Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example
Abstract
:1. Introduction
2. Overview of the Study Area and Data
2.1. Overview of the Study Area
2.2. Data
3. Materials and Methods
3.1. Water Balance Method
- (1)
- Energy balance method using the Bowen ratio
- (2)
- Water balance method
3.2. Water Table Fluctuation Method (WTF)
3.3. Data Preprocessing and Model Evaluation
3.3.1. Data Preprocessing
3.3.2. Model Validation
4. Results and Analysis
4.1. Meteorological Conditions and Observation Data
4.1.1. Meteorological Conditions
4.1.2. Distribution of the Haloxylon ammodendron Root System
4.1.3. Soil Water Capillarity Support
4.1.4. Groundwater Depth Fluctuation
4.2. β Value Exclusion Domain
4.3. Energy Balance and Evapotranspiration
4.3.1. Energy Composition and Proportions
4.3.2. Evapotranspiration
4.4. Groundwater Evapotranspiration
5. Discussion
5.1. Error Analysis
5.2. Uncertainty Analysis
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.Y.; Syed, S.; Hina, S.; Temesgen, G.A.; Omer, A. Projected Changes in Socioeconomic Exposure to Heatwaves in South Asia Under Changing Climate. Earth’s Future 2022, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Ullah, I.; Gahigi, A.; Mumo, R.; Ayugi, B. Recent Observed Changes in Extreme High-Temperature Events and Associated Meteorological Conditions over Africa. Int. J. Climatol. 2021, 42, 4522–4537. [Google Scholar] [CrossRef]
- Zin, M.M.S.; Ullah, I.; Syed, S.; Zhi, X.F.; Azam, K.; Rasool, G. Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD. Climate 2021, 9, 35. [Google Scholar] [CrossRef]
- Zin, M.M.S.; Ullah, I.; Saleem, F.; Zhi, X.F.; Syed, S.; Azam, K. Interdecadal Variability in Myanmar Rainfall in the Monsoon Season (May–October) Using Eigen Methods. Water 2021, 13, 729. [Google Scholar] [CrossRef]
- Zin, M.M.S.; Zhi, X.F.; Ullah, I.; Azam, K.; Ngoma, H.; Saleem, F.; Xing, Y.; Iyakaremye, V.; Syed, S.; Hina, S.; et al. Recent variability of sub-seasonal monsoon precipitation and its potential drivers in Myanmar using in-situ observation during 1981–2020. Int. J. Climatol. 2021, 42, 3341–3359. [Google Scholar] [CrossRef]
- Yin, X.W.; Feng, Q.; Zheng, X.J.; Zhu, M.; Wu, X.; Guo, Y.; Wu, M.; Li, Y. Spatio-temporal dynamics and eco-hydrological controls of water and salt migration within and among different land uses in an oasis-desert system. Sci. Total Environ. 2021, 772, 145572. [Google Scholar] [CrossRef]
- Yin, X.W.; Feng, Q.; Li, Y.; Deo, R.C.; Liu, W.; Zhu, M.; Zheng, X.J.; Liu, R. An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems. Sci. Total Environ. 2022, 806, 150599. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Ashraf, M.; ZiaulHaq. Effect of shallow groundwater table on crop water requirements and crop yields. Agric. Water Manag. 2005, 76, 24–35. [Google Scholar] [CrossRef]
- Soylu, M.E.; Kucharik, C.J.; Loheide, S.P., II. Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem-variably saturated soil water flow model. Agric. Forest Meteorol. 2014, 189–190, 198–210. [Google Scholar] [CrossRef]
- Xu, G.Q.; Li, Y. Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture. Funct. Plant Biol. 2008, 35, 1234–1242. [Google Scholar] [CrossRef]
- Ma, X.D.; Fan, L.M.; Yan, G.; Li, W.L. Vegetation responses to groundwater level change in mining area. J. China Coal Soc. 2017, 42, 44–49. (In Chinese) [Google Scholar] [CrossRef]
- Lowry, C.S.; Loheide, S.P., II; Moore, C.E.; Lundquist, J.D. Groundwater controls on vegetation composition and patterning in mountain meadows. Water Resour. Res. 2011, 47, 896–898. [Google Scholar] [CrossRef]
- Zhou, H.F.; Wu, B.; Wang, Y.G.; Li, Y. Ecological achievement of Xinjiang production and construction corps and its problems and countermeasures. Bull. Chin. Acad. Sci. 2017, 22, 55–63. [Google Scholar]
- Zhao, R.M.; Hui, R.; Liu, L.C.; Xie, M.; An, L.Z. Effects of snowfall depth on soil physical-chemical properties and soil microbial biomass in moss-dominated crusts in the Gurbantunggut Desert, Northern China. Catena 2018, 169, 175–182. [Google Scholar] [CrossRef]
- Xie, J.B.; Liu, T. Characterization of spatial scaling relationships between vegetation pattern and topography at different directions in Gurbantunggut desert, China. Ecol. Complex. 2010, 7, 234–242. [Google Scholar] [CrossRef]
- Peng, M.W.; He, H.; Wang, Z.K.; Li, G.F.; Liu, X.H.; Pu, X.Z.; Zhuang, L. Responses and comprehensive evaluation of growth characteristics of ephemeral plants in the desert–oasis ecotone to soil types. J. Environ. Manag. 2022, 316, 115288. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.; Jiao, F.; Gong, H.; Lin, Z. Time-varying trends of vegetation change and their driving forces during 1981–2016 along the silk road economic belt. Catena 2020, 195, 104796. [Google Scholar] [CrossRef]
- Liu, B.; Guan, H.D.; Zhao, W.Z.; Yang, Y.T.; Li, S.B. Groundwater facilitated water-use efficiency along a gradient of groundwater depth in arid northwestern China. Agric. Forest Meteorol. 2017, 233, 235–241. [Google Scholar] [CrossRef]
- Chen, H.S.; Hu, K.; Nie, Y.P. Analysis of soil water movement inside a foot slope and a depression in a karst catchment. Sci. Rep. 2017, 7, 2544. [Google Scholar] [CrossRef]
- Sprenger, M.; Tetzlaff, D.; Soulsby, C. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone. Hydrol. Earth Syst. Sci. 2017, 21, 3839–3858. [Google Scholar] [CrossRef]
- Fan, J.L.; Oestergaard, K.T.; Guyot, A.; Lockington, D.A. Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. J. Hydrol. 2014, 519, 1120–1129. [Google Scholar] [CrossRef]
- Boyko, K.; Fernald, G.D.; Bawazir, A.S. Improving groundwater recharge estimates in alfalfa fields of New Mexico with actual evapotranspiration measurements. Agric. Water Manag. 2021, 244, 106532. [Google Scholar] [CrossRef]
- Wang, X.W.; Huo, Z.L.; Feng, S.Y.; Guo, P.; Guan, H.D. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics. J. Hydrol. 2016, 543, 501–509. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Pereira, L.S. Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise. Agric. Water Manag. 2015, 152, 222–232. [Google Scholar] [CrossRef]
- Babajimopoulos, C.; Panoras, A.; Georgoussis, H.; Arampatzis, G.; Hatzigiannakis, E.; Papamichail, D. Contribution to irrigation from shallow water table under field conditions. Agric. Water Manag. 2007, 92, 205–210. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, G.F.; Shao, M.A.; Yi, X.B.; Du, T. Performance of the White method for estimating groundwater evapotranspiration under conditions of deep and fluctuating groundwater. Hydrol. Process. 2016, 30, 106–118. [Google Scholar] [CrossRef]
- Wang, P.; Pozdniakov, S.P. A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations. Water Resour. Res. 2014, 50, 2276–2292. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Huo, Z.; Wang, F.; Shock, C.C. Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table. Agric. Water Manag. 2016, 171, 131–141. [Google Scholar] [CrossRef]
- Zhao, T.X.; Zhu, Y.; Ye, M.; Yang, J.Z.; Jia, B.; Mao, W.; Wu, J.W. A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements. Agric. Water Manag. 2022, 264, 107500. [Google Scholar] [CrossRef]
- Henn, B.; Painter, T.H.; Bormann, K.J.; McGurk, B.; Flint, A.L.; Flint, L.E.; White, V.; Lundquist, J.D. High-elevation evapotranspiration estimates during drought: Using streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance. Water Resour. Res. 2018, 54, 746–766. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Smith, L.; Qian, T.T.; Dai, A.G.; Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Yeh, P.J.F.; Famiglietti, J.S. Regional groundwater evapotranspiration in illinois. J. Hydrometeorol. 2009, 10, 464–478. [Google Scholar] [CrossRef]
- Cohen, D.; Person, M.; Daannen, R.; Locke, S.; Dahlstrom, D.; Zabielski, V.; Winter, T.C.; Rosenberry, D.O.; Wright, H.; Ito, E.; et al. Groundwater-supported evapotranspiration within glaciated watersheds under conditions of climate change. J. Hydrol. 2006, 320, 484–500. [Google Scholar] [CrossRef]
- Xu, X.; Sun, C.; Qu, Z.; Huang, Q.; Ramos, T.; Huang, G. Groundwater recharge and capillary rise in irrigated areas of the upper Yellow River basin assessed by an agro-hydrological model. Irrig. Drain. 2015, 64, 587–599. [Google Scholar] [CrossRef]
- Ayars, J.E.; Schoneman, R.A. Use of saline water from a shallow water table by cotton. Trans. ASAE 1986, 29, 1674–1678. [Google Scholar] [CrossRef]
- Soppe, R.W.O.; Ayars, J.E. Characterizing groundwater use by safflower using lysimeters. Agric. Water Manag. 2003, 60, 59–71. [Google Scholar] [CrossRef]
- Chen, Y.F.; Zhang, L.W.; Shi, W.; Ban, Y.; Liu, H.L.; Zhang, D.Y. Life history responses of spring-and autumn-germinated ephemeral plants to increased nitrogen and precipitation in the Gurbantunggut Desert. Sci. Total Environ. 2019, 659, 756–763. [Google Scholar] [CrossRef]
- Yue, W.; Wang, T.; Franz, T.E.; Chen, X. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area. Water Resour. Res. 2016, 52, 1948–1960. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Y.; Zhao, W.; Guo, L.; Liu, J.; Yang, Q. Inferring subsurface preferential flow features from a wavelet analysis of hydrological signals in the Shale Hills Catchment. Water Resour. Res. 2020, 56, e2019WR026668. [Google Scholar] [CrossRef]
- Martinez-de la Torre, A.; Miguez-Macho, G. Groundwater influence on soil moisture memory and land-atmosphere fluxes in the Iberian Peninsula. Hydrol. Earth Syst. Sci. 2019, 23, 4909–4932. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W. Guidelines for Predicting Crop Water Requirements; UNFAO: Rome, Italy, 1975. [Google Scholar]
- Holmes, J.W. Measuring evapotranspiration by hydrological methods. Agric. Water Manag. 1984, 13, 29–40. [Google Scholar] [CrossRef]
- Tilahun, K.; John, L. Evapotranspiration estimation using soil water balance, weather and crop data. In Evapotranspiration—Remote Sensing and Modeling; IntechOpen: Rijeka, Croatia, 2012; pp. 41–57. [Google Scholar] [CrossRef]
- Yi, L.H. Estimation of Groundwater Recharge Using Multiple Approaches: A Case Study in the Ordos Plateau. Master’s thesis, University of Geosciences, Beijing, China, 2011. (In Chinese). [Google Scholar]
- White, W.A. Method of Estimating Ground-Water Supplies Based on Discharge by Plants and Evaporation from Soil: Results of Investigations in Escalante Valley, Utah; Water Supply; U.S. Government Printing Office: Washington, DC, USA, 1932. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zhao, W.; Yang, Q.; Yang, R.; Liu, J. Quantification of soil water balance components based on continuous soil moisture measurement and Richards equation in an irrigated agricultural field of a desert oasis. Hydrol. Earth Syst. Sci. 2019, 23, 4685–4706. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Li, X.; Jin, M.; Zhou, N.; Huang, J.; Jiang, S.; Telesphore, H. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China. J. Hydrol. 2016, 538, 677–688. [Google Scholar] [CrossRef]
- Jorenush, M.H.; Sepaskhah, A.R. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and nonirrigated conditions. Agric. Water Manag. 2003, 61, 125–141. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Binning, P.; Kalma, J.D. A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour. Res. 2005, 41, W01008. [Google Scholar] [CrossRef]
- Perez, P.J.; Castellvi, F.; Ibanez, M.; Rosell, J.I. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. Forest Meteorol. 1999, 97, 141–150. [Google Scholar] [CrossRef]
- Zou, T.; Li, Y.; Xu, H.; Xu, G.Q. Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils. Ecol. Res. 2010, 25, 185–194. [Google Scholar] [CrossRef]
- Guo, X.Y.; Feng, Q.; Si, J.H.; Xi, H.Y.; Zhao, Y.; Deo, R.C. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. J. Hydrol. 2019, 579, 124212. [Google Scholar] [CrossRef]
- Wang, W.H.; Chen, Y.N.; Wang, W.R.; Zhu, C.G.; Chen, Y.P.; Liu, X.G.; Zhang, T.J. Assessing and delineation of groundwater recharge areas in coastal arid area southern Tunisia. J. Hydrol. 2023, 18, 128936. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Soc. Am. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Gao, X.; Mei, X.; Gu, F.; Hao, W.; Gong, D.; Li, H. Evapotranspiration partitioning and energy budget in a rainfed spring maize field on the Loess Plateau. China. Catena 2018, 166, 249–259. [Google Scholar] [CrossRef]
- Yin, L.; Hu, G.; Huang, J.; Wen, D.; Dong, J.; Wang, X.; Li, H. Groundwater recharge estimation in the Ordos Plateau, China: Comparison of methods. Hydrogeol. J. 2011, 19, 1563–1575. [Google Scholar] [CrossRef]
Land Cover | Gurbantunggut Desert | Northern Xinjiang | Absolute Gap | Relative Gap |
---|---|---|---|---|
Tree cover | 0.000,209 | 1.392,574 | 1.392,365 | 6663 |
Shrubland | 0.011,053 | 0.380,542 | 0.369,489 | 34 |
Grassland | 0.731,084 | 16.607,703 | 15.876,619 | 23 |
Cropland | 0.051,919 | 4.151,747 | 4.099,828 | 80 |
Built-up | 0.002,225 | 0.282,121 | 0.279,896 | 127 |
Bare/sparse vegetation | 9.004,974 | 19.013,854 | 10.00,888 | 2 |
Snow and ice | 0 | 0.309,646 | 0.309,646 | - |
Permanent water bodies | 0.013,885 | 0.468,068 | 0.454,183 | 34 |
Herbaceous wetland | 0.000,415 | 0.062,435 | 0.06,202 | 150 |
Moss and lichen | 0.000,012 | 1.777,639 | 1.777,627 | 148,137 |
Soil Depth (cm) | Soil Particle Size | Soil Texture | SBD | θr | θs | θc | θfc | θhc | α | n | Ks | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay (0~0.002 mm) | Silt (0.002~0.05) | Sand (0.05~2 mm) | |||||||||||
0~20 | 1.08 | 5.76 | 93.16 | Sand | 1.58 | 0.0465 | 0.3827 | 0.38 | 0.22 | 0.02 | 0.0376 | 3.1716 | 582.70 |
20~40 | 1.63 | 12.31 | 86.06 | 1.58 | 0.0390 | 0.3888 | 0.38 | 0.23 | 0.02 | 0.0435 | 2.2.48 | 208.71 | |
40~60 | 1.10 | 6.90 | 92.00 | 1.58 | 0.0452 | 0.3840 | 0.39 | 0.26 | 0.03 | 0.0386 | 2.9900 | 491.38 | |
60~80 | 1.21 | 7.07 | 91.72 | 1.53 | 0.0451 | 0.3840 | 0.39 | 0.26 | 0.03 | 0.0387 | 2.9415 | 470.20 | |
80~100 | 1.23 | 7.07 | 91.71 | 1.56 | 0.0451 | 0.3840 | 0.39 | 0.26 | 0.03 | 0.0387 | 2.9384 | 468.97 | |
100~150 | 1.23 | 8.79 | 89.88 | 1.50 | 0.0429 | 0.3857 | 0.41 | 0.29 | 0.03 | 0.0403 | 2.6814 | 359.66 | |
Average | 1.26 | 7.98 | 90.76 | 1.56 | 0.0440 | 0.3849 | 0.39 | 0.25 | 0.03 | 0.0376 | 3.1716 | 582.70 |
Soil Type | θs − θr | Depths Compensated | Sy |
---|---|---|---|
Sand | 0.391 | 0.35–0.36 | 0.47 |
Sandy loam | 0.345 | 0.31–0.32 | 0.38 |
Loam | 0.352 | 0.24–0.25 | 0.25 |
Silt loam | 0.383 | 0.18–0.19 | 0.19 |
Silt | 0.426 | 0.16–0.18 | 0.16 |
Type | β Value Exclusion Domain | 2015 | 2016 | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b (%) | a | b (%) | a | b (%) | a | b (%) | ||||
A | Rn − G > 0 | e > 0 | 1556 | 2.96 | 959 | 1.85 | 2041 | 3.97 | 370 | 1.2 | |
B | Rn − G > 0 | e < 0 | 2905 | 5.53 | 6277 | 12.09 | 1615 | 3.14 | 958 | 3.11 | |
C | Rn − G < 0 | e > 0 | 4586 | 8.73 | 3564 | 6.87 | 8473 | 16.48 | 4945 | 16.05 | |
D | Rn − G < 0 | e < 0 | 508 | 0.97 | 882 | 1.70 | 23 | 0.04 | 26 | 0.08 | |
Amounting to | 9555 | 18.18 | 11,682 | 22.50 | 12152 | 23.63 | 6656 | 21.6 |
Years | Phenological Period | Time Slot | Days | Energy Component (MJ· | Proportion of Energy Balance (%) | β | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
H | λET | Rn | G | H/Rn | λET/Rn | G/Rn | |||||
2015 | Early budding | 12 April–22 April | 11 | 22.01 | 68.85 | 98.13 | 7.27 | 22.43 | 70.16 | 7.41 | 4.97 |
Budding | 23 April–30 April | 8 | 18.81 | 67.70 | 94.36 | 7.85 | 19.93 | 71.75 | 8.32 | 1.90 | |
Assimilating branch growth | 1 May–14 May | 15 | 17.26 | 68.20 | 94.31 | 8.84 | 18.30 | 72.31 | 9.37 | 1.92 | |
Late summer dormancy | 15 May–24 September | 132 | 20.22 | 91.16 | 116.28 | 4.89 | 17.39 | 78.40 | 4.21 | 1.33 | |
Late shoot growth | 25 September–29 October | 25 | 8.31 | 48.31 | 52.59 | −4.03 | 15.80 | 91.86 | −7.66 | 2.1 | |
2016 | Early budding | 18 May–2 May | 15 | 21.51 | 68.04 | 94.68 | 5.13 | 22.72 | 71.86 | 5.42 | 4.15 |
Budding | 3 May–12 May | 10 | 17.36 | 68.90 | 91.76 | 5.50 | 18.92 | 75.09 | 5.99 | 2.01 | |
Assimilating branch growth | 13 May–22 May | 10 | 19.40 | 77.95 | 101.9 | 4.55 | 19.04 | 76.50 | 4.47 | 1.94 | |
Late summer dormancy | 23 May–10 October | 141 | 20.10 | 88.34 | 112.79 | 4.35 | 17.82 | 78.32 | 3.86 | 1.26 | |
Late shoot growth | 11 October–2 November | 23 | 15.14 | 37.02 | 45.17 | −6.99 | 33.52 | 81.96 | −15.47 | 3.69 |
Year | Phenological Period | Validation Indicators | |||
---|---|---|---|---|---|
R | RMAE | Bias | IOA | ||
2015 | Early budding | 0.9780 | 4.5706 | −0.15 | 0.9585 |
Budding | 0.9669 | 2.1989 | −0.11 | 0.9507 | |
Assimilating branch growth | 0.9718 | 4.5657 | −0.11 | 0.9548 | |
Late summer dormancy | 0.9771 | 2.7667 | −0.14 | 0.9831 | |
Late shoot growth | 0.9683 | 3.6789 | −0.11 | 0.9654 | |
2016 | Early budding | 0.9646 | 3.7134 | −0.12 | 0.9771 |
Budding | 0.9703 | 2.3849 | −0.12 | 0.9688 | |
Assimilating branch growth | 0.9713 | 2.4510 | −0.14 | 0.9719 | |
Late summer dormancy | 0.9654 | 3.2468 | −0.13 | 0.9570 | |
Late shoot growth | 0.9638 | 1.5931 | −0.11 | 0.9892 |
Year | Phenological Period | Time Slot | Days | P (mm) | ET0 (mm) | ETa (mm) | ΔS (mm) | ETg (mm) | ETg (WTF) (mm) |
---|---|---|---|---|---|---|---|---|---|
2015 | Early budding | 12 April–22 April | 10 | 14.0 | 49.11 | 11.53 | 43.82 | 41.35 | 44.1 |
Budding | 23 April–30 April | 8 | 0.0 | 45.81 | 8.97 | 37.92 | 46.89 | 49.4 | |
Assimilating branch growth | 1 May–14 May | 15 | 0.5 | 85.34 | 15.64 | 32.54 | 47.68 | 48.11 | |
Late summer dormancy | 15 May–24 September | 132 | 97.5 | 874.97 | 189.54 | −79.81 | 12.23 | 13.38 | |
Late shoot growth | 25 September–29 October | 25 | 13.0 | 71.78 | 16.71 | 23.81 | 27.52 | 27.09 | |
Total | 190 | 125 | 1127.02 | 242.38 | 58.28 | 175.67 | 182.08 | ||
2016 | Early budding | 18 May–2 May | 14 | 50.4 | 65.74 | 17.11 | 56.07 | 22.78 | 23.56 |
Budding | 3 May–12 May | 10 | 0.0 | 54.34 | 15.66 | 40.39 | 56.05 | 60.01 | |
Assimilating branch growth | 13 May–22 May | 10 | 13.6 | 55.36 | 17.02 | 41.51 | 44.93 | 45.27 | |
Late summer dormancy | 23 May–10 October | 141 | 97.6 | 849.69 | 190.90 | −76.82 | 16.48 | 18.77 | |
Late shoot growth | 11 October–2 November | 23 | 3.8 | 25.89 | 5.57 | 39.32 | 41.09 | 44.12 | |
Total | 198 | 165.47 | 1051.02 | 246.26 | 100.47 | 181.33 | 191.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, P.; Hu, S.-J. Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example. Water 2023, 15, 1210. https://doi.org/10.3390/w15061210
Jiao P, Hu S-J. Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example. Water. 2023; 15(6):1210. https://doi.org/10.3390/w15061210
Chicago/Turabian StyleJiao, Ping, and Shun-Jun Hu. 2023. "Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example" Water 15, no. 6: 1210. https://doi.org/10.3390/w15061210
APA StyleJiao, P., & Hu, S. -J. (2023). Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example. Water, 15(6), 1210. https://doi.org/10.3390/w15061210