Analysis of the Effect of the Use of Food Waste Disposers on Wastewater Treatment Plant and Greenhouse Gas Emission Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Wastewater from Discharged Food Waste Disposer
2.2. Analysis of the Impact on the Operation of WWTP
2.3. Analysis of GHG Emissions
3. Results
3.1. Effluent Characteristics Analysis of Food Waste Disposer
3.2. Analysis of the Impact on the Operation of WWTP
3.3. Analysis of GHG Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Fraia, S.; Massarotti, N.; Vanoli, L. A novel energy assessment of urban wastewater treatment plants. Energy Convers. Manag. 2018, 163, 304–313. [Google Scholar] [CrossRef]
- Roots, P.; Sabba, F.; Rosenthal, A.F.; Wang, Y.; Yuan, Q.; Rieger, L.; Yang, F.; Kozak, J.A.; Zhang, H.; Wells, G.F. Integrated shortcut nitrogen and biological phosphorus removal from mainstream wastewater: Process operation and modeling. Environ. Sci. Water Res. Technol. 2020, 6, 566–580. [Google Scholar] [CrossRef]
- Silvestre, G.; Fernández, B.; Bonmatí, A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Convers. Manag. 2015, 101, 255–262. [Google Scholar] [CrossRef]
- De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresour. Technol. 2016, 218, 1237–1245. [Google Scholar] [CrossRef]
- Wu, N.; Moreira, C.; Zhang, Y.; Doan, N.; Yang, S.; Phlips, E.; Svoronos, S.; Pullammanappallil, P. Techno-Economic Analysis of Biogas Production from Microalgae through Anaerobic Digestion. In Anaerobic Digestion; Banu, J.R., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Pellera, F.; Gidarakos, E. Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: Evaluation of mono-digestion and co-digestion systems. Waste Manag. 2017, 68, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.Q.; Yang, S.S.; Xiang, W.S.; Wang, X.J.; Ren, N.Q. Minimization of excess sludge production by in-situ activated sludge treatment processes—A comprehensive review. Biotechnol. Adv. 2013, 31, 1386–1396. [Google Scholar] [CrossRef]
- Milbrandt, A.; Seiple, T.; Heimiller, D.; Skaggs, R.; Coleman, A. Wet waste-to-energy resources in the United States. Resour. Conserv. Recycl. 2018, 137, 32–47. [Google Scholar] [CrossRef]
- Lee, U.; Han, J.; Wang, M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 2017, 166, 335–342. [Google Scholar] [CrossRef]
- Thota-Radhakrishnan, A.; van Lier, J.; Clemens, F. Rheological characterisation of concentrated domestic slurry. Water Res. 2014, 141, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Moñino, P.A. A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology. Waste Manag. 2017, 62, 274–289. [Google Scholar] [CrossRef]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions. Resources 2019, 8, 91. [Google Scholar] [CrossRef]
- Zan, F.; Dai, J.; Hong, Y.; Wong, M.; Jiang, F.; Chen, G. The characteristics of household food waste in Hong Kong and their implications for wastewater quality and energy recovery. Waste Management 2018, 74, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Iacovidou, E.; Ohandja, D.G.; Voulvoulis, N. Food waste disposer units in UK households: The need for policy intervention. Sci. Total Environ. 2012, 423, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bernstad Saraiva, A.; Davidsson, A.; Bissmont, M. Lifecycle assessment of a system for food waste disposers to tank–A full-scale system evaluation. Waste Manag. 2016, 54, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, A.; El-Fadel, M. Effect of a food waste disposer policy on solid waste and wastewater management with economic implications of environmental externalities. Waste Manag. 2017, 69, 455–462. [Google Scholar] [CrossRef]
- Ju, M.S.; Bae. S.J.; Lee, D.H.; You, K.Y. Feasibility Study on the Introduction of Food Waste Disposer System in Korea by Assessment of the Cost and Environmental Impact. Soeul Stud. 2012, 13, 263–274. [Google Scholar]
- Lin, H.; Wang, Y.; van Lierop, L.; Zamalloa, C.; Furlong, C.; Keleman, M.; Hu, B. Study of food waste degradation in a simulated septic tank. Waste Manag. Res. 2019, 37, 1199–1206. [Google Scholar] [CrossRef]
- Sven, L.; Gregory, M.P. Life cycle assessment of food waste management options. J. Clean. Prod. 2005, 13, 275–286. [Google Scholar]
- Marashlian, N.; El-Fadel, M. The effect of food waste disposers on municipal waste and wastewater management. Waste Manag. Res. 2005, 23, 20–31. [Google Scholar] [CrossRef]
- Tomas, P. The effects of food waste disposers on the wastewater system: A practical study. Water Environ. J. 2011, 25, 250–256. [Google Scholar] [CrossRef]
- Choi, S.H.; Jeong, M.E.; Joo, K.Y.; Choi, Y.J.; Yoon, N.N.; Kwal, J.S.; Lee, H.J.; Kim, Y.R.; Jeon, D.Y. Study on Correlations between Total Organic Carbon and Organic Matter Indexes in Industrial Wastewater from Busan. J. Environ. Anal. Health Toxicol. 2020, 23, 1–8. [Google Scholar] [CrossRef]
- Dubber, D.; Gray, N.F. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J. Environ. Sci. Health 2010, 45, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment. National Survey on Wastes, 5th ed.; Ministry of Environment: Sejong City, Republic of Korea, 2016. [Google Scholar]
- Ministry of Environment. Sewer Statistics; Ministry of Environment: Sejong City, Republic of Korea, 2020. [Google Scholar]
- Ministry of Environment. A Study on the Operation Plan of Integrated Treatment Biogas Facilities Such as Wastewater Waste and the Effect of Pollution Load; Ministry of Environment: Sejong City, Republic of Korea, 2018. [Google Scholar]
- Ministry of Environment. Technical Guidebook for Integrated Treatment Biogasification Facility; Ministry of Environment: Sejong City, Republic of Korea, 2018. [Google Scholar]
- Kim, K.H.; Son, J.I.; Kwon, Y.H.; Lee, D.J.; Sin, S.K. Study on Air Pollutants Emission from Food Waste Co-incineration in Industrial Waste Incinerators. J. Korea Soc. Waste Manag. 2015, 32, 484–491. [Google Scholar] [CrossRef]
- Lee, J.P.; Kang, H.; Kim, C.Y.; Song, S.H.; Hyun, J.H. Characteristics of Food Wastes and Its Hydrolysis Conditions. New Renew. Energy 2017, 13, 36–44. [Google Scholar] [CrossRef]
- Ministry of Environment. National Waste Generation and Treatment Status; Ministry of Environment: Sejong City, Republic of Korea, 2019. [Google Scholar]
- Bolzonella, D.; Pavan, P.; Battistoni, P.; Cecchi, F. The under sink garbage grinder: A friendly technology for the environment. Environ. Technol. 2003, 24, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Sanders, W. Assessment of the Anaerobic Biodegradability of Macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Jeong, D.H.; Choi, I.C.; Cho, Y.S.; Ahn, K.H.; Chung, H.M.; Kwon, O.S.; Park, H.W.; Shin, H.S.; Hur, J. Characteristics of TOC in effluent discharge from public wastewater treatment works in Korea. J. Korean Soc. Water Wastewater 2014, 28, 657–668. [Google Scholar] [CrossRef]
- Lee, G.C.; Park, Y.J.; Kang, K.H.; Jung, M.O.; Ryu, D.H.; Jung, S.S.; Lee, W.T. Distribution of Total Organic Carbon and Correlations between Organic Matters of Sewage Treatment Plants. J. Korean Soc. Environ. Eng. 2023, 43, 367–376. [Google Scholar] [CrossRef]
- Local government association. The impact of household food waste disposers; Braille: London, UK, 2015; p. 6. [Google Scholar]
- National Clay Pipe Institute. Clay Pipe Engineering Manual; National Clay Pipe Institute: Elkhorn, WI, USA, 1995; pp. 29–32. [Google Scholar]
- Kim, Y.K.; Moon, Y.T.; Kim, J.Y.; Seo, I.S. Evaluation of COD solubilization and reduction of waste activated sludge by pH control. J. Korean Soc. Water Wastewater 2007, 21, 551–558. [Google Scholar]
- Nielsen, A.H.; Hvitved-Jacobsen, T.; Vollertsen, J. Recent findings on sinks for sulfide in gravity sewer networks. Water Sci. Technol. 2006, 54, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W. Effect of Food Waste Disposer on the Treatment Capacity of Public Wastewater Treatment Plant. Master’s Thesis, Seoul National University of Science and Technology, Suwon, Republic of Korea, 2014. [Google Scholar]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Yi, S.R.; Yoo, K.Y. Greenhouse Gas Emissions and Cost Analyses for the Treatment Options of Food Waste and Human Excrement. J. Environ. Protection 2014, 5, 597–607. [Google Scholar] [CrossRef]
- Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems. Bioresour. Technol. 2018, 248, 156–173. [Google Scholar] [CrossRef] [PubMed]
Category | Processed Sample | |
---|---|---|
Weight (g) | Ratio (%) | |
Vegetables | Kimchi (68), lettuce (34), onion (34), radish kimchi (17) | 30.6 |
Cereals | Rice (102) | 20.4 |
Fruits | Tomato (17), orange peel (42), apple core (42) | 20.2 |
Fish meat | Grilled pork belly (34), grilled fish (51) | 17 |
Leachate | Soybean paste stew (34) | 6.8 |
Etc. | Eggshell (17), banana peel (8) | 5 |
Total | 500 g | 100 |
Category | Contents |
---|---|
CH 4 Emissions | |
Emissions from wastewater treatment (tCH4) | |
BODIn | Concentration of influent(BOD5) (mg-BOD/L) |
BODout | Concentration of effluent(BOD5) (mg-BOD/L) |
BODsl | Concentration of Sludge(BOD5) (mg-BOD/L) |
Qin | Volume of influent (m3) |
Qout | Volume of effluent (m3) |
Qsl | Volume of sludge (m3) |
EF | Emission factor (kg CH4/kg-BOD) 0.48 |
R | Methane recovery (tCH4) |
N2O Emissions | |
Emissions: emissions from wastewater treatment (tN2O) | |
TNin | Concentration of influent (mg-T-N/L) |
TNout | Concentration of effluent (mg-T-N/L) |
TNsl | Concentration of Sludge (mg-T-N/L) |
EF | Emission factor (kg N2O-N/kg-T-N) 1.571 |
Category | Wash· Dehydration (1) | Type of FWD | |
---|---|---|---|
Grinding (2) | Microbial liquid fermentation (3) | ||
TS(%) | 1.15 | 5.9 | 1.07~5.75 |
VS/TS | 82 | 95 | 91~97.1 |
TOC (mg/L) | 1680 | 5000 | 3724~14,800 |
pH | 7.0 | 6.9 | 5.5~7.1 |
Category | Unit | Type | |||
---|---|---|---|---|---|
Wastewater | Wastewater + FWD | ||||
Parameters | Influent | Q | m3/day | 20,555,969 | 20,881,380 |
FW | ton/day | 0 | 12,564 | ||
Conc | mg-BOD/L | 167 | 251 | ||
mg-T-N/L | 41 | 43 | |||
Effluent | Q | m3/day | 19,630,950 | 19,941,718 | |
Conc | mg-BOD/L | 4 | 4 | ||
mg-T-N/L | 10 | 10 | |||
Sludge | Q | ton/day | 12,471 | 19,263 | |
Conc | mg-BOD/L | 38,473 | 36,855 | ||
mg-T-N/L | 4306 | 3312 | |||
EF-CH4 by Wastewater | kgCH4/kgBOD | 0.18452 | |||
EF-N2O by Wastewater | kgN2O/kgT-N | 0.00072 | |||
EF-GHG by Electric | kgCO2eq/kW | 0.454 | |||
EF-CH4 by Sludge | kgCH4/ton | 0.0097 | |||
EF-N2O by Sludge | kgN2O/ton | 0.90 | |||
Wastewater treatment | CH4 GAS | m3CH4 | 960,656 | 1,465,568 | |
CH4 emissions | tCH4 | −157 | −239 | ||
N2O emissions | tN2O | 4.7 | 5.0 | ||
GHG emissions | tCO2eq/day | −1854 | −3468 | ||
Electric energy consumption | Electric | KW/day | 8,718,673 | 13,800,886 | |
GHG emissions | tCO2eq/day | 3958 | 6266 | ||
Sludge disposal | CH4 emissions | tCH4 | 0.12 | 0.19 | |
N2O emissions | tN2O | 11.2 | 17.3 | ||
GHG emissions | tCO2eq/day | 3482 | 5379 | ||
Net-GHG emissions | tCO2eq/day | 5586 | 8176 | ||
Net-GHG emissions per ton of FW | kgCO2eq/t-FW | - | 206.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Phae, C. Analysis of the Effect of the Use of Food Waste Disposers on Wastewater Treatment Plant and Greenhouse Gas Emission Characteristics. Water 2023, 15, 940. https://doi.org/10.3390/w15050940
Kim D, Phae C. Analysis of the Effect of the Use of Food Waste Disposers on Wastewater Treatment Plant and Greenhouse Gas Emission Characteristics. Water. 2023; 15(5):940. https://doi.org/10.3390/w15050940
Chicago/Turabian StyleKim, Dowan, and Chaegun Phae. 2023. "Analysis of the Effect of the Use of Food Waste Disposers on Wastewater Treatment Plant and Greenhouse Gas Emission Characteristics" Water 15, no. 5: 940. https://doi.org/10.3390/w15050940
APA StyleKim, D., & Phae, C. (2023). Analysis of the Effect of the Use of Food Waste Disposers on Wastewater Treatment Plant and Greenhouse Gas Emission Characteristics. Water, 15(5), 940. https://doi.org/10.3390/w15050940