Assessment of Existing Fate and Transport Models for Predicting Antibiotic Degradation and Transport in the Aquatic Environment: A Review
Abstract
:1. Introduction
2. Source of Antibiotic Contaminants
3. Antibiotic Degradation and Fate Kinetics in Surface Water
3.1. Biodegradation
3.2. Hydrolysis
3.3. Photodegradation
3.4. Sorption
3.5. Oxidation
3.6. Bioaccumulation
3.7. Volatilization
4. Antibiotic Fate Models
4.1. WASP
4.2. GREAT-ER
4.3. phATE
4.4. QUAL-2E (Q2E) and QUAL-2K (Q2K)
4.5. GLOBAL-FATE
4.6. AQUASIM
4.7. QWASI
4.8. iSTREEM
4.9. ePiE
4.10. EUSES
5. Evaluation of Model Simulation Efficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Arlos, M.J.; Bragg, L.M.; Servos, M.R.; Parker, W.J. Simulation of the fate of selected pharmaceuticals and personal care products in a highly impacted reach of a Canadian watershed. Sci. Total Environ. 2014, 485, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Mezcua, M.; Hernando, M.D.; Letón, P.; García-Calvo, E.; Agüera, A.; Fernández-Alba, A.R. Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Res. 2008, 42, 3719–3728. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yan, W.; Li, X.; Zou, Y.; Chen, X.; Huang, W.; Miao, L.; Zhang, R.; Zhang, G.; Zou, S. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks. Environ. Pollut. 2013, 182, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Y.; Zhang, Q.Q.; Yan, X.T.; Zhai, Y.Q.; Guo, Z.; Li, N.; Ying, G.G. Antibiotic pollution in lakes in China: Emission estimation and fate modeling using a temperature-dependent multimedia model. Sci. Total Environ. 2022, 842, 156633. [Google Scholar] [CrossRef]
- Song, Y.; Xiao, M.; Li, Z.; Luo, Y.; Zhang, K.; Du, X.; Zhang, T.; Wang, Z.; Liang, H. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration. Chemosphere 2022, 286, 131680. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.; Yang, Y.; Zhang, C.; Lian, K.; Liu, C. Structure and function response of bacterial communities towards antibiotic contamination in hyporheic zone sediments. Chemosphere 2022, 309, 136606. [Google Scholar] [CrossRef]
- David, P.H.C.; Sá-Pinto, X.; Nogueira, T. Using SimulATe to model the effects of antibiotic selective pressure on the dynamics of pathogenic bacterial populations. Biol. Methods Protoc. 2019, 4, bpz004. [Google Scholar] [CrossRef]
- Archundia, D.; Boithias, L.; Duwig, C.; Morel, M.C.; Flores Aviles, G.; Martins, J.M.F. Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano): Application of the GREAT-ER model. Sci. Total Environ. 2018, 622, 1046–1055. [Google Scholar] [CrossRef]
- Xu, W.H.; Zhang, G.; Wai, O.W.H.; Zou, S.C.; Li, X.D. Transport and adsorption of antibiotics by marine sediments in a dynamic environment. J. Soils Sediments 2009, 9, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Domènech, X.; Ribera, M.; Peral, J. Assessment of pharmaceuticals fate in a model environment. Water Air Soil. Pollut. 2011, 218, 413–422. [Google Scholar] [CrossRef]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 2015, 134, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environ. Sci. Pollut. Res. 2015, 22, 10298–10308. [Google Scholar] [CrossRef] [PubMed]
- Ana, K.M.S.; Madriaga, J.; Espino, M.P. β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Environ. Pollut. 2021, 275, 116624. [Google Scholar] [CrossRef]
- Linghu, K.; Wu, Q.; Zhang, J.; Wang, Z.; Zeng, J.; Gao, S. Occurrence, distribution and ecological risk assessment of antibiotics in Nanming river: Contribution from wastewater treatment plant and implications of urban river syndrome. Process Saf. Environ. Prot. 2023, 169, 428–436. [Google Scholar] [CrossRef]
- Choi, K.; Kim, Y.; Park, J.; Park, C.K.; Kim, M.Y.; Kim, H.S.; Kim, P. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Sci. Total Environ. 2008, 405, 120–128. [Google Scholar] [CrossRef]
- Lämmchen, V.; Niebaum, G.; Berlekamp, J.; Klasmeier, J. Geo-referenced simulation of pharmaceuticals in whole watersheds: Application of GREAT-ER 4.1 in Germany. Environ. Sci. Pollut. Res. 2021, 28, 21927–21935. [Google Scholar] [CrossRef]
- Ani, E.C.; Wallis, S.; Kraslawski, A.; Agachi, P.S. Development, calibration and evaluation of two mathematical models for pollutant transport in a small river. Environ. Model. Softw. 2009, 24, 1139–1152. [Google Scholar] [CrossRef]
- Cunningham, V.L.; D’aco, V.J.; Pfeiffer, D.; Anderson, P.D.; Buzby, M.E.; Jahnke, J.; Hannah, R.E.; Parke, N.J. Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the phate tm model. Integr. Environ. Assess. Manag. 2012, 8, 530–542. [Google Scholar] [CrossRef]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Yi, X.; Lin, C.; Ong, E.J.L.; Wang, M.; Zhou, Z. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 2019, 216, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, H.; Zhang, L.; Jiang, Y.; Gin, K.Y.H.; He, Y. Occurrence, distribution, and risk assessment of antibiotics in a subtropical river-reservoir system. Water 2018, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, R.; Yu, K.; Wang, Y.; Huang, X.; Pei, J.; Wei, C.; Pan, Z.; Qin, Z.; Zhang, G. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth. Environ. Pollut. 2018, 232, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.H. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
- Hanamoto, S.; Nakada, N.; Jürgens, M.D.; Johnson, A.C.; Yamashita, N.; Tanaka, H. The different fate of antibiotics in the Thames River, UK, and the Katsura River, Japan. Environ. Sci. Pollut. Res. 2018, 25, 1903–1913. [Google Scholar] [CrossRef]
- Klein, E.Y.; van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, Y.; Ke, Y.; Chen, C.; Xie, S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Sci. Total Environ. 2022, 814, 152852. [Google Scholar] [CrossRef]
- Marx, C.; Günther, N.; Schubert, S.; Oertel, R.; Ahnert, M.; Krebs, P.; Kuehn, V. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters. Sci. Total Environ. 2015, 538, 779–788. [Google Scholar] [CrossRef]
- Younes, H.A.; Mahmoud, H.M.; Abdelrahman, M.M.; Nassar, H.F. Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100239. [Google Scholar] [CrossRef]
- Marx, C.; Mühlbauer, V.; Schubert, S.; Oertel, R.; Ahnert, M.; Krebs, P.; Kuehn, V. Representative input load of antibiotics to WWTPs: Predictive accuracy and determination of a required sampling quantity. Water Res. 2015, 76, 19–32. [Google Scholar] [CrossRef]
- Waleng, N.J.; Nomngongo, P.N. Occurrence of pharmaceuticals in the environmental waters: African and Asian perspectives. Environ. Chem. Ecotoxicol. 2022, 4, 50–66. [Google Scholar] [CrossRef]
- Kanama, K.M.; Daso, A.P.; Mpenyana-Monyatsi, L.; Coetzee, M.A.A. Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North West Province, South Africa. J. Toxicol. 2018, 2018, 3751930. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, W.; Liu, K.; Guo, Y.; Ding, C.; Han, J.; Li, P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. J. Hazard. Mater. 2022, 439, 129628. [Google Scholar] [CrossRef]
- Zhang, R.; Kang, Y.; Zhang, R.; Han, M.; Zeng, W.; Wang, Y.; Yu, K.; Yang, Y. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: Storm caused the increase of antibiotics usage. Sci. Total Environ. 2021, 752, 141882. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.; Liu, Y.; Guo, R.; Chen, J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef]
- Gothwal, R.; Thatikonda, S. Mathematical model for the transport of fluoroquinolone and its resistant bacteria in aquatic environment. Environ. Sci. Pollut. Res. 2018, 25, 20439–20452. [Google Scholar] [CrossRef]
- Li, J.; Cui, M. Kinetic study on the sorption and degradation of antibiotics in the estuarine water: An evaluation based on single and multiple reactions. Environ. Sci. Pollut. Res. 2020, 27, 42104–42114. [Google Scholar] [CrossRef]
- Vu, D.T.; Nguyen, T.T.; Hoang, A.H. Surface water quality assessment based on GIS and hierarchical clustering technique: A case study of Cam Pha Region, Northeast Vietnam. Int. J. Glob. Environ. Issues 2019, 18, 158–170. [Google Scholar] [CrossRef]
- Reis, A.C.; Kolvenbach, B.A.; Nunes, O.C.; Corvini, P.F.X. Biodegradation of antibiotics: The new resistance determinants—Part I. N. Biotechnol. 2020, 54, 34–51. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Grenni, P.; Rauseo, J.; Ademollo, N.; Cardoni, M.; Rolando, L.; Patrolecco, L. Degradation of a fluoroquinolone antibiotic in an urbanized stretch of the River Tiber. Microchem. J. 2018, 136, 43–48. [Google Scholar] [CrossRef]
- Xu, B.; Mao, D.; Luo, Y.; Xu, L. Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Bioresour. Technol. 2011, 102, 7069–7076. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.A.; Parker, W.J.; Matott, L.S. Modelling concentrations of pharmaceuticals and personal care products in a Canadian watershed. Can. Water Resour. J. 2012, 37, 191–208. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. Clean 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Bavumiragira, J.P.; Ge, J.; Yin, H. Fate and transport of pharmaceuticals in water systems: A processes review. Sci. Total Environ. 2022, 823, 153635. [Google Scholar] [CrossRef]
- Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 2011, 22, 539–550. [Google Scholar] [CrossRef]
- Vermillion Maier, M.L.; Tjeerdema, R.S. Azithromycin sorption and biodegradation in a simulated California river system. Chemosphere 2018, 190, 471–480. [Google Scholar] [CrossRef]
- Majewsky, M.; Glauner, T.; Horn, H. Systematic suspect screening and identification of sulfonamide antibiotic transformation products in the aquatic environment. Anal. Bioanal. Chem. 2015, 407, 5707–5717. [Google Scholar] [CrossRef]
- Osorio, V.; Marcé, R.; Pérez, S.; Ginebreda, A.; Cortina, J.L.; Barceló, D. Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Sci. Total Environ. 2012, 440, 3–13. [Google Scholar] [CrossRef]
- Ma, Y.; Modrzynski, J.J.; Yang, Y.; Aamand, J.; Zheng, Y. Redox-dependent biotransformation of sulfonamide antibiotics exceeds sorption and mineralization: Evidence from incubation of sediments from a reclaimed water-affected river. Water Res. 2021, 205, 117616. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, H.; Chen, J.; Zhang, S. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: A quantum chemical study on cephradine. Environ. Sci. Technol. 2015, 49, 1552–1558. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. PH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Sci. Total Environ. 2014, 466, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Ecke, A.; Westphalen, T.; Retzmann, A.; Schneider, R.J. Factors affecting the hydrolysis of the antibiotic amoxicillin in the aquatic environment. Chemosphere 2023, 311, 136921. [Google Scholar] [CrossRef] [PubMed]
- Hirte, K.; Seiwert, B.; Schüürmann, G.; Reemtsma, T. New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Res. 2016, 88, 880–888. [Google Scholar] [CrossRef]
- Tian, Y.; Wei, L.; Yin, Z.; Feng, L.; Zhang, L.; Liu, Y.; Zhang, L. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure. Water Res. 2019, 164, 114940. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Chen, W.; Wang, B.; Sun, T.; Wu, B.; Wang, Y. Photocatalytic Degradation of Some Typical Antibiotics: Recent Advances and Future Outlooks. Int. J. Mol. Sci. 2022, 23, 8130. [Google Scholar] [CrossRef]
- Duan, J.; Jian, H.; Dou, Q.; Shi, X.; Su, R. Indirect photodegradation of sulfisoxazole: Effects of environmental factors (CDOM, pH, salinity, HCO3−, metal ions, halogen ions and NO3−). Mar. Pollut. Bull. 2022, 174, 113320. [Google Scholar] [CrossRef]
- Ahmad, W.; Chandra Joshi, H.; Kumar, S. Algae mediated photodegradation of fluroquinolone antibiotic: Ofloxacin. Curr. Res. Green Sustain. Chem. 2022, 5, 100269. [Google Scholar] [CrossRef]
- Tang, X.; Cui, Z.; Bai, Y.; Su, R. Indirect photodegradation of sulfathiazole and sulfamerazine: Influence of the CDOM components and seawater factors (salinity, pH, nitrate and bicarbonate). Sci. Total Environ. 2021, 750, 141762. [Google Scholar] [CrossRef]
- Wei, L.; Li, H.; Lu, J. Algae-induced photodegradation of antibiotics: A review. Environ. Pollut. 2021, 272, 115589. [Google Scholar] [CrossRef]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
- Tian, Y.; Zou, J.; Feng, L.; Zhang, L.; Liu, Y. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs. Water Res. 2019, 149, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Liu, H.; Yang, E.; Liu, F.; Lin, H.; Liu, X. Effects of natural colloidal particles derived from a shallow lake on the photodegradation of ofloxacin and ciprofloxacin. Sci. Total Environ. 2021, 773, 145102. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Du, X.; Farjad, B.; Goss, G.; Gupta, A.; Faramarzi, M. A numerical modeling framework for simulating the key in-stream fate processes of PAH decay in Muskeg River Watershed, Alberta, Canada. Sci. Total Environ. 2022, 848, 157246. [Google Scholar] [CrossRef] [PubMed]
- Massey, L.B.; Haggard, B.E.; Galloway, J.M.; Loftin, K.A.; Meyer, M.T.; Green, W.R. Antibiotic fate and transport in three effluent-dominated Ozark streams. Ecol. Eng. 2010, 36, 930–938. [Google Scholar] [CrossRef]
- Carvalho de Gusmão da Cunha Rabelo, A.E.; Martins dos Santos Neto, S.; Paiva Coutinho, A.; Celso Dantas Antonino, A. Sorption of sulfadiazine and flow modeling in an alluvial deposit of a dry riverbed in the Brazilian semiarid. J. Contam. Hydrol. 2021, 241, 103818. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks. J. Environ. Chem. Eng. 2021, 9, 105868. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Li, H.; Xu, N.; Zhang, R.; Chen, X.; Sun, W.; Wen, D.; He, S.; Pan, J.; et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ. 2018, 636, 1009–1019. [Google Scholar] [CrossRef]
- Lei, X.; Lu, J.; Liu, Z.; Tong, Y.; Li, S. Concentration and distribution of antibiotics in water–sediment system of Bosten Lake, Xinjiang. Environ. Sci. Pollut. Res. 2015, 22, 1670–1678. [Google Scholar] [CrossRef]
- Xu, X.R.; Li, X.Y. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 2010, 78, 430–436. [Google Scholar] [CrossRef]
- Hanamoto, S.; Yamamoto-Ikemoto, R.; Tanaka, H. Predicting mass loadings of sulfamonomethoxine, sulfamethoxazole, and lincomycin discharged into surface waters in Japanese river catchments. Sci. Total Environ. 2021, 776, 146032. [Google Scholar] [CrossRef]
- Liang, X.; Liu, L.; Jiang, Y.; Nan, Z.; Deng, X.; Ma, F.; Wang, G.; Wu, Y. Study of the sorption/desorption behavior of chlortetracycline on sediments in the upper reaches of the Yellow River. Chem. Eng. J. 2022, 428, 131958. [Google Scholar] [CrossRef]
- Leal, R.M.P.; Alleoni, L.R.F.; Tornisielo, V.L.; Regitano, J.B. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere 2013, 92, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Cuprys, A.; Pulicharla, R.; Brar, S.K.; Drogui, P.; Verma, M.; Surampalli, R.Y. Fluoroquinolones metal complexation and its environmental impacts. Coord. Chem. Rev. 2018, 376, 46–61. [Google Scholar] [CrossRef]
- Liu, X.; Lv, K.; Deng, C.; Yu, Z.; Shi, J.; Johnson, A.C. Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system. Environ. Pollut. 2019, 252, 1532–1538. [Google Scholar] [CrossRef]
- Dömölki, B.; Krakkó, D.; Dobosy, P.; Trabert, Z.; Illés, Á.; Stefán, D.; Székács, A.; Ács, É.; Záray, G. Sorption of selected pharmaceuticals on river benthic biofilms formed on artificial substrata. Ecol. Indic. 2022, 138, 108837. [Google Scholar] [CrossRef]
- Dong, D.; Li, L.; Zhang, L.; Hua, X.; Guo, Z. Effects of lead, cadmium, chromium, and arsenic on the sorption of lindane and norfloxacin by river biofilms, particles, and sediments. Environ. Sci. Pollut. Res. 2018, 25, 4632–4642. [Google Scholar] [CrossRef]
- Hu, L.; Martin, H.M.; Strathmann, T.J. Oxidation kinetics of antibiotics during water treatment with potassium permanganate. Environ. Sci. Technol. 2010, 44, 6416–6422. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Liu, J. Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: Kinetic study. J. Photochem. Photobiol. A Chem. 2004, 167, 87–94. [Google Scholar] [CrossRef]
- Zhao, Q.; Fang, Q.; Liu, H.; Li, Y.; Cui, H.; Zhang, B.; Tian, S. Halide-specific enhancement of photodegradation for sulfadiazine in estuarine waters: Roles of halogen radicals and main water constituents. Water Res. 2019, 160, 209–216. [Google Scholar] [CrossRef]
- Baralla, E.; Demontis, M.P.; Dessì, F.; Varoni, M.V. An overview of antibiotics as emerging contaminants: Occurrence in bivalves as biomonitoring organisms. Animals 2021, 11, 3239. [Google Scholar] [CrossRef]
- Yang, H.; Lu, G.; Yan, Z.; Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H.; Bao, X.; Zhang, X.; et al. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. J. Hazard. Mater. 2020, 391, 122245. [Google Scholar] [CrossRef] [PubMed]
- Maculewicz, J.; Kowalska, D.; Świacka, K.; Toński, M.; Stepnowski, P.; Białk-Bielińska, A.; Dołżonek, J. Transformation products of pharmaceuticals in the environment: Their fate, (eco)toxicity and bioaccumulation potential. Sci. Total Environ. 2022, 802, 149916. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Xu, X.R.; Diao, Z.H.; Sun, K.F.; Hao, Q.W.; Liu, S.S.; Ying, G.G. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. J. Hazard. Mater. 2018, 343, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Jiang, Y.X.; Su, H.C.; Zhang, Q.Q.; Chen, X.W.; Yang, Y.Y.; Chen, J.; Liu, S.S.; et al. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environ. Pollut. 2015, 198, 15–24. [Google Scholar] [CrossRef]
- Arlos, M.J.; Parker, W.J.; Bicudo, J.R.; Law, P.; Hicks, K.A.; Fuzzen, M.L.M.; Andrews, S.A.; Servos, M.R. Modeling the exposure of wild fish to endocrine active chemicals: Potential linkages of total estrogenicity to field-observed intersex. Water Res. 2018, 139, 187–197. [Google Scholar] [CrossRef]
- Zhang, L.; Du, S.; Liu, D.; Dong, D.; Zhang, W.; Guo, Z. Antibiotics in fish caught from ice-sealed waters: Spatial and species variations, tissue distribution, bioaccumulation, and human health risk. Sci. Total Environ. 2022, 821, 153354. [Google Scholar] [CrossRef]
- Mai-Irat-Moller, C.; Gujer, W.; Giger, W. Transfer of Volatile Substances from Water to the Atmosphere. Water Res. 1981, 15, 1271–1279. [Google Scholar] [CrossRef]
- Martí, V.; De Pablo, J.; Jubany, I.; Rovira, M.; Orejudo, E. Water-air volatilization factors to determine volatile organic compound (VOC) reference levels in W. Toxics 2014, 2, 276–290. [Google Scholar] [CrossRef] [Green Version]
- Stamm, C.; Alder, A.C.; Fenner, K.; Hollender, J.; Krauss, M.; McArdell, C.S.; Ort, C.; Schneider, M.K. Spatial and temporal patterns of pharmaceuticals in the aquatic environment: A review. Geogr. Compass 2008, 2, 920–955. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Duan, Y.P.; Zhang, Z.J.; Tu, Y.J.; Luo, P.C.; Gao, J.; Dai, C.M.; Zhou, L. Multimedia fate model and risk assessment of typical antibiotics in the integrated demonstration zone of the Yangtze River Delta, China. Sci. Total Environ. 2022, 805, 150258. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.D.; D’Aco, V.J.; Shanahan, P.; Chapra, S.C.; Buzby, M.E.; Cunningham, V.L.; Duplessie, B.M.; Hayes, E.P.; Mastrocco, F.J.; Parke, N.J.; et al. Screening Analysis of Human Pharmaceutical Compounds in U.S. Surface Waters. Environ. Sci. Technol. 2004, 38, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.B.; Brooks, N.H.; Imberger, J.; List, E.J.; Koh, R.C.Y. Mixing in Inland and Coastal Waters; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Noutsopoulos, C.; Koumaki, E.; Sarantopoulos, V.; Mamais, D. Analytical and mathematical assessment of emerging pollutants fate in a river system. J. Hazard. Mater. 2019, 364, 48–58. [Google Scholar] [CrossRef]
- Oldenkamp, R.; Hoeks, S.; Cengic, M.; Barbarossa, V.; Burns, E.E.; Boxall, A.B.A.; Ragas, A.M.J. A High-Resolution Spatial Model to Predict Exposure to Pharmaceuticals in European Surface Waters: EPiE. Environ. Sci. Technol. 2018, 52, 12494–12503. [Google Scholar] [CrossRef] [PubMed]
- Kehrein, N.; Berlekamp, J.; Klasmeier, J. Modeling the fate of down-the-drain chemicals in whole watersheds: New version of the GREAT-ER software. Environ. Model. Softw. 2015, 64, 1–8. [Google Scholar] [CrossRef]
- Capdevielle, M.; Van Egmond, R.; Whelan, M.; Versteeg, D.; Hofmann-Kamensky, M.; Inauen, J.; Woltering, D. Consideration of Exposure and Species Sensitivity of Triclosan in the Freshwater Environment. Integr. Environ. Assess. Manag. 2008, 4, 15–23. [Google Scholar] [CrossRef]
- Aldekoa, J.; Marcé, R.; Francés, F. Fate and Degradation of Emerging Contaminants in Rivers: Review of Existing Models. In Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2016; Volume 46, pp. 159–193. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Zhang, Z.; Tian, Z. Assessment and a review of research on surface water quality modeling. Ecol. Modell. 2022, 466, 109888. [Google Scholar] [CrossRef]
- Ziemińska-Stolarska, A.; Skrzypski, J. Review of mathematical models of water quality. Ecol. Chem. Eng. S 2012, 19, 197–211. [Google Scholar] [CrossRef] [Green Version]
- Zhi, H.; Webb, D.T.; Schnoor, J.L.; Kolpin, D.W.; Klaper, R.D.; Iwanowicz, L.R.; LeFevre, G.H. Modeling risk dynamics of contaminants of emerging concern in a temperate-region wastewater effluent-dominated stream. Environ. Sci. 2022, 8, 1408–1422. [Google Scholar] [CrossRef]
- Font, C.; Bregoli, F.; Acuna, V.; Sabater, S.; Marcé, R. GLOBAL-FATE (version 1.0.0): A geographical information system (GIS)-based model for assessing contaminants fate in the global river network. Geosci. Model. Dev. 2019, 12, 5213–5228. [Google Scholar] [CrossRef] [Green Version]
- Wool, T.; Ambrose, R.B.; Martin, J.L.; Comer, A. WASP 8: The next generation in the 50-year evolution of USEPA’s water quality model. Water 2020, 12, 1398. [Google Scholar] [CrossRef] [PubMed]
- Reichert, P. AQUASIM—A tool for simulation and data analysis of aquatic systems. J. Phys. A Math. Theor. 1994, 44, 085201. [Google Scholar] [CrossRef]
- Fall, C.; Loaiza-Navía, J.L. Design of a Tracer Test Experience and Dynamic Calibration of the Hydraulic Model for a Full-Scale Wastewater Treatment Plant by Use of AQUASIM. Water Environ. Res. 2007, 79, 893–900. [Google Scholar] [CrossRef]
- Nieto-Juárez, J.I.; Torres-Palma, R.A.; Botero-Coy, A.M.; Hernández, F. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environ. Int. 2021, 155, 106674. [Google Scholar] [CrossRef] [PubMed]
- Katherine, E.K.; Paul, C.D.; Raghu, V.; Christopher, M.H.; Darci, F.; Scott, D.D.; Xinhao, W.; Charlotte, W.H. iSTREEM®: An approach for broad-scale in-stream exposure assessment of “down-the-drain” chemicals. Health Ecol. Risk Assess. 2016, 12, 782–792. [Google Scholar]
- Ferrer, D.L.; Deleo, P.C. Development of an in-stream environmental exposure model for assessing down-the-drain chemicals in Southern Ontario. Water Qual. Res. J. 2017, 52, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. J. Hazard. Mater. 2018, 348, 75–83. [Google Scholar] [CrossRef]
- Kim, W.; Lee, Y.; Kim, S.D. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea. Ecotoxicol. Environ. Saf. 2017, 145, 221–226. [Google Scholar] [CrossRef]
- Wang, Y.; Khan, S.J.; Fan, L.; Roddick, F. Application of a QWASI model to produce validated insights into the fate and transport of six emerging contaminants in a wastewater lagoon system. Sci. Total Environ. 2020, 721, 137676. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Anderson, B.; Zhang, S.; Shi, X.; Zhao, S. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai. Chemosphere 2017, 176, 117–124. [Google Scholar] [CrossRef]
- Austin, T.; Bregoli, F.; Höhne, D.; Hendriks, A.J.; Ragas, A.M.J. Ibuprofen exposure in Europe; ePiE as an alternative to costly environmental monitoring. Environ. Res. 2022, 209, 112777. [Google Scholar] [CrossRef] [PubMed]
- Ragas, A.M.J. ePiE—Exposure to Pharmaceuticals in the Environment: Technical Model Description. Version 1. 1–30 November 2019. Available online: http://i-pie.org/wp-content/uploads/2019/12/ePiE_Technical_Manual-Final_Version_20191202.pdf (accessed on 15 October 2022).
- Vermeire, T.G.; Jager, D.T.; Bussian, B.; Devillers, J.; Den Haan, K.; Hansen, B.; Lundberg, I.; Niessen, H.; Robertson, S.; Tyle, H.; et al. European Union System for the Evaluation of Substances (EUSES). Principles and structure. Chemosphere 1997, 34, 1823–1836. Available online: https://www.sciencedirect.com/science/article/pii/S0045653597000179?via%3Dihub (accessed on 11 February 2023). [CrossRef] [PubMed]
- Berding, V.; Schwartz, S.; Matthies, M. EU Risk Assessment Guidelines—II: Visualisation of the complexity of EUSES. Environ. Sci. Pollut. Res. 1999, 6, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Berding, V.; Matthies, M. European scenarios for EUSES regional distribution model. Environ. Sci. Pollut. Res. 2002, 9, 193–198. [Google Scholar] [CrossRef]
- Kawamoto, K.; Macleod, M.; Mackay, D. Evaluation and Comparison of Multimedia Mass Balance Models of Chemical Fate: Application of EUSES and ChemCAN to 68 Chemicals in Japan. 2000. Available online: www.elsevier.com/locate/chemosphere (accessed on 18 August 2022).
- Spaniol, O.; Bergheim, M.; Dawick, J.; Kötter, D.; Procter, K.M.; Schowanek, G.D.; Stanton, K.; Wheeler, J.; Health, S.; Willing, A. Comparing the European Union System for the Evaluation of Substances (EUSES) environmental exposure calculations with monitoring data for alkyl sulphate surfactants. Environ. Sci. Eur. 2021, 33, 3. [Google Scholar] [CrossRef]
- Arnot, J.A.; Mackay, D.; Parkerton, T.F.; Zaleski, R.T.; Warren, C.S. Multimedia modeling of human exposure to chemical substances: Theroles of food web biomagnification and biotransformation. Environ. Toxicol. Chem. 2010, 29, 45–55. [Google Scholar] [CrossRef]
- Aldekoa, J.; Medici, C.; Osorio, V.; Pérez, S.; Marcé, R.; Barceló, D.; Francés, F. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin. J. Hazard. Mater. 2013, 263, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Koormann, F.; Rominger, J.; Schowanek, D.; Wagner, J.O.; Schröder, R.; Wind, T.; Silvani, M.; Whelan, M.J. Modeling the fate of down-the-drain chemicals in rivers: An improved software for GREAT-ER. Environ. Model. Softw. 2006, 21, 925–936. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Hu, J.; Yu, M.; Li, Y.; Wang, Z. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China. Sci. Total Environ. 2019, 655, 1125–1138. [Google Scholar] [CrossRef]
- Agramont, A.; Soria, F.; Garvizu, C. Evaluation of factors affecting the concentration of an emerging pharmaceutical pollutant (Sulfamethoxazole) in cities with absence of wastewater treatment systems by sensitivity analysis of a global fate transport model. In Proceedings of the International Conference on Sustainable Water Resources Management, Lahore, Pakistan, 23 September 2021. [Google Scholar]
- Wang, S.; Perkins, M.G.; Matthews, D.A.; Zeng, T. Coupling Suspect and Nontarget Screening with Mass Balance Modeling to Characterize Organic Micropollutants in the Onondaga Lake-Three Rivers System. Environ. Sci. Technol. 2021, 55, 15215–15226. [Google Scholar] [CrossRef]
- Mackay, D.; Hickie, B. Mass Balance Model of Source Apportionment, Transport and Fate of PAHs in Lac Saint Louis, Quebec. Chemosphere 2000, 41, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; MacLeod, M.; Li, Z.; Cousins, I.T. Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. Chemosphere 2013, 93, 2086–2093. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, L. Linking of GIS to Environmental Model for the Assessment of Contaminants. 2004. Available online: http://www.ascelibrary.org (accessed on 1 September 2022).
- MacLeod, M.; Fraser, A.J.; Mackay, D. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ. Toxicol. Chem. 2002, 21, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Weeks, J.; Meylan, B.; Guiney, P.D.; Howard, P.H. Environmental release, environmental concentrations, and ecological risk of N,N-diethyl-m-toluamide (DEET). Integr. Environ. Assess. Manag. 2012, 8, 135–166. [Google Scholar] [CrossRef] [PubMed]
- McDonough, K.; Csiszar, S.A.; Fan, M.; Kapo, K.; Menzies, J.; Vamshi, R. Spatial modeling framework for aquatic exposure assessments of chemicals disposed down the drain: Case studies for China and Japan. Integr. Environ. Assess. Manag. 2022, 18, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Verdonck, F.A.M.; Boeije, G.; Vandenberghe, V.; Comber, M.; De Wolf, W.; Feijtel, T.; Holt, M.; Koch, V.; Lecloux, A.; Siebel-Sauer, A.; et al. A rule-based screening environmental risk assessment tool derived from EUSES. Chemosphere 2005, 58, 1169–1176. [Google Scholar] [CrossRef]
- Kawamoto, K.; Park, K.A. Calculation of environmental concentration and comparison of output for existing chemicals using regional multimedia modeling. Chemosphere 2006, 63, 1154–1164. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew MWVan Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 1983, 50, 885–900. Available online: https://elibrary.asabe.org/abstract.asp?aid=23153 (accessed on 11 February 2023). [CrossRef]
- Zhang, L.; Cao, Y.; Hao, X.; Zhang, Y.; Liu, J. Application of the GREAT-ER model for environmental risk assessment of nonylphenol and nonylphenol ethoxylates in China. Environ. Sci. Pollut. Res. 2015, 22, 18531–18540. [Google Scholar] [CrossRef] [Green Version]
- Schwab, B.W.; Hayes, E.P.; Fiori, J.M.; Mastrocco, F.J.; Roden, N.M.; Cragin, D.; Meyerhoff, R.D.; D’Aco, V.J. Human pharmaceuticals in US surface waters: A human health risk assessment. Regul. Toxicol. Pharmacol. 2005, 42, 296–312. [Google Scholar] [CrossRef]
- Wind, T.; Werner, U.; Jacob, M.; Hauk, A. Environmental concentrations of boron, LAS, EDTA, NTA and Triclosan simulated with GREAT-ER in the river Itter. Chemosphere 2004, 54, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Poiger, T.; Buser, H.R.; Müller, M.D. Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements, and mathematical modeling. Environ. Toxicol. Chem. 2001, 20, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Morley, S.K.; Brito, T.V.; Welling, D.T. Measures of Model Performance Based On the Log Accuracy Ratio. Space Weather 2018, 16, 69–88. [Google Scholar] [CrossRef]
- Grill, G.; Khan, U.; Lehner, B.; Nicell, J.; Ariwi, J. Risk assessment of down-the-drain chemicals at large spatial scales: Model development and application to contaminants originating from urban areas in the Saint Lawrence River Basin. Sci. Total Environ. 2016, 541, 825–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathon, B.; Coquery, M.; Miège, C.; Vandycke, A.; Choubert, J.M. Influence of water depth and season on the photodegradation of micropollutants in a free-water surface constructed wetland receiving treated wastewater. Chemosphere 2019, 235, 260–270. [Google Scholar] [CrossRef]
Model | Environment (Medium) | Type (Sources Simulated) | Pollutant Modeled (Risk Assessment) | Advantage | Limitation | Open-Source User Interface | References |
---|---|---|---|---|---|---|---|
phATE | Streams Rivers Lakes Reservoirs | 1D (point) | Pharmaceuticals (antibiotics) (screen-level risk assessment) | Provides a range of load emission scenarios. | Highly sensitive to WWTP removal efficiency, affecting all predictions in the catchment. Does not consider in-sewer removal. Limited geographic scope. Coarse-resolution descript segment (~16 km). | Available | [98] |
GREATER | Rivers | 1D (point and diffuse) | Pharmaceuticals (antibiotics) and nutrients (screen-level risk assessment) | It enables the study of potential risk management scenarios. It provides a statistical distribution of pollutants. The stochastic simulation enables to account for uncertainties in the input data. Efficient emission/source calculation. Considers removal of a compound during sewer transport. | The laborious pre-processing steps to set up the database and fill in the required data for the parameters. Calculates spatially steady-state concentrations susceptible to temporal fluctuation. Emission pattern calculation influenced by the WWTP bypass flow. | Available | [17,97,98] |
QUAL-2E | Streams Rivers | 1D (point and diffuse) | Dissolved oxygen, organic nutrients, algal concentration, antibiotics | Simulation point and nonpoint sources. Provides simulation of non-uniform flow. | Cannot model the temporal variability of flow. The model gives a good simulation of narrow rivers (highly sensitive to water depth) as deep rivers have different stratification and mixing rate. It cannot simulate the effect of toxic organic compounds and heavy metals. It is inappropriate for waterbodies exhibiting significant lateral variations. | Available | [99,100] |
QUAL-2K | Streams Rivers | 1D (point and diffuse) | Pharmaceuticals (antibiotics), conventional parameters | Enables to divide the river into unevenly spaced segments. Simulation of the effect of the generic pathogen, total inorganic carbon, and light extinction. | It is inappropriate for waterbodies exhibiting significant lateral variations. Did not consider the effect of sedimentation. | Available | [98,101] |
Global FATE | Rivers Lakes Reservoirs | 2D/3D (point) | Pharmaceuticals (antibiotics) | Efficient fine resolution to represent small streams. Worldwide geographic scope | Cannot simulate flow variabilities. Require extensive data and external hydrological pre-processing steps. | Available | [102] |
WASP | Rivers Reservoirs Lakes Estuaries Coastal areas Wetlands | 1D/2D/3D (point and diffuse) | Pharmaceuticals (antibiotics), conventional parameters | It enables analysis of the significance of individual mechanisms. It includes a sediment diagenesis module for remineralization. It provides a sensitivity analysis. | Difficult to obtain segment/site-specific data to calibrate fate mechanisms. It has a limitation in modeling concentration gradients in the mixing zone for wide channels with poor mixing conditions. Cannot simulate high-flow events. It requires external hydrodynamic models for flow information. | Available | [2,63,86,94,103] |
AQUASIM | Streams Rivers Lakes Reservoirs | 2D/3D (point) | Pharmaceuticals (antibiotics), conventional parameters | Efficient vertical mixing representation and temperature profiling. | It assumes uniform horizontal mixing in lakes and reservoirs. | Available on request | [104,105,106] |
iSTREEM | Streams Rivers | 1D (point) | Pharmaceuticals (antibiotics) (conservative risk assessment) | Provides simple simplicity of simulation. | Suitable for simple simulation. Requires pre-processed data. Does not consider in-sewer removal. | Available | [107,108] |
QWASI | Lakes | Multimedia fugacity (air, sediment, and water) (point and diffuse) | Pharmaceuticals (antibiotics) and organic pollutants (screening-level risk assessment) | Efficient and advanced modeling of lake temperature stratification. Modeling of ice melt in lakes. | Result influenced by choice and calculation of fugacity factor. Depends on uniform mixing condition. Requires exclusive half-life degradation data. | Available | [5,109,110,111,112] |
ePiE | Streams Rivers Lakes Reservoirs Estuaries | 1D (Point) | Pharmaceuticals (antibiotics) | Ease of application. | Suitable for narrow rivers. It does not consider in-sewer removal. | Available on request | [95,113,114] |
EUSES | Streams Rivers Marine | Multimedia fugacity (air, water, Sediment, soil, and groundwater) (point) | Organic chemicals, pharmaceuticals (antibiotics) (conservative risk assessment) | Simulation in multimedia, including groundwater pollution. Simulation of exposure through the food chain. Allows estimation of media-specific degradation | Provides steady-state concentration susceptible to temporal fluctuation. Extensive data requirement. Intensive pre-processing of model parametrization for site-specific simulation. | Available | [115,116,117,118,119,120] |
Model | Target Antibiotics | Application | Error Metrics | Deviation | Often Used Metrics | Range | Region | References |
---|---|---|---|---|---|---|---|---|
phATE | Ibuprofen | Modeling concentration of antibiotics | R2 | 0.48 | - | - | Canada | [42] |
Naproxen | Modeling concentration of antibiotics | R2 | 0.68 | |||||
Carbamazepine | Modeling concentration of antibiotics | R2 | 0.68 | |||||
Acetaminophen | Predict human antibiotics in surface water | MF | 47 | USA | [136] | |||
Erythromycin-H2O | Predict human antibiotics in surface water | MF | 4 | |||||
Oxytetracycline | Predict human antibiotics in surface water | MF | 0.02 | |||||
Sulfamethoxazole | Predict human antibiotics in surface water | MF | 9 | |||||
Tetracycline | Predict human antibiotics in surface water | MF | 6.5 | |||||
GREAT-ER | Triclosan | Predict catchment concentration | MF | 0.769 | R2 | ≥0.7 | Germany | [137] |
Triclosan | Predict local concentration | MF | 1.5 | |||||
Bezafibrate | Predict local concentration | MF | 0.03 | Spain | [11] | |||
Carbamazepine | Predict local concentration | MF | 0.5 | |||||
Citalopram | Predict local concentration | MF | 0.1 | |||||
Diclofenac | Predict local concentration | MF | 0.1 | |||||
Erythromycin | Predict local concentration | MF | 2 | |||||
Fluoxetine | Predict local concentration | MF | 0.7 | |||||
Ketoprofen | Predict local concentration | MF | 0.003 | |||||
Trimethoprim | Predict local concentration | MF | 0.18 | |||||
Atorvastatin | Predict regional concentration | MF | 0.2 | |||||
Carbamazepine | Predict regional concentration | MF | 0.004 | |||||
Fluoxetine | Predict regional concentration | MF | 0.52 | |||||
Naproxen | Predict regional concentration | MF | 3 | |||||
Trimethoprim | Predict regional concentration | MF | 0.08 | |||||
Diclofenac | Predict local concentration | RMSE | 0 to 80 | Spain | [121] | |||
QUAL-2K | Carbamazepine | Degradation study | RE | 5.85 to 6.82 | RMSE | ≤10% | China | [123] |
Triclosan | Degradation study | RE | −7.18 to −157 | |||||
WASP | Venlafaxine | Predict concentration in river water | PBIAS | −5 to −13 | PBIAS | ≤25% | Canada | [2] |
Naproxen | Predict concentration in river water | PBIAS | −1 to 5 | |||||
Carbamazepine | Predict concentration in river water | PBIAS | −22 | |||||
Venlafaxine | Predict concentration in river water | PBIAS | −9 to −26 | |||||
Carbamazepine | Predict concentration in river water | PBIAS | −1 to −23 | |||||
Venlafaxine | Predict concentration in river water | PBIAS | −28 | |||||
AQUASIM | Diclofenac | Degradation estimation of diclofenac | R2 | 0.92 | _ | _ | Switzerland | [138] |
iSTREEM | Carbamazepine | Modeling fate carbamazepine | MF | 0.5 | - | - | Canada | [108] |
Climbazole | Predict concentration in river water | MF | 4 | China | ||||
QWASI | Amoxicillin | Antibiotic fate modeling in lakes | LGMF | 1.32 | - | - | China | [5] |
Ciprofloxacin | Antibiotic fate modeling in lakes | LGMF | −1.35–1.84 | |||||
Chlortetracycline | Antibiotic fate modeling in lakes | LGMF | −0.88–2.13 | |||||
Enrofloxacin | Antibiotic fate modeling in lakes | LGMF | −0.24 −2.54 | |||||
Erythromycin | Antibiotic fate modeling in lakes | LGMF | −1.28 to 2.02 | |||||
Norfloxacin | Antibiotic fate modeling in lakes | LGMF | −1.62–2.53 | |||||
Oxytetracycline | Antibiotic fate modeling in lakes | LGMF | −1.95–1.64 | |||||
Sulfachlorpyridazine | Antibiotic fate modeling in lakes | LGMF | 0.29–1.91 | |||||
Sulfameter | Antibiotic fate modeling in lakes | LGMF | −0.75–2.04 | |||||
Sulfamonomethoxine | Antibiotic fate modeling in lakes | LGMF | −0.24–1.75 | |||||
Sulfamethoxazole | Antibiotic fate modeling in lakes | LGMF | −1.62–1.59 | |||||
Sulfathiazole | Antibiotic fate modeling in lakes | LGMF | −0.92–0.03 | |||||
Tetracycline | Antibiotic fate modeling in lakes | LGMF | −0.22–1.92 | |||||
Trimethoprim | Antibiotic fate modeling in lakes | LGMF | 0.12–2.27 | |||||
ePiE | 30 pharmaceuticals | Model validation | MSE | 127 a | MSE | ≤150 | UK | [95] |
Ibuprofen | Evaluation of model prediction | MSE | 126 | UK | [113] | |||
Ibuprofen | Evaluation of model prediction | MSE | 88 | German | ||||
Ibuprofen | Evaluation of model prediction | MSE | 866 | Spain | ||||
Ibuprofen | Evaluation of model prediction | MSE | 419 | Slovenia | ||||
Ibuprofen | Evaluation of model prediction | MSE | 4427 | Croatia | ||||
EUSES | Dichloromethane | Predict regional concentration | MF | 6 | R2 | ≤0.7 | Japan | [133] |
1,2-dichloroethane | Predict regional concentration | MF | 0.33 | |||||
Triclosan | Predict regional concentration | MF | 0.067 | Germany | [137] | |||
Triclosan | Predict local concentration | MF | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addis, T.Z.; Adu, J.T.; Kumarasamy, M.; Demlie, M. Assessment of Existing Fate and Transport Models for Predicting Antibiotic Degradation and Transport in the Aquatic Environment: A Review. Water 2023, 15, 1511. https://doi.org/10.3390/w15081511
Addis TZ, Adu JT, Kumarasamy M, Demlie M. Assessment of Existing Fate and Transport Models for Predicting Antibiotic Degradation and Transport in the Aquatic Environment: A Review. Water. 2023; 15(8):1511. https://doi.org/10.3390/w15081511
Chicago/Turabian StyleAddis, Temesgen Zelalem, Joy Tuoyo Adu, Muthukrishnavellaisamy Kumarasamy, and Molla Demlie. 2023. "Assessment of Existing Fate and Transport Models for Predicting Antibiotic Degradation and Transport in the Aquatic Environment: A Review" Water 15, no. 8: 1511. https://doi.org/10.3390/w15081511
APA StyleAddis, T. Z., Adu, J. T., Kumarasamy, M., & Demlie, M. (2023). Assessment of Existing Fate and Transport Models for Predicting Antibiotic Degradation and Transport in the Aquatic Environment: A Review. Water, 15(8), 1511. https://doi.org/10.3390/w15081511