Can Heat-Activated Peroxymonosulfate Be Used as a Pretreatment to Mitigate Fouling for Membrane Distillation: Performance of Individual Organics?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membranes and Reagents
2.2. Experimental Procedures
2.2.1. Heat-Activated PMS Preoxidation
2.2.2. DCMD Process
2.3. Analytical Methods
3. Results and Discussion
3.1. Effect of Heat/PMS on Organic Degradation
3.2. Impact of Heat/PMS Pretreatment on MD Performance
3.3. Characterization of Fouled MD Membranes
3.3.1. SEM Analysis
3.3.2. ATR-FTIR Analysis
3.3.3. Hydrophobicity Analysis
4. Conclusions
- NOM was notably degraded after 60 min of heat/PMS pretreatment using a PMS dose of 0.4 g L−1 and a reaction temperature of 80 °C. The DOC removal results indicate that the amount of NOM was considerably reduced because some of the NOM was partially mineralized. The greater removal of UV254 compared with DOC indicates that some NOM decomposed to small molecules, whereas the fluorescent compounds HA and BSA were completely degraded.
- For pure NOM solutions that did not undergo heat/PMS pretreatment, pure HA caused the most severe membrane fouling, followed by pure BSA; however, there was little adherence of pure SA to the membrane.
- When PMS was added for pretreatment, the oxidized NOM solutions caused a more severe flux decline and a higher fouling degree, despite the reduction in the NOM concentration, especially for oxidized HA and BSA. On one hand, the oxidized NOM had a lower MW, which made it easier to adsorb on the membrane. On the other hand, the introduction of the PMS oxidant and quencher increased the ionic strength of the feed solution, which reduced the permeability in the MD process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Choudhury, M.R.; Anwar, N.; Jassby, D.; Rahaman, M.S. Fouling and wetting in the membrane distillation driven wastewater reclamation process—A review. Adv. Colloid Interface Sci. 2019, 269, 370–399. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lv, J.; Li, Z.; Bian, W.; Li, J.; Liu, S. A numerical simulation of membrane distillation treatment of mine drainage by computational fluid dynamics. Water 2020, 12, 3403. [Google Scholar] [CrossRef]
- Costa, F.C.; Fortes, A.R.; Braga, C.D.; Arcanjo, G.S.; Grossi, L.; Mounteer, A.H.; Moravia, W.G.; Koch, K.; Drewes, J.E.; Ricci, B.C. Assessment of a hybrid UV-LED-membrane distillation process: Focus on fouling mitigation. Sep. Purif. Technol. 2022, 292, 121003. [Google Scholar] [CrossRef]
- Chafidz, A.; Al-Zahrani, S.; Al-Otaibi, M.N.; Hoong, C.F.; Lai, T.F.; Prabu, M. Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination 2014, 345, 36–49. [Google Scholar] [CrossRef]
- Jeong, S.; Song, K.G.; Kim, J.; Shin, J.; Maeng, S.K.; Park, J. Feasibility of membrane distillation process for potable water reuse: A barrier for dissolved organic matters and pharmaceuticals. J. Hazard. Mater. 2021, 409, 124499. [Google Scholar] [CrossRef]
- Lu, H.; Shi, W.; Zhao, F.; Zhang, W.; Zhang, P.; Zhao, C.; Yu, G. High-Yield and Low-Cost Solar Water Purification via Hydrogel-Based Membrane Distillation. Adv. Funct. Mater. 2021, 31, 2101036. [Google Scholar] [CrossRef]
- Hou, D.; Dai, G.; Wang, J.; Fan, H.; Luan, Z.; Fu, C. Boron removal and desalination from seawater by PVDF flat-sheet membrane through direct contact membrane distillation. Desalination 2013, 326, 115–124. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H.K. Fouling and its control in membrane distillation—A review. J. Membr. Sci. 2015, 475, 215–244. [Google Scholar] [CrossRef]
- Rezaei, M.; Warsinger, D.M.; Duke, M.C.; Matsuura, T.; Samhaber, W.M. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef]
- Han, M.; Dong, T.; Hou, D.; Yao, J.; Han, L. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation. J. Membr. Sci. 2020, 607, 118078. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Liu, L.; Yao, J.; Han, L. Beneficial CNT intermediate layer for membrane fluorination toward robust superhydrophobicity and wetting resistance in membrane distillation. ACS Appl. Mater. Interfaces 2020, 12, 20942–20954. [Google Scholar] [CrossRef] [PubMed]
- Kharraz, J.A.; An, A.K. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance. J. Membr. Sci. 2020, 595, 117596. [Google Scholar] [CrossRef]
- Wong, P.W.; Guo, J.; Khanzada, N.K.; Yim, V.M.W.; Kyoungjin, A. In-situ 3D fouling visualization of membrane distillation treating industrial textile wastewater by optical coherence tomography imaging. Water Res. 2021, 205, 117668. [Google Scholar] [CrossRef]
- Chew, N.G.P.; Zhao, S.; Loh, C.H.; Permogorov, N.; Wang, R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J. Membr. Sci. 2017, 528, 126–134. [Google Scholar] [CrossRef]
- Chen, C.; Dai, Z.; Li, Y.; Zeng, Q.; Yu, Y.; Wang, X.; Zhang, C.; Han, L. Fouling-free membrane stripping for ammonia recovery from real biogas slurry. Water Res. 2023, 229, 119453. [Google Scholar] [CrossRef]
- Xiang, W.; Zhou, B.; Li, Y.; Yang, J.; Hu, B.; Yang, C.; Li, X.; He, D.; Han, L. Fouling behavior of anion-exchange membrane during electrodialysis of biogas slurry: Correlation to applied current. J. Water Process. Eng. 2022, 50, 103249. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Zhu, L. Fouling mechanism of hydrophobic polytetrafluoroethylene (PTFE) membrane by differently charged organics during direct contact membrane distillation (DCMD) process: An especial interest in the feed properties. J. Membr. Sci. 2018, 548, 125–135. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Chew, J.W.; Krantz, W.B. Effect of humic-acid fouling on membrane distillation. J. Membr. Sci. 2016, 504, 263–273. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Kim, S.-J.; Kim, I.S.; Vigneswaran, S. Organic fouling behavior in direct contact membrane distillation. Desalination 2014, 347, 230–239. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, W.; Zhang, X.; Liu, Q.; Li, J.; Ma, J.; Zhang, T. Membrane scaling and wetting in membrane distillation: Mitigation roles played by humic substances. Environ. Sci. Technol. 2022, 56, 3258–3266. [Google Scholar] [CrossRef] [PubMed]
- Sinha Ray, S.; Singh Bakshi, H.; Dangayach, R.; Singh, R.; Deb, C.K.; Ganesapillai, M.; Chen, S.-S.; Purkait, M.K. Recent developments in nanomaterials-modified membranes for improved membrane distillation performance. Membranes 2020, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Ding, M.; Ao, W.; Xu, H.; Chen, W.; Tao, L.; Shen, Z.; Liu, H.; Lu, C.; Xie, Z. Facile construction of dual heterojunction CoO@ TiO2/MXene hybrid with efficient and stable catalytic activity for phenol degradation with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 2021, 420, 126686. [Google Scholar] [CrossRef]
- Luo, Y.; Su, R.; Yao, H.; Zhang, A.; Xiang, S.; Huang, L. Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Environ. Sci. Pollut. Res. 2021, 28, 62572–62582. [Google Scholar] [CrossRef]
- Asif, M.B.; Fida, Z.; Tufail, A.; van de Merwe, J.P.; Leusch, F.D.; Pramanik, B.K.; Price, W.E.; Hai, F.I. Persulfate oxidation-assisted membrane distillation process for micropollutant degradation and membrane fouling control. Sep. Purif. Technol. 2019, 222, 321–331. [Google Scholar] [CrossRef]
- Asif, M.B.; Ji, B.; Maqbool, T.; Zhang, Z. Algogenic organic matter fouling alleviation in membrane distillation by peroxymonosulfate (PMS): Role of PMS concentration and activation temperature. Desalination 2021, 516, 115225. [Google Scholar] [CrossRef]
- Han, M.; Zhao, R.; Shi, J.; Li, X.; He, D.; Liu, L.; Han, L. Membrane Distillation Hybrid Peroxydisulfate Activation toward Mitigating the Membrane Wetting by Sodium Dodecyl Sulfate. Membranes 2022, 12, 164. [Google Scholar] [CrossRef]
- Ding, M.; Xu, H.; Yao, C.; Chen, W.; Song, N.; Zhang, Q.; Lin, T.; Xie, Z. Understanding the membrane fouling control process at molecular level in the heated persulfate activation-membrane distillation hybrid system. Water Res. 2022, 229, 119465. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, H.; Ding, A.; Zhu, X.; Tang, X.; Gan, Z.; Xing, J.; Wu, D.; Li, G. Application of Fe (II)/peroxymonosulfate for improving ultrafiltration membrane performance in surface water treatment: Comparison with coagulation and ozonation. Water Res. 2017, 124, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wu, C.; Yu, H.; Gao, S.; Li, G.; Cui, F.; Qu, F. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liang, H.; Bai, L.; Huang, K.; Xie, B.; Xu, D.; Wang, J.; Li, G.; Tang, X. Application of heat-activated peroxydisulfate pre-oxidation for degrading contaminants and mitigating ultrafiltration membrane fouling in the natural surface water treatment. Water Res. 2020, 179, 115905. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, H.; Ding, A.; Tang, X.; Liu, B.; Zhu, X.; Gan, Z.; Wu, D.; Li, G. Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: Control of natural organic matter fouling and degradation of atrazine. Water Res. 2017, 113, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Leenheer, J.A.; Croué, J.-P. Peer reviewed: Characterizing aquatic dissolved organic matter. Environ. Sci. Technol. 2003, 37, 18A–26A. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.-H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Liang, H.; Qu, F.; Yu, H.; Li, K.; Li, G. Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. J. Membr. Sci. 2014, 464, 33–42. [Google Scholar] [CrossRef]
- Yang, T.; Xiong, H.; Liu, F.; Yang, Q.; Xu, B.; Zhan, C. Effect of UV/TiO2 pretreatment on fouling alleviation and mechanisms of fouling development in a cross-flow filtration process using a ceramic UF membrane. Chem. Eng. J. 2019, 358, 1583–1593. [Google Scholar] [CrossRef]
- Hou, D.; Lin, D.; Zhao, C.; Wang, J.; Fu, C. Control of protein (BSA) fouling by ultrasonic irradiation during membrane distillation process. Sep. Purif. Technol. 2017, 175, 287–297. [Google Scholar] [CrossRef]
- Khayet, M.; Mengual, J. Effect of salt concentration during the treatment of humic acid solutions by membrane distillation. Desalination 2004, 168, 373–381. [Google Scholar] [CrossRef]
- Boubakri, A.; Hafiane, A.; Bouguecha, S.A.T. Direct contact membrane distillation: Capability to desalt raw water. Arab. J. Chem. 2017, 10, S3475–S3481. [Google Scholar] [CrossRef] [Green Version]
- Azaïs, A.; Mendret, J.; Petit, E.; Brosillon, S. Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration. Water Res. 2016, 104, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Ding, C.; Fu, C.; Wang, D.; Zhao, C.; Wang, J. Electrospun nanofibrous omniphobic membrane for anti-surfactant-wetting membrane distillation desalination. Desalination 2019, 468, 114068. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Q.; Song, N.; Chen, J.; Ding, M.; Mei, C.; Zong, Y.; Chen, X.; Gao, L. Membrane distillation by novel Janus-enhanced membrane featuring hydrophobic-hydrophilic dual-surface for freshwater recovery. Sep. Purif. Technol. 2022, 302, 122036. [Google Scholar] [CrossRef]
- Rehman, W.-U.; Muhammad, A.; Younas, M.; Wu, C.; Hu, Y.; Li, J. Effect of membrane wetting on the performance of PVDF and PTFE membranes in the concentration of pomegranate juice through osmotic distillation. J. Membr. Sci. 2019, 584, 66–78. [Google Scholar] [CrossRef]
- Shin, Y.-U.; Yun, E.-T.; Kim, J.; Lee, H.; Hong, S.; Lee, J. Electrochemical oxidation–membrane distillation hybrid process: Utilizing electric resistance heating for distillation and membrane defouling through thermal activation of anodically formed persulfate. Environ. Sci. Technol. 2020, 54, 1867–1877. [Google Scholar] [CrossRef]
Feed Solutions | Organics | Cations | References |
---|---|---|---|
Secondary effluent + a mixture of micropollutants | NOM and micropollutants (amitriptyline, trimethoprim, etc.) | Zn2+, Cu2+, Ca2+, Fe3+, K+, etc. | Asif et al., 2019 [27] |
Surface water | AOM | Ca2+, Mg2+, Al3+, etc. | Asif et al., 2021 [28] |
SDS + NaCl | SDS | Na+ | Han et al., 2022 [29] |
Secondary effluent/surface water | NOM | Ca2+, Mg2+, Fe3+, K+, etc. | Ding et al., 2022 [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, L.; Han, L.; Mei, C.; Xu, C.; Yuan, R.; Geng, C. Can Heat-Activated Peroxymonosulfate Be Used as a Pretreatment to Mitigate Fouling for Membrane Distillation: Performance of Individual Organics? Water 2023, 15, 1148. https://doi.org/10.3390/w15061148
Liu M, Zhang L, Han L, Mei C, Xu C, Yuan R, Geng C. Can Heat-Activated Peroxymonosulfate Be Used as a Pretreatment to Mitigate Fouling for Membrane Distillation: Performance of Individual Organics? Water. 2023; 15(6):1148. https://doi.org/10.3390/w15061148
Chicago/Turabian StyleLiu, Mingxiang, Lei Zhang, Le Han, Caihua Mei, Changwen Xu, Rui Yuan, and Chunxia Geng. 2023. "Can Heat-Activated Peroxymonosulfate Be Used as a Pretreatment to Mitigate Fouling for Membrane Distillation: Performance of Individual Organics?" Water 15, no. 6: 1148. https://doi.org/10.3390/w15061148
APA StyleLiu, M., Zhang, L., Han, L., Mei, C., Xu, C., Yuan, R., & Geng, C. (2023). Can Heat-Activated Peroxymonosulfate Be Used as a Pretreatment to Mitigate Fouling for Membrane Distillation: Performance of Individual Organics? Water, 15(6), 1148. https://doi.org/10.3390/w15061148