.F.; Hou, W.T.; Ma, D. Experimental study on expansion and cracking properties of static cracking agents in different assembly states. Int. J. Min. Sci. Technol. 2022, 32, 1259–1272. [Google Scholar] [CrossRef]
- Ganji, H.T.; Alembagheri, M. Stability of monolithic gravity dam located on heterogeneous rock foundation. Arab. J. Sci. Eng. 2018, 43, 1777–1793. [Google Scholar] [CrossRef]
- Guo, X.; Chai, J.R.; Qin, Y.; Xu, Z.G.; Fan, Y.N.; Zhang, X.W. Mechanism and treatment technology of three water inrush events in the Jiaoxi River Tunnel in Shaanxi, China. J. Perform. Constr. Facil. 2019, 33, 04018098. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, D.S.; Yao, N.; Wang, L.; Fan, G.W.; Wang, X.F.; Zhang, W. Coupling influence of inclination angle and moisture content on mechanical properties and microcrack fracture of coal specimens. Lithosphere 2022, 2021, 6226445. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Nobarinasab, M.; Soroush, A.; Lotfi, V. Coupled stress-seepage analysis of Karun III concrete arch dam. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 483–501. [Google Scholar] [CrossRef]
- Chen, L.W.; Feng, X.Q.; Xie, W.P.; Zeng, W.; Zheng, Z.Y. Using a fluid-solid coupled numerical simulation to determine a suitable size for barrier pillars when mining shallow coal seams beneath an unconsolidated, confined aquifer. Mine Water Environ. 2017, 36, 67–77. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y.D.; Gao, L.S.; Li, Z.X.; Song, G.Y.; Zheng, Y. The optimization of coal pillars on return air sides and the reasonable horizon layout of roadway groups in highly gassy mines. Sustainability 2022, 14, 9417. [Google Scholar] [CrossRef]
- Hu, M.L.; Zhao, W.L.; Lu, Z.; Ren, J.X.; Miao, Y.P. Research on the reasonable width of the waterproof coal pillar during the mining of a shallow coal seam located close to a reservoir. Adv. Civ. Eng. 2019, 2019, 3532784. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Zhang, J.X. Solid grain migration on hydraulic properties of fault rocks in underground mining tunnel: Radial seepage experiments and verification of permeability prediction. Tunn. Undergr. Space Technol. 2022, 126, 104525. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhang, Z.H. Determination of coal pillar width and support parameters in deep coal mines—A case study. J. Test. Eval. 2019, 47, 3160–3173. [Google Scholar] [CrossRef]
- Wang, B.N.; Dang, F.N.; Gu, S.C.; Huang, R.B.; Miao, Y.P.; Chao, W. Method for determining the width of protective coal pillar in the pre-driven longwall recovery room considering main roof failure form. Int. J. Rock Mech. Min. Sci. 2020, 130, 104340. [Google Scholar] [CrossRef]
- Jaiswal, A.; Shrivastva, B.K. Numerical simulation of coal pillar strength. Int. J. Rock Mech. Min. Sci. 2009, 46, 779–788. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, Y.C.; Du, J.F.; Zhao, F. Study on overburden stability and development height of water flowing fractured zone in roadway mining with cemented backfill. Shock Vib. 2021, 2021, 6661168. [Google Scholar] [CrossRef]
- Das, A.J.; Mandal, P.K.; Paul, P.S.; Sinha, R.K.; Tewari, S. Assessment of the strength of inclined coal pillars through numerical modelling based on the ubiquitous joint model. Rock Mech. Rock Eng. 2019, 52, 3691–3717. [Google Scholar] [CrossRef]
- Shi, L.Q.; Wang, Y.; Qiu, M.; Han, L.; Zhao, Y.P. Research on the required width of a fault waterproof coal pillar based on underground pressure control theory. Arab. J. Geosci. 2019, 12, 480. [Google Scholar] [CrossRef]
- Li, A.; Ji, B.N.; Ma, Q.; Liu, C.Y.; Wang, F.; Ma, L.; Mu, P.F.; Mou, L.; Yang, Y.X.; Ding, X.S. Design of longwall coal pillar for the prevention of water inrush from the seam floor with through fault. Geofluids 2021, 2021, 5536235. [Google Scholar] [CrossRef]
- Wang, R.; Bai, J.B.; Yan, S.; Pan, G.Q.; Zhang, D.; Zhu, Q.C. Structure partition and reasonable width determination of waterproof coal pillar in strip mining. Lithosphere 2021, 2021, 3339797. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, X.; Zhang, J.S.; Yang, B.S.; Zhu, W.J.; Wang, Z.P. Similar experimental study on retaining waterproof coal pillar in composite strata mining. Sci Rep. 2022, 12, 1366. [Google Scholar] [CrossRef] [PubMed]
- Mathey, M.; van der Merwe, J.N. Critique of the South African squat coal pillar strength formula. J. S. Afr. Inst. Min. Metall. 2016, 116, 291–299. [Google Scholar] [CrossRef]
- Yao, Q.L.; Yu, L.Q.; Chen, N.; Wang, M.N.; Xu, Q. Experimental study on damage and failure of coal-pillar dams in coal mine underground reservoir under dynamic load. Geofluids. 2021, 2021, 5623650. [Google Scholar] [CrossRef]
- Bukowski, P. Water hazard assessment in active shafts in Upper Silesian Coal Basin Mines. Mine Water Environ. 2011, 30, 302–311. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Zhang, J.X.; Liu, X.W.; Li, Z.H. Numerical simulation of water–silt inrush hazard of fault rock: A three-phase flow mode. Rock Mech. Rock Eng. 2022, 55, 5163–5182. [Google Scholar] [CrossRef]
- Huo, Q.; Li, Z.; Ye, Q.Q. Research on the mechanism of water inrush disaster in the construction of tunnel based on the aquifer inrush model. In Proceedings of the 2nd International Conference on Civil Engineering (ICCEHB 2011), Shijiazhuang, China, 16–18 December 2011. [Google Scholar]
- Kerimov, A.; Mavko, G.; Mukerji, T.; Dvorkin, J.; Al Ibrahim, M.A. The influence of convex particles’ irregular shape and varying size on porosity, permeability, and elastic bulk modulus of granular porous media: Insights from numerical simulations. J. Geophys. Res. Solid Earth 2018, 123, 10563–10582. [Google Scholar] [CrossRef]
- Ma, D.; Miao, X.X.; Bai, H.B.; Huang, J.H.; Pu, H.; Wu, Y.; Zhang, G.M.; Li, J.W. Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar. Nat. Hazards 2016, 82, 73–93. [Google Scholar] [CrossRef]
- Chen, J.T.; Zhao, J.H.; Zhang, S.C.; Zhang, Y.; Yang, F.; Li, M. An experimental and analytical research on the evolution of mining cracks in deep floor rock mass. Pure Appl. Geophys. 2020, 177, 5325–5348. [Google Scholar] [CrossRef]
- Liang, D.X.; Jiang, Z.Q.; Zhu, S.Y.; Sun, Q.; Qian, Z.W. Experimental research on water inrush in tunnel construction. Nat. Hazards 2016, 81, 467–480. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Li, X.B.; Li, Z.H.; Zhou, Z.L.; Li, T.B. Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones. Tunn. Undergr. Space Technol. 2019, 91, 102993. [Google Scholar] [CrossRef]
- Li, Q.; Ma, D.; Zhang, Y.D.; Liu, Y.; Ma, Y.J. Insights into controlling factors of pore structure and hydraulic properties of broken rock mass in a geothermal reservoir. Lithosphere 2022, 2021, 3887832. [Google Scholar] [CrossRef]
- Yin, S.X.; Zhang, J.C.; Liu, D.M. A study of mine water inrushes by measurements of in situ stress and rock failures. Nat. Hazards 2015, 79, 1961–1979. [Google Scholar] [CrossRef]
- Ma, D.; Kong, S.B.; Li, Z.H.; Zhang, Q.; Wang, Z.H.; Zhou, Z.L. Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes. Chemosphere 2021, 282, 131163. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.X.; Duan, H.Y.; Huang, Y.L.; Li, M.; Sun, Q.; Zhou, N. Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection. Chemosphere 2021, 264, 128400. [Google Scholar] [CrossRef] [PubMed]
- Behrenbruch, P.; Biniwale, S. Characterisation of clastic depositional environments and rock pore structures using the Carman-Kozeny equation: Australian sedimentary basins. J. Pet. Sci. Eng. 2005, 47, 175–196. [Google Scholar] [CrossRef]
- Li, C.Y.; Cui, C.Y.; Lei, G.R.; Zuo, J.P.; Yu, X.; He, T.; Li, X.S.; Du, W.S. Mechanism of confining pressure unloading and seepage induced tensile fracture of rock mass in Deep mining. J. China Coal Soc. 2022, 47, 3069–3082. [Google Scholar]
- Wu, J.Y.; Jing, H.W.; Gao, Y.; Meng, Q.B.; Yin, Q.; Du, Y. Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill. Cem. Concr. Compos. 2022, 127, 104408. [Google Scholar] [CrossRef]
- Wu, J.Y.; Wong, H.S.; Yin, Q.; Ma, D. Effects of aggregate strength and mass fraction on mesoscopic fracture characteristics of cemented rockfill from gangue as recycled aggregate. Compos. Struct. 2023, 311, 116851. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, Z.; Yu, B. Damage characterization of red sandstones using uniaxial compression experiments. RSC Adv. 2018, 8, 40267–40278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Chen, H.K.; Wang, H.; Zhou, Z. Experimental study on damage evolution characteristics of rock-like material. Arab. J. Sci. Eng. 2019, 44, 8503–8513. [Google Scholar]
Group Number | Inner Size (mm) | Water Content (%) | Axial Compressive Pressure (MPa) | Confining Pressure (Mpa) |
---|---|---|---|---|
A1 | 15 | 0 | 10 | 6 |
A2 | 15 | 6.28 | 10 | 6 |
A3 | 15 | 13.65 | 10 | 6 |
B1 | 20 | 0 | 10 | 6 |
B2 | 20 | 6.28 | 10 | 6 |
B3 | 20 | 13.65 | 10 | 6 |
C1 | 25 | 0 | 10 | 6 |
C2 | 25 | 6.28 | 10 | 6 |
C3 | 25 | 13.65 | 10 | 6 |
D1 | 30 | 0 | 10 | 6 |
D2 | 30 | 6.28 | 10 | 6 |
D3 | 30 | 13.65 | 10 | 6 |
E1 | 35 | 0 | 10 | 6 |
E2 | 35 | 6.28 | 10 | 6 |
E3 | 35 | 13.65 | 10 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Xue, Y.; Ma, D.; Li, Q. Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width. Water 2023, 15, 1002. https://doi.org/10.3390/w15051002
Liu Q, Xue Y, Ma D, Li Q. Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width. Water. 2023; 15(5):1002. https://doi.org/10.3390/w15051002
Chicago/Turabian StyleLiu, Quanhui, Yuanbo Xue, Dan Ma, and Qiang Li. 2023. "Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width" Water 15, no. 5: 1002. https://doi.org/10.3390/w15051002
APA StyleLiu, Q., Xue, Y., Ma, D., & Li, Q. (2023). Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width. Water, 15(5), 1002. https://doi.org/10.3390/w15051002