Stormwater Pond Evolution and Challenges in Measuring the Hydraulic Conductivity of Pond Sediments
Abstract
:1. Introduction
2. Methods
2.1. Location of Selected Stormwater Ponds and Background Information
2.2. Coring of Sediment in the Pond Bed
2.3. Sediment Core Permeability Cell Design
2.4. Grain Size Analyses
2.5. Custom-Designed Falling Head Manometer for In Situ Field Usage
2.6. Hydraulic Conductivity Calculations and Data Analysis
3. Results
3.1. Hydraulic Conductivity Data Compared to Grain Size Data
3.2. Field Measurement of Hydraulic Conductivity Using a Driven Aluminum Tube Standpipe and Modified Head
3.3. Grain Size and Hydraulic Conductivity Comparison between the Two Ponds
4. Discussion
4.1. Grain Size, Hydraulic Conductivity, and Pond Age
4.2. Advantages and Disadvantages of Custom Permeability Cell
4.3. Advantages and Disadvantages of In Situ Falling Head Manometer Design
4.4. Evolution of Stormwater Ponds in Time
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberry, D.O.; LaBaugh, J.W. Field Techniques for Estimating Water Fluxes between Surface Water and Groundwater. In U.S. Geological Survey Techniques and Methods 4-D2; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Rosenberry, D.O.; Toran, L.; Nyquist, J.E. Effect of surficial disturbance on exchange between groundwater and surface water in nearshore margins. Water Resour. Res. 2010, 46, W06518. [Google Scholar] [CrossRef]
- Karan, S.; Kidmose, J.; Engesgaard, P.; Nilsson, B.; Frandsen, M.; Ommen, D.A.O.; Flindt, M.R.; Andersen, F.Ø.; Pedersen, O. Role of a groundwater–lake interface in controlling seepage of water and nitrate. J. Hydrol. 2014, 517, 791–802. [Google Scholar] [CrossRef]
- Baveye, P.; Vandevivere, P.; Hoyle, B.L.; DeLeo, P.C.; de Lozada, D.S. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit. Rev. Environ. Sci. Technol. 1998, 28, 123–191. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.S.; Pfannkuch, H.O. The distribution of seepage within lakebeds. J. Res. U.S. Geol. Surv. 1975, 3, 505–512. [Google Scholar]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater-surface water interactions: A review. Hydrol. Earth Syst. Sci. 2006, 10, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Rosenberry, D.O.; Lewandowski, J.; Meinikmann, K.; Nützmann, G. Groundwater—The disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology. Hydrol. Process. 2015, 29, 2895–2921. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Edgar, W.W.; Maršálek, J. Comprehensive stormwater pond monitoring. Water Sci. Technol. 1994, 29, 337–345. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Duque, C.; Lee, D.R. History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1—Freshwater settings. Earth-Sci. Rev. 2020, 204, 103167. [Google Scholar] [CrossRef]
- Lee, D.R.; Cherry, J.A. A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geol. Educ. 1979, 27, 6–10. [Google Scholar] [CrossRef]
- Chen, X. Measurement of streambed hydraulic conductivity and its anisotropy. Environ. Geol. 2000, 39, 1317–1324. [Google Scholar] [CrossRef]
- Landon, M.K.; Rus, D.L.; Edwin Harvey, F.E. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Groundwater 2001, 39, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Baxter, C.; Hauer, F.; Woessner, W. Measuring groundwater–stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity. Trans. Am. Fish. Soc. 2003, 132, 493–502. [Google Scholar] [CrossRef]
- Seeberg-Elverfeldt, J.; Schlüter, M.; Feseker, T.; Kölling, M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol. Oceanogr. Methods 2005, 3, 361–371. [Google Scholar] [CrossRef]
- Robinson, M.; Gallagher, D.; Reay, W. Field observations of tidal and seasonal variations in ground water discharge to tidal estuarine surface water. Groundw. Monit. Remediat. 1998, 18, 83–92. [Google Scholar] [CrossRef]
- Vaasma, T. Grain-size analysis of lacustrine sediments: A comparison of pre-treatment methods. Est. J. Ecol. 2008, 57, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Erickson, A.J.; Taguchi, V.J.; Gulliver, J.S. The challenge of maintaining stormwater control measures: A synthesis of recent research and practitioner experience. Sustainability 2018, 10, 3666. [Google Scholar] [CrossRef] [Green Version]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44, W00D10. [Google Scholar] [CrossRef]
- Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 2006, 42, W12202. [Google Scholar] [CrossRef] [Green Version]
- Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45, W00D23. [Google Scholar] [CrossRef] [Green Version]
- Blume, T.; Krause, S.; Meinikmann, K.; Lewandowski, J. Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing. Water Resour. Res. 2013, 49, 7929–7944. [Google Scholar] [CrossRef] [Green Version]
- Binley, A.; Ullah, S.; Heathwaite, A.L.; Heppell, C.; Byrne, P.; Lansdown, K.; Trimmer, M.; Zhang, H. Revealing the spatial variability of water fluxes at the groundwater-surface water interface. Water Resour. Res. 2013, 49, 3978–3992. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missimer, T. The geology of South Florida: A summary. In Environments of South Florida, Present and Past II; Gleason, P.J., Ed.; Miami Geological Society: Coral Gables, FL, USA, 1984; pp. 385–404. [Google Scholar]
- Nagy, L.; Tabácks, A.; Huszák, T.; Mahler, A.; Varga, G. Comparison of permeability testing methods. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 399–402. [Google Scholar]
- Wilson, M.A.; Hoff, W.D.; Brown, R.J.E.; Carter, M.A. A falling head permeameter for the measurement of the hydraulic conductivity of granular solids. Rev. Sci. Instrum. 2000, 71, 3942–3946. [Google Scholar] [CrossRef]
- Standard D5856; Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter. American Standard for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2015. [CrossRef]
- Gefell, M.J.; Larue, M.; Russell, M.K. Vertical hydraulic conductivity measurement by gravity drainage. Groundwater 2019, 57, 511–516. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Rosas, J.; Lopez, O.; Missimer, T.M.; Coulibaly, K.M.; Dehwah, A.H.A.; Sesler, K.; Lujan, L.R.; Mantilla, D. Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater 2014, 52, 399–413. [Google Scholar] [CrossRef]
- Tecklenburg, C.; Blume, T. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge. Hydrol. Earth Syst. Sci. 2017, 21, 5043–5063. [Google Scholar] [CrossRef] [Green Version]
- Deshesne, M.; Barraud, S.; Bardin, J.-P. Indicators for hydraulic and pollution retention assessment of stormwater infiltration basins. J. Environ. Manag. 2004, 71, 371–380. [Google Scholar] [CrossRef]
- Belkhatir, M.; Schanz, T.; Arab, A.; Della, N.; Kadri, A. Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech. Test. J. 2014, 37, 922–931. [Google Scholar] [CrossRef]
- Likens, G.E.; Davis, M.B. Post-glacial history of Mirror Lake and its watershed in New Hampshire, USA: An initial report. Int. Ver. Für Theor. Und Angew. Limnol. Verh. 1975, 19, 982–993. [Google Scholar]
- Wetzel, R.G. Role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. 1979, 13, 145–161. [Google Scholar]
- Chen, X. Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska. J. Hydrol. 2007, 333, 554–568. [Google Scholar] [CrossRef]
- Burnette, M.C.; Genereux, D.P.; Birgand, F. In-situ falling-head test for hydraulic conductivity: Evaluation in layered sediments of an analysis derived for homogenous sediments. J. Hydrol. 2016, 539, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, A.I.; Marsalek, J.; Ellis, J.B.; Urbonas, B. Stormwater detention & BMPs. J. Hydraul. Res. 1996, 34, 799–813. [Google Scholar]
- Walker, D.J. Modelling residence time in stormwater ponds. Ecol. Eng. 1998, 10, 247–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canfield, D.C.; Thomas, S.; Rotz, R.R.; Missimer, T.M. Stormwater Pond Evolution and Challenges in Measuring the Hydraulic Conductivity of Pond Sediments. Water 2023, 15, 1122. https://doi.org/10.3390/w15061122
Canfield DC, Thomas S, Rotz RR, Missimer TM. Stormwater Pond Evolution and Challenges in Measuring the Hydraulic Conductivity of Pond Sediments. Water. 2023; 15(6):1122. https://doi.org/10.3390/w15061122
Chicago/Turabian StyleCanfield, Daniel C., Serge Thomas, Rachel R. Rotz, and Thomas M. Missimer. 2023. "Stormwater Pond Evolution and Challenges in Measuring the Hydraulic Conductivity of Pond Sediments" Water 15, no. 6: 1122. https://doi.org/10.3390/w15061122
APA StyleCanfield, D. C., Thomas, S., Rotz, R. R., & Missimer, T. M. (2023). Stormwater Pond Evolution and Challenges in Measuring the Hydraulic Conductivity of Pond Sediments. Water, 15(6), 1122. https://doi.org/10.3390/w15061122