Assessment of the Impact of Anthropogenic Evolution and Natural Processes on Shoreline Dynamics Using Multi-Temporal Satellite Images and Statistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of the Study Area
Marine Climate Analysis
2.2. Data Source
2.3. Methods
2.3.1. Geodatabase Development
2.3.2. Remote Sensing Image Processing
2.3.3. Image Enhancement and Visual Interpretation
2.3.4. Vegetation Detection
2.3.5. Water Detection
2.3.6. Tasselled Cap Transformation
2.3.7. Shoreline Extraction
2.3.8. Shoreline Preparation and Change Analysis
2.3.9. Casting Transects
2.3.10. Geometric Correction
2.3.11. Uncertainty Quantification
2.3.12. Change Rate Calculation
3. Results and Discussions
3.1. Change in Total Shoreline Length
3.1.1. Segment A
3.1.2. Segment B
3.1.3. Segment C
3.1.4. Segment D
3.1.5. Segment E
3.1.6. Segment F
3.1.7. Segment G
4. Ground Truth Validation
5. Discussion
5.1. Long-Term Shoreline Changes
5.2. Short-Term Shoreline Changes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duru, U. Shoreline change assessment using multi-temporal satellite images: A case study of Lake Sapanca, NW Turkey. Environ. Monit. Assess. 2017, 189, 385. [Google Scholar] [CrossRef] [PubMed]
- Selvan, S.C.; Kankara, R.S.; Prabhu, K.; Rajan, B. Shoreline change along Kerala, south-west coast of India, using geo-spatial techniques and field measurement. Nat. Hazards 2020, 100, 17–38. [Google Scholar] [CrossRef]
- Esmail, M.; Mahmod, W.E.; Fath, H. Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: Case study of Damietta coast, Egypt. Appl. Ocean Res. 2019, 82, 274–282. [Google Scholar] [CrossRef]
- Patel, K.; Jain, R.; Patel, A.N.; Kalubarme, M.H. Shoreline change monitoring for coastal zone management using multi-temporal Landsat data in Mahi River estuary, Gujarat State. Appl. Geomat. 2021, 13, 333–347. [Google Scholar] [CrossRef]
- Adu–Boahen, K.; Emmanuel, M.A.; Kwaku, K.K.; Osman, A. Socio-Economic Impact of Lake Bosomtwe Shoreline Changes on Catchment Residents in Ghana. Int. J. Sci. Res. Publ. 2014, 4, 1–7. [Google Scholar]
- Paterson, S.K.; O’Donnell, A.; Loomis, D.K.; Hom, P. The Social and Economic Effects of Shoreline Change: North Atlantic, South Atlantic, Gulf of Mexico, and Great Lakes Regional Overview. Available online: https://www.csc.noaa.gov/pub/socioeconomic/NSMS/FourRegionReport/1310484279-FourRegionSocioEconofShorelineChangeFinalReport.July.pdf (accessed on 27 November 2021).
- Moussa, M.; Baccar, L.; Ben Khemis, R. La lagune de Ghar El Melh: Diagnostic écologique et perspectives d’aménagement hydraulique. Rev. Des Sci. De L’eau/J. Water Sci. 2005, 18, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Guimarais, M.; Zúñiga-Ríos, A.; Cruz-Ramírez, C.; Chávez, V.; Odériz, I.; van Tussenbroek, B.; Silva, R. The Conservational State of Coastal Ecosystems on the Mexican Caribbean Coast: Environmental Guidelines for Their Management. Sustainability 2021, 13, 2738. [Google Scholar] [CrossRef]
- Nichols, C.R.; Zinnert, J.; Young, D.R. Degradation of Coastal Ecosystems: Causes, Impacts and Mitigation Efforts. In Tomorrow’s Coasts: Complex and Impermanent; Coastal Research Library: Cham, Switzerland, 2018; Volume 27, pp. 119–136. [Google Scholar] [CrossRef]
- Lewin, W.-C.; Mehner, T.; Ritterbusch, D.; Brämick, U. The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees. Hydrobiologia 2014, 724, 293–306. [Google Scholar] [CrossRef]
- Jangir, B.; Satyanarayana, A.N.V.; Swati, S.; Jayaram, C.; Chowdary, V.M.; Dadhwal, V.K. Delineation of spatio-temporal changes of shoreline and geomorphological features of Odisha coast of India using remote sensing and GIS techniques. Nat. Hazards 2016, 82, 1437–1455. [Google Scholar] [CrossRef]
- Hoque, M.A.-A.; Ahmed, N.; Pradhan, B.; Roy, S. Assessment of coastal vulnerability to multi-hazardous events using geospatial techniques along the eastern coast of Bangladesh. Ocean Coast. Manag. 2019, 181, 104898. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Tomasicchio, G.R. Wave–dune interaction and beach resilience in large-scale physical model tests. Coast. Eng. 2016, 116, 15–25. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Nascimento, T.V.M.D.; Mishra, M.; da Silva, R.M. Analysis of long- and short-term shoreline change dynamics: A study case of João Pessoa city in Brazil. Sci. Total. Environ. 2021, 769, 144889. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Neal, W.J.; Bonetti, J.; Anfuso, G.; de Jonge, V.N. Vulnerability assessments as a tool for the coastal and marine hazards management: An overview. Ocean Coast. Manag. 2020, 189, 105134. [Google Scholar] [CrossRef]
- Blackburn, S.; Pelling, M.; Marques, C. Megacities and the Coast: Global Context and Scope for Transformation. In Coasts and Estuaries: The Future; Elsevier: Amsterdam, The Netherlands, 2019; pp. 661–669. [Google Scholar] [CrossRef]
- Nassar, K.; Mahmod, W.E.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesour. Geotechnol. 2018, 37, 81–95. [Google Scholar] [CrossRef]
- Chen, S.-S.; Chen, L.-F.; Liu, Q.-H.; Li, X.; Tan, Q. Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay, Pearl River Estuary, South China. Ocean Coast. Manag. 2005, 48, 65–83. [Google Scholar] [CrossRef]
- Abulibdeh, A.; Al-Awadhi, T.; Al Nasiri, N.; Al-Buloshi, A.; Abdelghani, M. Spatiotemporal mapping of groundwater salinity in Al-Batinah, Oman. Groundw. Sustain. Dev. 2021, 12, 100551. [Google Scholar] [CrossRef]
- Mishra, M. Geomorphic regionalization of coastal zone using geospatial technology. Int. J. Environ. Geoinf. 2016, 3, 11–23. Available online: https://dergipark.org.tr/en/pub/ijegeo/article/304479 (accessed on 27 November 2021). [CrossRef]
- Misra, A.; Ramakrishnan, B. Assessment of coastal geomorphological changes using multi-temporal Satellite-Derived Bathymetry. Cont. Shelf Res. 2020, 207, 104213. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Mattei, G.; Caporizzo, C.; Cinque, A.; Troisi, S.; Peluso, F.; Stefanile, M.; Pappone, G. Ancient Coastal Changes Due to Ground Movements and Human Interventions in the Roman Portus Julius (Pozzuoli Gulf, Italy): Results from Photogrammetric and Direct Surveys. Water 2020, 12, 658. [Google Scholar] [CrossRef] [Green Version]
- Baral, R.; Pradhan, S.; Samal, R.N.; Mishra, S.K. Shoreline Change Analysis at Chilika Lagoon Coast, India Using Digital Shoreline Analysis System. J. Indian Soc. Remote Sens. 2018, 46, 1637–1644. [Google Scholar] [CrossRef]
- Roy, S.; Mahapatra, M.; Chakraborty, A. Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system. Spat. Inf. Res. 2018, 26, 563–571. [Google Scholar] [CrossRef]
- Borrelli, M.; Boothroyd, J.C. Calculating Rates of Shoreline Change in a Coastal Embayment with Fringing Salt Marsh Using the ‘Marshline’, a Proxy-Based Shoreline Indicator. Northeast. Nat. 2020, 27, 132–156. [Google Scholar] [CrossRef]
- Cazenave, A.; Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Futur. 2014, 2, 15–34. [Google Scholar] [CrossRef]
- Bama, V.P.S.; Rajakumari, S.; Ramesh, R. Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics. Nat. Hazards 2020, 100, 829–842. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol. 2009, 257, 11–23. [Google Scholar] [CrossRef]
- Alahmadi, M.; Mansour, S.; Dasgupta, N.; Abulibdeh, A.; Atkinson, P.M.; Martin, D.J. Using Daily Nighttime Lights to Monitor Spatiotemporal Patterns of Human Lifestyle under COVID-19: The Case of Saudi Arabia. Remote Sens. 2021, 13, 4633. [Google Scholar] [CrossRef]
- Fadda, E.H.; Abulibdeh, A.O.; Al Balushi, A.S. Using Geomatics Techniques to Produce a Geospatial Database System for Geological Hazards in the Al-Salt Area. In Proceedings of the ICVISP 2019: 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 26–28 August 2019. [Google Scholar] [CrossRef]
- Al-Hatrushi, S.M. Monitoring of the shoreline change using remote sensing and GIS: A case study of Al Hawasnah tidal inlet, Al Batinah coast, Sultanate of Oman. Arab. J. Geosci. 2013, 6, 1479–1484. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environ. Monit. Assess. 2017, 189, 290. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Palomar-Vázquez, J.; Pardo-Pascual, J.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez-Pujol, L. An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coast. Eng. 2020, 160, 103732. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.B.; Min, K.S. Shoreline Change Analysis using Airborne LiDAR Bathymetry for Coastal Monitoring. J. Coast. Res. 2017, 79, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Tak, W.; Jun, K.; Kim, S.; Lee, H. Using Drone and LiDAR to Assess Coastal Erosion and Shoreline Change due to the Construction of Coastal Structures. J. Coast. Res. 2020, 95, 674–678. [Google Scholar] [CrossRef]
- Yun, K.; Lee, C.K.; He, G.; Park, B.W. Monitoring of Shoreline Change at Chollipo Beach in South Korea. J. Coast. Res. 2021, 114, 469–473. [Google Scholar] [CrossRef]
- Wziątek, D.Z.; Terefenko, P.; Kurylczyk, A. Multi-Temporal Cliff Erosion Analysis Using Airborne Laser Scanning Surveys. Remote Sens. 2019, 11, 2666. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.; Kim, K. Estimation of Shoreline Change Using High Resolution Images. Procedia Eng. 2015, 116, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Al Fugura, A.; Billa, L.; Pradhan, B. Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image. Estuar. Coast. Shelf Sci. 2011, 95, 395–400. [Google Scholar] [CrossRef]
- Kuleli, T. Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environ. Monit. Assess. 2010, 167, 387–397. [Google Scholar] [CrossRef]
- Dereli, M.A.; Tercan, E. Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey. Earth Sci. Inform. 2020, 13, 709–718. [Google Scholar] [CrossRef]
- Imamoglu, M.; Kahraman, F.; Cakir, Z.; Sanli, F.B. Ground Deformation Analysis of Bolvadin (W. Turkey) by Means of Multi-Temporal InSAR Techniques and Sentinel-1 Data. Remote Sens. 2019, 11, 1069. [Google Scholar] [CrossRef] [Green Version]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Mujabar, P.S.; Chandrasekar, N. Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab. J. Geosci. 2013, 6, 647–664. [Google Scholar] [CrossRef]
- Elnabwy, M.T.; Elbeltagi, E.; El Banna, M.M.; Elshikh, M.M.; Motawa, I.; Kaloop, M.R. An Approach Based on Landsat Images for Shoreline Monitoring to Support Integrated Coastal Management—A Case Study, Ezbet Elborg, Nile Delta, Egypt. ISPRS Int. J. Geo-Inf. 2020, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Srinivasu, U.; Ravichandran, M.; Han, W.; Sivareddy, S.; Rahman, H.; Li, Y.; Nayak, S. Causes for the reversal of North Indian Ocean decadal sea level trend in recent two decades. Clim. Dyn. 2017, 49, 3887–3904. [Google Scholar] [CrossRef]
- Randazzo, G.; Barreca, G.; Cascio, M.; Crupi, A.; Fontana, M.; Gregorio, F.; Lanza, S.; Muzirafuti, A. Analysis of Very High Spatial Resolution Images for Automatic Shoreline Extraction and Satellite-Derived Bathymetry Mapping. Geosciences 2020, 10, 172. [Google Scholar] [CrossRef]
- Zollini, S.; Alicandro, M.; Cuevas-González, M.; Baiocchi, V.; Dominici, D.; Buscema, P.M. Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy. J. Mar. Sci. Eng. 2020, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Abulibdeh, A. Spatiotemporal analysis of water-electricity consumption in the context of the COVID-19 pandemic across six socioeconomic sectors in Doha City, Qatar. Appl. Energy 2021, 304, 117864. [Google Scholar] [CrossRef] [PubMed]
- Abulibdeh, A. Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environ. Earth Sci. 2021, 80, 259. [Google Scholar] [CrossRef]
- Abulibdeh, A. Time series analysis of environmental quality in the state of Qatar. Energy Policy 2022, 168, 113089. [Google Scholar] [CrossRef]
- Abulibdeh, A. Water-energy nexus challenges and opportunities in Qatar. In Qatar: Political, Economic and Social Issues; Nova: Hauppauge, NY, USA, 2019; pp. 209–227. [Google Scholar]
- Abulibdeh, A. Modeling electricity consumption patterns during the COVID-19 pandemic across six socioeconomic sectors in the State of Qatar. Energy Strat. Rev. 2021, 38, 100733. [Google Scholar] [CrossRef]
- Abulibdeh, A.; Al-Awadhi, T.; Al-Barwani, M. Comparative analysis of the driving forces and spatiotemporal patterns of urbanisation in Muscat, Doha, and Dubai. Dev. Pract. 2019, 29, 606–618. [Google Scholar] [CrossRef]
- Zaidan, E.; Abulibdeh, A. Master Planning and the Evolving Urban Model in the Gulf Cities: Principles, Policies, and Practices for the Transition to Sustainable Urbanism. Plan. Pract. Res. 2020, 36, 193–215. [Google Scholar] [CrossRef]
- Zaidan, E.; Abulibdeh, A.; Alban, A.; Jabbar, R. Motivation, preference, socioeconomic, and building features: New paradigm of analyzing electricity consumption in residential buildings. Build. Environ. 2022, 219, 109177. [Google Scholar] [CrossRef]
- Abulibdeh, A.; Zaidan, E.; Jabbar, R. The impact of COVID-19 pandemic on electricity consumption and electricity demand forecasting accuracy: Empirical evidence from the state of Qatar. Energy Strat. Rev. 2022, 44, 100980. [Google Scholar] [CrossRef]
- Ghofrani, A.; Zaidan, E.; Abulibdeh, A. Simulation and impact analysis of behavioral and socioeconomic dimensions of energy consumption. Energy 2021, 240, 122502. [Google Scholar] [CrossRef]
- Mansour, S.; Alahmadi, M.; Abulibdeh, A. Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup. Transp. Policy 2022, 127, 116–129. [Google Scholar] [CrossRef]
- Zaidan, E.; Abulibdeh, A. Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar. J. Air Transp. Manag. 2018, 73, 32–45. [Google Scholar] [CrossRef]
- Al-Awadhi, T.; Abulibdeh, A.; Al-Masri, A.N.; Bin Touq, A.; Al-Barawni, M.; El Kenawy, A.M. Spatial and temporal changes in electricity demand regulatory during pandemic periods: The case of COVID-19 in Doha, Qatar. Energy Strat. Rev. 2022, 41, 100826. [Google Scholar] [CrossRef]
- Abulibdeh, A.; Zaidan, E. Empirical analysis of the cross-cultural information searching and travel behavior of business travelers: A case study of MICE travelers to Qatar in the Middle East. Appl. Geogr. 2017, 85, 152–162. [Google Scholar] [CrossRef]
- Kamranzad, B. Persian Gulf zone classification based on the wind and wave climate variability. Ocean Eng. 2018, 169, 604–635. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.A.; Shuail, D.A. Seagrass habitats in the Arabian Gulf: Distribution, tolerance thresholds and threats. Aquat. Ecosyst. Health Manag. 2012, 15, 73–83. [Google Scholar] [CrossRef]
- Al-Naimi, A.; Karani, G.; Littlewood, J. Effects of Land Reclamation on Marine Life on Doha Coastal Region, State of Qatar. In Proceedings of the ISER 57th International Conference, Dubai, United Arab Emirates, 1–2 June 2017; pp. 54–60. [Google Scholar]
- Karama, A. Solar DER Investment for MWANI Qatar Building at Hamad Port. In Proceedings of the International Conference on Civil Infrastructure and Construction (CIC 2020), Doha, Qatar, 2–5 February 2020. [Google Scholar] [CrossRef]
- Burt, J.A.; Smith, E.G.; Warren, C.; Dupont, J. An assessment of Qatar’s coral communities in a regional context. Mar. Pollut. Bull. 2016, 105, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Grizzle, R.E.; Ward, K.M.; AlShihi, R.M.; Burt, J.A. Current status of coral reefs in the United Arab Emirates: Distribution, extent, and community structure with implications for management. Mar. Pollut. Bull. 2016, 105, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Aboobacker, V.; Samiksha, S.; Veerasingam, S.; Al-Ansari, E.M.; Vethamony, P. Role of shamal and easterly winds on the wave characteristics off Qatar, central Arabian Gulf. Ocean Eng. 2021, 236, 109457. [Google Scholar] [CrossRef]
- Thoppil, P.G.; Hogan, P.J. Persian Gulf response to a wintertime shamal wind event. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Sandeepan, B.S.; Panchang, V.G.; Nayak, S.; Kumar, K.K.; Kaihatu, J.M. Performance of the WRF Model for Surface Wind Prediction around Qatar. J. Atmos. Ocean. Technol. 2018, 35, 575–592. [Google Scholar] [CrossRef]
- Vieira, F.; Cavalcante, G.; Campos, E. Analysis of wave climate and trends in a semi-enclosed basin (Persian Gulf) using a validated SWAN model. Ocean Eng. 2020, 196, 106821. [Google Scholar] [CrossRef]
- Liao, Y.-P.; Kaihatu, J.M. The effect of wind variability and domain size in the Persian Gulf on predicting nearshore wave energy near Doha, Qatar. Appl. Ocean Res. 2016, 55, 18–36. [Google Scholar] [CrossRef]
- Zhan, C.; Liu, Z.; Zeng, N. Using remote sensing and gis to investigate land use dynamic change in western plain of jilin province. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1685–1690. [Google Scholar]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2017, 20, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Zhai, Y.; Roy, D.P.; Martins, V.S.; Zhang, H.K.; Yan, L.; Li, Z. Conterminous United States Landsat-8 top of atmosphere and surface reflectance tasseled cap transformation coefficients. Remote Sens. Environ. 2022, 274, 112992. [Google Scholar] [CrossRef]
- Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Liang, J.; Huang, W.; Xu, W.; Li, B.; Wang, J. Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation. Remote Sens. 2022, 14, 3001. [Google Scholar] [CrossRef]
- Shamsuzzoha, M.; Ahamed, T. Shoreline Change Assessment in the Coastal Region of Bangladesh Delta Using Tasseled Cap Transformation from Satellite Remote Sensing Dataset. Remote Sens. 2023, 15, 295. [Google Scholar] [CrossRef]
- Rivers, J.M.; Dalrymple, R.W.; Yousif, R.; Al-Shaikh, I.; Butler, J.D.; Warren, C.; Skeat, S.L.; Bari, E.M.A. Mixed siliciclastic-carbonate-evaporite sedimentation in an arid eolian landscape: The Khor Al Adaid tide-dominated coastal embayment, Qatar. Sediment. Geol. 2020, 408, 105730. [Google Scholar] [CrossRef]
- Specht, M.; Specht, C.; Lewicka, O.; Makar, A.; Burdziakowski, P.; Dąbrowski, P. Study on the Coastline Evolution in Sopot (2008–2018) Based on Landsat Satellite Imagery. J. Mar. Sci. Eng. 2020, 8, 464. [Google Scholar] [CrossRef]
- Spatio-Temporal Analysis of Texas Shoreline Changes Using GIS Technique. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/408 (accessed on 19 February 2022).
- Misra, A.; Balaji, R. A Study on the Shoreline Changes and LAND-use/Land-cover along the South Gujarat Coastline. Procedia Eng. 2015, 116, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.; Chand, P.; Pattnaik, N.; Kattel, D.B.; Panda, G.K.; Mohanti, M.; Baruah, U.D.; Chandniha, S.K.; Achary, S.; Mohanty, T. Response of long- to short-term changes of the Puri coastline of Odisha (India) to natural and anthropogenic factors: A remote sensing and statistical assessment. Environ. Earth Sci. 2019, 78, 338. [Google Scholar] [CrossRef]
- Alharbi, O.A.; Phillips, M.R.; Williams, A.T.; Thomas, T.; Hakami, M.; Kerbe, J.; Niang, A.J.; Hermas, E.; Al-Ghamdi, K. Temporal shoreline change and infrastructure influences along the southern Red Sea coast of Saudi Arabia. Arab. J. Geosci. 2017, 10, 360. [Google Scholar] [CrossRef]
- Daoudi, M.; Niang, A.J. Detection of shoreline changes along the coast of Jeddah and its impact on the geomorphological system using GIS techniques and remote sensing data (1951–2018). Arab. J. Geosci. 2021, 14, 1265. [Google Scholar] [CrossRef]
- Niang, A.J. Monitoring long-term shoreline changes along Yanbu, Kingdom of Saudi Arabia using remote sensing and GIS techniques. J. Taibah Univ. Sci. 2020, 14, 762–776. [Google Scholar] [CrossRef]
- Al-Zubieri, A.G.; Ghandour, I.M.; Bantan, R.A.; Basaham, A.S. Shoreline Evolution Between Al Lith and Ras Mahāsin on the Red Sea Coast, Saudi Arabia Using GIS and DSAS Techniques. J. Indian Soc. Remote Sens. 2020, 48, 1455–1470. [Google Scholar] [CrossRef]
- Aldogom, D.; Albesher, S.; Al Mansoori, S.; Nazzal, T. Assessing Coastal Land Dynamics Along UAE Shoreline Using GIS and Remote Sensing Techniques. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012031. [Google Scholar] [CrossRef]
- Aladwani, N.S. Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia 2022, 64, 417–432. [Google Scholar] [CrossRef]
- Jonah, F.E.; Mensah, E.A.; Edziyie, R.E.; Agbo, N.W.; Adjei-Boateng, D. Coastal Erosion in Ghana: Causes, Policies, and Management. Coast. Manag. 2016, 44, 116–130. [Google Scholar] [CrossRef]
Zone Number | Name of the Areas | Study Segments |
---|---|---|
69 | Lusail | A |
66 | The Pearl, Leqtaifiya, Al Qassar | B |
61 | Al Qassar, Al Dafna | C |
60 | Al Dafna | D |
12 | Rumaila, Al Bidda | |
2 | Al Bidda | |
1 | Al Jasra | |
7 | Al Souq | |
19 | Doha Port | |
18 | Slata, Al Mirqab | |
28 | Al Khulaifat, Ras Bu Abboud | E |
29 | Ras Bu Abboud | |
49 | Hamad International Airport | |
49 | Hamad International Airport | F |
90 | Al Wakra | G |
Date of Acquisition | SPACECRAFT ID | SENSOR ID | Resolution in Meters | Size (Row/Path) |
---|---|---|---|---|
10/11/1982 | Landsat_3 | MSS | 60 | 42/175 |
10/17/1992 | Landsat_5 | TM | 30 | 43/162 |
8/2/2002 | Landsat_5 | TM | 30 | 43/162 |
5/4/2013 | Landsat_8 | OLI | 30 | 42/163 |
10/9/2018 | Landsat_8 | OLI-TRIS | 30 | 42/163 |
Date (mm/dd/yyyy) | Shoreline Length (Meters) |
---|---|
10/11/1982 | 65,547 |
10/17/1992 | 70,044 |
8/2/2002 | 76,979 |
5/4/2013 | 138,531 |
10/9/2018 | 135,641 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 7624 |
10/17/1992 | 6897 |
8/2/2002 | 6801 |
5/4/2013 | 24,439 |
10/9/2018 | 24,953 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 4123 |
10/17/1992 | 3964 |
8/2/2002 | 5742 |
5/4/2013 | 36,658 |
10/9/2018 | 35,903 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 6726 |
10/17/1992 | 6939 |
8/2/2002 | 7061 |
5/4/2013 | 6599 |
10/9/2018 | 5651 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 11,586 |
10/17/1992 | 12,659 |
8/2/2002 | 16,628 |
5/4/2013 | 17,788 |
10/9/2018 | 17,638 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 13,460 |
10/17/1992 | 14,825 |
8/2/2002 | 15,543 |
5/4/2013 | 21,226 |
10/9/2018 | 19,771 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 5827 |
10/17/1992 | 6588 |
8/2/2002 | 6467 |
5/4/2013 | 7073 |
10/9/2018 | 8147 |
Date | Shoreline Length (m) |
---|---|
10/11/1982 | 6163 |
10/17/1992 | 6285 |
8/2/2002 | 6918 |
5/4/2013 | 9726 |
10/9/2018 | 8305 |
Area | Segment | Intersect X | Intersect Y | Date |
---|---|---|---|---|
Lusail City | A | 551,585.70 | 2,810,593.86 | 4/2/2019 |
Lusail City | A | 551,344.14 | 2,811,129.38 | 4/2/2019 |
Lusail City | A | 552,774.44 | 2,809,771.39 | 4/2/2019 |
Lusail City | A | 552,535.19 | 2,809,353.55 | 4/2/2019 |
Lusail City | A | 552,740.80 | 2,808,733.45 | 4/2/2019 |
Lusail City | A | 553,078.78 | 2,809,131.57 | 4/2/2019 |
Al Dafna | C | 554,585.82 | 2,801,014.80 | 4/2/2019 |
Al Corniche | D | 552,596.02 | 2,799,735.60 | 4/2/2019 |
Al Corniche | D | 552,619.10 | 2,799,749.91 | 4/2/2019 |
Doha Port | D | 555,142.52 | 2,797,357.93 | 4/7/2019 |
Al Khulaifat | E | 555,595.74 | 2,797,011.74 | 4/3/2019 |
Al Khulaifat | E | 555,515.31 | 2,796,939.27 | 4/3/2019 |
Hamad International Airport | E | 562,163.24 | 2,793,242.26 | 4/3/2019 |
Al Wakra | G | 561,849.68 | 2,782,414.99 | 4/3/2019 |
Al Wakra | G | 561,537.78 | 2,782,964.60 | 4/3/2019 |
Al Wakra | G | 561865.03 | 2,783,463.17 | 4/3/2019 |
Al Wakra | G | 561,548.14 | 2,783,791.44 | 4/3/2019 |
Al Wakra | G | 562,313.50 | 2,782,958.56 | 4/3/2019 |
Al Wakra | G | 562,313.50 | 2,782,958.56 | 4/3/2019 |
Al Wakra | G | 562,098.82 | 2,785,110.62 | 4/3/2019 |
Al Wakra | G | 562,125.82 | 2,785,189.09 | 4/3/2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakrishnan, P.; Abulibdeh, A.; Abul Kasem Kabir, T. Assessment of the Impact of Anthropogenic Evolution and Natural Processes on Shoreline Dynamics Using Multi-Temporal Satellite Images and Statistical Analysis. Water 2023, 15, 1440. https://doi.org/10.3390/w15081440
Balakrishnan P, Abulibdeh A, Abul Kasem Kabir T. Assessment of the Impact of Anthropogenic Evolution and Natural Processes on Shoreline Dynamics Using Multi-Temporal Satellite Images and Statistical Analysis. Water. 2023; 15(8):1440. https://doi.org/10.3390/w15081440
Chicago/Turabian StyleBalakrishnan, Perumal, Ammar Abulibdeh, and Tahsin Abul Kasem Kabir. 2023. "Assessment of the Impact of Anthropogenic Evolution and Natural Processes on Shoreline Dynamics Using Multi-Temporal Satellite Images and Statistical Analysis" Water 15, no. 8: 1440. https://doi.org/10.3390/w15081440
APA StyleBalakrishnan, P., Abulibdeh, A., & Abul Kasem Kabir, T. (2023). Assessment of the Impact of Anthropogenic Evolution and Natural Processes on Shoreline Dynamics Using Multi-Temporal Satellite Images and Statistical Analysis. Water, 15(8), 1440. https://doi.org/10.3390/w15081440