Spatiotemporal Patterns of Hydrological Variables in Water-Resource Regions of China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. WEP-CN Model
2.3.2. Trend Analysis
3. Results
3.1. Mean Spatial Pattern of Key Hydrological Variables
3.2. Temporal Changes of Key Hydrological Variables in China and Its WRRs
3.2.1. Temporal Trends of Hydrological Variables on National Scale
3.2.2. Hydrological Variation and Its Differences among WRRs
3.3. Drivers and Constraints for Changes in Key Hydrological Variables
3.3.1. Driving Forces for Changes in R and Inf
3.3.2. Constraints on Actual ET
3.4. Assessment of Internal Renewable Water Resources
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Class I WRRs/Nation | Variability of IRWR | Variability of Surface IRWR | Variability of Ground IRWR | |||
---|---|---|---|---|---|---|
Case (1) | Case (2) | Case (1) | Case (2) | Case (1) | Case (2) | |
SRB | 14.51% | −11.19% | 12.37% | −9.34% | 14.49% | −12.49% |
LRB | −10.96% | 7.26% | −10.22% | 7.61% | −4.31% | −1.71% |
HRB | −37.4% | −19.48% | −38.07% | −6.41% | −31.55% | −29.43% |
YRB | −9.91% | −2.68% | −9.44% | −3.67% | 2.88% | −4.83% |
HURB | −11.44% | 23.23% | −10.39% | 21.55% | −13.99% | 27.83% |
NWRB | −1.25% | 11.61% | 2.47% | 11.47% | −6.87% | −3.24% |
YZRB | 7.55% | −8.64% | 6.21% | −7.53% | 8.72% | −12.47% |
PRB | 7.81% | −8.64% | 8.27% | −8.41% | 6.06% | −8.04% |
SERB | 1.94% | −12.5% | 1.52% | −11.44% | −2.33% | −6.78% |
SWRB | −1.94% | 0.76% | −5.43% | 4.55% | 5.8% | −7.3% |
Nation | 1.79% | −5.15% | 1.6% | −4.13% | 3.32% | −8.25% |
References
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Lake, P.S.; Palmer, M.A.; Biro, P.; Cole, J.; Covich, A.P.; Dahm, C.; Gibert, J.; Goedkoop, W.; Martens, K.; Verhoeven, J.O.S. Global Change and the Biodiversity of Freshwater Ecosystems: Impacts on Linkages between Above-Sediment and Sediment Biota: All forms of anthropogenic disturbance—Changes in land use, biogeochemical processes, or biotic addition or loss—Not only damage the biota of freshwater sediments but also disrupt the linkages between above-sediment and sediment-dwelling biota. BioScience 2000, 50, 1099–1107. [Google Scholar]
- Abbas, A.; Waseem, M.; Ullah, W.; Zhao, C.; Zhu, J. Spatiotemporal analysis of meteorological and hydrological droughts and their propagations. Water 2021, 13, 2237. [Google Scholar] [CrossRef]
- Wijeratne, V.P.; Li, G.; Mehmood, M.S.; Abbas, A. Assessing the Impact of Long-Term ENSO, SST, and IOD Dynamics on Extreme Hydrological Events (EHEs) in the Kelani River Basin (KRB), Sri Lanka. Atmosphere 2022, 14, 79. [Google Scholar] [CrossRef]
- Chahine, M.T. The hydrological cycle and its influence on climate. Nature 1992, 359, 373. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Nandakumar, N.; Mein, R.G. Uncertainty in rainfall—Runoff model simulations and the implications for predicting the hydrologic effects of land-use change. J. Hydrol. 1997, 192, 211–232. [Google Scholar] [CrossRef]
- Ott, B.; Uhlenbrook, S. Quantifying the impact of land-use changes at the event and seasonal time scale using a process-oriented catchment model. Hydrol. Earth Syst. Sci. 2004, 8, 62–78. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Kingston, D.; Massei, N.; Dieppois, B.; Hannah, D.; Hartmann, A.; Lavers, D.; Vidal, J.P. Moving beyond the catchment scale: Value and opportunities in large-scale hydrology to understand our changing world. Hydrol. Processes 2020, 34, 2292–2298. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.; Moradkhani, H.; Sorooshian, S. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res. 2006, 42, W08421. [Google Scholar] [CrossRef]
- Kim, J.; Han, H. Evaluation of the CMORPH high-resolution precipitation product for hydrological applications over South Korea. Atmospheric Research. 2021, 258, 105650. [Google Scholar] [CrossRef]
- Rivas, R.; Caselles, V. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sens. Environ. 2004, 93, 68–76. [Google Scholar] [CrossRef]
- Lo, M.H.; Famiglietti, J.S.; Reager, J.T.; Rodell, M.; Swenson, S.; Wu, W.Y. GRACE-Based Estimates of Global Groundwater Depletion. Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts. In Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 135–146. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; Van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, J.; Ferguson, C.R.; Troy, T.J.; Wood, E.F.; McCabe, M.F. Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett. 2009, 36, L07403. [Google Scholar] [CrossRef]
- Tang, G.; Behrangi, A.; Long, D.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2008, 559, 294–306. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar]
- Alcamo, J.; Döll, P.; Henrichs, T.T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Widén-Nilsson, E.; Halldin, S.; Xu, C. Global water-balance modelling with WASMOD-M: Parameter estimation and regionalisation. J. Hydrol. 2007, 340, 105–118. [Google Scholar] [CrossRef]
- Kumar, R.; Livneh, B.; Samaniego, L. Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resour. Res. 2013, 49, 5700–5714. [Google Scholar] [CrossRef]
- Donnelly, C.; Andersson, J.C.; Arheimer, B. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 2016, 61, 255–273. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44, W07406. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, H.; Zhou, Z.; Qiu, Y.; Luo, X.; Wang, J.; Yan, D.; Qin, D. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin. J. Hydrol. 2006, 331, 606–629. [Google Scholar] [CrossRef]
- Yang, D.; Musiake, K. A continental scale hydrological model using the distributed approach and its application to Asia. Hydrol. Processes 2003, 17, 2855–2869. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Xu, C.Y.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res. Atmos. 2007, 112, D11120. [Google Scholar] [CrossRef]
- Hao, Y.; Baik, J.; Choi, M. Combining generalized complementary relationship models with the Bayesian Model Averaging method to estimate actual evapotranspiration over China. Agric. For. Meteorol. 2019, 279, 107759. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Chen, X. Reference evapotranspiration changes in China: Natural processes or human influences? Theor. Appl. Climatol. 2011, 103, 479–488. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q. Combining satellite precipitation and long-term ground observations for hydrological monitoring in China. J. Geophys. Res. Atmos. 2015, 120, 6426–6443. [Google Scholar] [CrossRef]
- Zhou, X.; Lei, W. Spatial patterns of sample entropy based on daily precipitation time series in China and their implications for land surface hydrological interactions. Int. J. Climatol. 2020, 40, 1669–1685. [Google Scholar] [CrossRef]
- Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Groundwater storage changes in China from satellite gravity: An overview. Remote Sens. 2018, 10, 674. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Liu, C. Improving hydrological simulations by incorporating GRACE data for model calibration. J. Hydrol. 2018, 557, 291–304. [Google Scholar] [CrossRef]
- Li, D.; Wang, W.; Hu, S.; Li, Y. Characteristics of annual runoff variation in major rivers of China. Hydrol. Processes 2012, 26, 2866–2877. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; He, R.; Liu, C.; Ma, T.; Bao, Z.; Liu, Y. Runoff sensitivity to climate change for hydro-climatically different catchments in China. Stoch. Environ. Res. Risk Assess. 2017, 31, 1011–1021. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, J.; Bao, Z.; Liu, C.; Jin, J.; Wang, G. Past variations and future projection of runoff in typical basins in 10 water zones, China. Sci. Total Environ. 2021, 798, 149277. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, A. A daily 0.25° × 0.25° hydrologically based land surface flux dataset for conterminous China, 1961–2017. J. Hydrol. 2020, 590, 125413. [Google Scholar] [CrossRef]
- Sun, S.; Bi, Z.; Zhou, S.; Wang, H.; Li, Q.; Liu, Y.; Wang, G.; Li, S.; Chen, H.; Zhou, Y. Spatiotemporal shifts in key hydrological variables and dominant factors over China. Hydrol. Processes 2021, 35, E14319. [Google Scholar] [CrossRef]
- Liu, H.; Jia, Y.; Niu, C.; Hu, P.; Du, J.; Su, H.; Zeng, Q. Evolution of Main Water Cycle Fluxes in the Karst Mountain Region of Southwest China. Water 2020, 12, 2262. [Google Scholar]
- Liu, B.; Speed, R. Water Resources Management in the People’s Republic of China. Int. J. Water Resour. Dev. 2009, 25, 193–208. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J.; Weng, J.; Yu, L.; Qi, J.; Liao, Q. Vulnerability of water resources and its spatial heterogeneity in Haihe River Basin, China. Chin. Geogr. Sci. 2014, 24, 525–539. [Google Scholar] [CrossRef]
- Yan, J.; Jia, S.; Lv, A.; Zhu, W. Water resources assessment of China’s transboundary river basins using a machine learning approach. Water Resour. Res. 2019, 55, 632–655. [Google Scholar] [CrossRef]
- China Meteorological Administration Meteorological Data Centre. 2019. Available online: https://data.cma.cn/ (accessed on 4 May 2019).
- Ministry of Water Resources of the People’s Republic of China. Annual Hydrological Report of the People’s Republic of China; Shandong Hydrology Press: Weifang, China, 2015.
- Liu, H.; Jia, Y.; Niu, C.; Su, H.; Wang, J.; Du, J.; Khaki, M.; Hu, P.; Liu, J. Development and validation of a physically-based, national-scale hydrological model in China. J. Hydrol. 2020, 590, 125431. [Google Scholar] [CrossRef]
- Liu, H.; Du, J.; Jia, Y.; Liu, J.; Niu, C.; Gan, Y. Improvement of watershed subdivision method for large scale regional distributed hydrology mode. Adv. Eng. Sci. 2019, 51, 36–44. [Google Scholar]
- Monteith, J.L. Evaporation and environment. In The State and Movement of Water in Living Organisms; Fogg, G.E., Ed.; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Chen, L.; Young, M.H. Green-Ampt infiltration model for sloping surfaces. Water Resour. Res. 2006, 42, W07420. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin Book Series; Oxford University Press: London, UK, 1975; Volume 202, p. 15. [Google Scholar]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Liu, H. Development and Application of Distributed Hydrological Model at the China National Scale Considering the Spatial Difference of Runoff Generation Mechanisms. Ph.D. Thesis, China Institute of Water Resources & Hydropower Research (IWHR), Beijing, China, 2019. (In Chinese). [Google Scholar]
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin III, F.S.; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E.; et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533–540. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.J.; Piao, S. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol. 2019, 269, 239–248. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Yang, Y.; Pan, X.; Ding, Y.; Duan, Z. Permafrost hydrology of the Qinghai-Tibet Plateau: A review of processes and modeling. Front. Earth Sci. 2021, 8, 576838. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Yang, K.; Sheng, Y.; Kleinherenbrink, M.; Yi, S.; Bird, B.W.; Zhang, X.; Zhu, L.; Zhang, G. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophys. Res. Lett. 2017, 44, 892–900. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Piao, S.; Sun, L.; Ciais, P.; Zhang, Y.; Ma, C.; Gan, R.; He, C. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan–Pamir–North Karakoram. Sci. Rep. 2018, 8, 16470. [Google Scholar] [CrossRef] [PubMed]
- Du, J.Q.; Quan, Z.J.; Fang, S.F.; Liu, C.; Wu, J.; Fu, Q. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environ. Sci. Pollut. Res. 2020, 27, 1144–1159. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, H.S.; Yu, L.; He, Y.F. Land reclamation process in northeast China since 1900. Chin. Geogr. Sci. 2003, 13, 119–123. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Yue, X.; Mu, X.; Zhao, G.; Shao, H.; Gao, P. Dynamic changes of sediment load in the middle reaches of the Yellow River basin, China and implications for eco-restoration. Ecol. Eng. 2014, 73, 64–72. [Google Scholar] [CrossRef]
- Kirkham, M.B. Leaf Anatomy and Leaf Elasticity. In Principles of Soil and Plant Water Relations, 2nd ed.; Academic Press: Boston, MA, USA, 2014; pp. 409–430. [Google Scholar]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic: San Diego, CA, USA, 1974. [Google Scholar]
- Wang, H.; Li, Z.; Cao, L.; Feng, R.; Pan, Y. Response of NDVI of natural vegetation to climate changes and drought in China. Land 2021, 10, 966. [Google Scholar] [CrossRef]
- Tang, X.L.; Lv, X.; He, Y. Features of climate change and their effects on glacier snow melting in Xinjiang, China. Comptes Rendus Geosci. 2013, 345, 93–100. [Google Scholar] [CrossRef]
- Zhang, M.; Ren, Q.; Wei, X.; Wang, J.; Yang, X.; Jiang, Z. Climate change, glacier melting and streamflow in the Niyang River Basin, Southeast Tibet, China. Ecohydrology 2011, 4, 288–298. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Review of the World Water Resources by Country; Water Report No. 23; FAO: Rome, Italy, 2003. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2019.
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Wu, S.R.; Gong, M.; Du, Y.; Wang, J.; Li, Y.; Liu, J. Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. J. Clean. Prod. 2019, 224, 375–383. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zuo, J.; Zillante, G. Transformation of water resource management: A case study of the South-to-North Water Diversion project. J. Clean. Prod. 2017, 163, 136–145. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, H.; Peng, X.; Li, J.; Chen, G.; Liu, J. Impact of water price reform on water conservation and economic growth in China. Econ. Anal. Policy 2016, 51, 90–103. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Jiang, L.; Zuo, Q.; Ma, J.; Zhang, Z. Evaluation and prediction of the level of high-quality development: A case study of the Yellow River Basin, China. Ecol. Indic. 2021, 129, 107994. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, Z.; Zhai, J.; Qing, L.; Mengting, Y. Research on meteorological thresholds of drought and flood disaster: A case study in the Huai River Basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 157–167. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Li, L.; Tedesco, L.; Li, F.; Jin, C.; Du, J. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng–Xingkai Plain, China. J. Environ. Manag. 2012, 111, 120–132. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Mao, D.; Zhang, J.; Xi, Y.; Du, B.; Zhang, B. What did China’s National Wetland Conservation Program Achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain. J. Environ. Manag. 2020, 267, 110623. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Lin, P. Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China. Adv. Atmos. Sci. 2019, 36, 1171–1187. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [PubMed]
WRRs | Total Number of Stations | Calibration Period (1956–1980) | Validation Period (1981–2000) | ||||||
---|---|---|---|---|---|---|---|---|---|
NSE > 0.7 | |RE| < 10% | NSE > 0.7 | |RE| < 10% | ||||||
NUM | PCT | NUM | PCT | NUM | PCT | NUM | PCT | ||
China | 203 | 165 | 81% | 184 | 91% | 163 | 80% | 193 | 95% |
SRB | 28 | 20 | 71% | 26 | 94% | 18 | 63% | 26 | 94% |
LRB | 17 | 12 | 73% | 17 | 100% | 14 | 82% | 17 | 100% |
HRB | 16 | 14 | 89% | 12 | 78% | 12 | 75% | 14 | 89% |
YRB | 31 | 22 | 71% | 29 | 93% | 22 | 71% | 29 | 93% |
HURB | 12 | 11 | 90% | 10 | 80% | 8 | 70% | 12 | 100% |
YZRB | 47 | 45 | 96% | 41 | 88% | 47 | 100% | 43 | 92% |
SERB | 12 | 12 | 100% | 12 | 100% | 12 | 100% | 12 | 100% |
PRB | 25 | 25 | 100% | 20 | 80% | 23 | 90% | 20 | 80% |
SWRB | 10 | 6 | 64% | 8 | 82% | 7 | 73% | 10 | 100% |
NWRB | 5 | 3 | 67% | 3 | 67% | 3 | 67% | 3 | 67% |
Variables | Mean (mm) | Z Values | CV (%) |
---|---|---|---|
P | 678.1 | −1.04 | 5.24 |
R | 275.5 | −0.44 | 11.80 |
Inf | 322.6 | −1.04 | 2.57 |
ETa | 431.6 | 1.03 | 3.77 |
Class I WRRs | Location | Number of Class III WRRs | CV of P | CV of R | CV of ET | CV of Inf | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Mean | Median | Mean | Median | Mean | Median | |||
SRB | North | 18 | 5% | 5% | 6% | 5% | 3% | 3% | 6% | 6% |
LRB | 12 | 4% | 4% | 7% | 3% | 2% | 2% | 4% | 2% | |
HRB | 15 | 8% | 7% | 16% | 14% | 6% | 5% | 3% | 2% | |
YRB | 29 | 5% | 4% | 16% | 14% | 4% | 3% | 3% | 2% | |
HURB | 14 | 6% | 6% | 10% | 9% | 3% | 4% | 6% | 6% | |
NWRB | 33 | 11% | 11% | 17% | 18% | 7% | 8% | 4% | 3% | |
YZRB | South | 45 | 3% | 3% | 4% | 3% | 2% | 1% | 8% | 6% |
PRB | 10 | 3% | 2% | 2% | 2% | 1% | 1% | 8% | 6% | |
SERB | 20 | 3% | 3% | 2% | 3% | 2% | 2% | 8% | 7% | |
SWRB | 14 | 6% | 4% | 5% | 2% | 2% | 2% | 14% | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, C.; Liu, H.; Cui, G.; Liu, J. Spatiotemporal Patterns of Hydrological Variables in Water-Resource Regions of China. Water 2023, 15, 1643. https://doi.org/10.3390/w15091643
Zang C, Liu H, Cui G, Liu J. Spatiotemporal Patterns of Hydrological Variables in Water-Resource Regions of China. Water. 2023; 15(9):1643. https://doi.org/10.3390/w15091643
Chicago/Turabian StyleZang, Chao, Huan Liu, Guotao Cui, and Jing Liu. 2023. "Spatiotemporal Patterns of Hydrological Variables in Water-Resource Regions of China" Water 15, no. 9: 1643. https://doi.org/10.3390/w15091643
APA StyleZang, C., Liu, H., Cui, G., & Liu, J. (2023). Spatiotemporal Patterns of Hydrological Variables in Water-Resource Regions of China. Water, 15(9), 1643. https://doi.org/10.3390/w15091643