Hydro-Meteorological Characteristics of the 1973 Catastrophic Flood in the Mahi Basin, India
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Hydro-Meteorological Data
3.2. Methodology
4. Results
4.1. Rainfall Analysis of the 1973 Flood
4.2. Synoptic Conditions and Rainfall Analysis
4.3. Hydrological Analysis of the 1973 Flood
4.4. Impact of the 1973 Flood
4.5. Floods and Climate Change
4.6. Limitations of the Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kale, V.S.; Hire, P.S.; Baker, V.R. Flood Hydrology and Geomorphology of Monsoon dominated Rivers: The Indian Peninsula. Water Int. 1997, 22, 259–265. [Google Scholar] [CrossRef]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; World Bank Publications: Washington, DC, USA, 2012. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ruin, I.; Creutin, J.D.; Anquetin, S.; Lutoff, C. Human exposure to flashfloods-relation between flood parameters and human vulnerability during a storm of September 2002 in Southern France. J. Hydrol. 2008, 361, 199–213. [Google Scholar] [CrossRef]
- Petrović, A.; Kostadinov, S.; Dragićević, S. The Inventory and Characterization of Torrential Flood Phenomenon in Serbia. Pol. J. Environ. Stud. 2014, 23, 823–830. [Google Scholar]
- Mrozik, K.D. Problems of Local Flooding in Functional Urban Areas in Poland. Water 2022, 14, 2453. [Google Scholar] [CrossRef]
- Ashley, S.T.; Ashley, W.S. Flood fatalities in the United States. J. Appl. Meteorol. Climatol. 2008, 47, 805–818. [Google Scholar] [CrossRef]
- Armah, F.A.; Yawson, D.O.; Yengoh, G.T.; Odoi, J.O.; Afrifa, E.K.A. Impact of floods on livelihoods and vulnerability of natural resource dependent communities in Northern Ghana. Water 2010, 2, 120–139. [Google Scholar] [CrossRef]
- Pande, R.K. Flash flood disasters in Uttarakhand. Disaster Prev. Manag. 2010, 19, 565–570. [Google Scholar] [CrossRef]
- Kotzee, I.; Reyers, B. Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecol. Indic. 2016, 60, 45–53. [Google Scholar] [CrossRef]
- Liu, T.; Shi, P.; Fang, J. Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019). Nat. Hazards 2022, 111, 2601–2625. [Google Scholar] [CrossRef]
- Pereira, S.; Diakakis, M.; Deligiannakis, G.; Zêzere, J.L. Comparing flood mortality in Portugal and Greece (Western and Eastern Mediterranean). Int. J. Disaster Risk Reduct. 2017, 22, 147–157. [Google Scholar] [CrossRef]
- National Disaster Management Authority (NDMA). National Disaster Management Guidelines—Management of Floods; National Institute of Disaster Management (NDMA): New Delhi, India, 2008; pp. 1–135. [Google Scholar]
- Benito, G.; Hudson, P. Flood hazards: The context of fluvial geomorphology. In Geomorphological Hazards and Disaster Prevention; Alcántara-Ayala, I., Goudie, A., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 111–128. [Google Scholar]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 2010, 10, 1679–1724. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M. People in Harm’s Way: Flood Exposure and Poverty in 189 Countries; Policy Research Working Paper No. 9447; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Pawar, U.V.; Hire, P.S.; Gunjal, R.P.; Patil, A.D. Modeling of magnitude and frequency of floods on the Narmada River: India. Model. Earth Syst. Environ. 2020, 6, 2505–2516. [Google Scholar] [CrossRef]
- Elleder, L.; Herget, J.; Roggenkamp, T.; Nießen, A. Historic floods in the city of Prague-a reconstruction of peak discharges for 1481–1825 based on documentary sources. Hydrol. Res. 2013, 44, 202–214. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, K.; Jing, H.; Zuo, J.; Li, P.; Li, Z. Effects of Bridge Piers on Flood Hazards: A Case Study on the Jialing River in China. Water 2019, 11, 1181. [Google Scholar] [CrossRef]
- Pregnolato, M.; Winter, A.O.; Mascarenas, D.; Sen, A.D.; Bates, P.; Motley, M.R. Assessing flooding impact to riverine bridges: An integrated analysis. Nat. Hazards Earth Syst. Sci. 2020, 22, 1559–1576. [Google Scholar] [CrossRef]
- Shah, S. Coping with Natural Disaster: The 1998 Floods in Bangladesh; World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Mustafa, D. Linking access and vulnerability: Perceptions of irrigation and flood management in Pakistan. Prof. Geogr. 2002, 54, 94–105. [Google Scholar] [CrossRef]
- Dhar, O.N.; Rakhecha, P.R.; Mandal, B.N.; Sangam, R.B. The Rainstorm which caused the Morvi Dam Disaster in August 1979. Hydrol. Sci. J. 1981, 26, 71–81. [Google Scholar] [CrossRef]
- Fluixá-Sanmartín, J.; Morales-Torres, A.; Escuder-Bueno, I.; Paredes-Arquiola, J. Quantification of climate change impact on dam failure risk under hydrological scenarios: A case study from a Spanish dam. Nat. Hazards Earth Syst. Sci. 2019, 19, 2117–2139. [Google Scholar] [CrossRef]
- Gaagai, A.; Aouissi, H.A.; Krauklis, A.E.; Burlakovs, J.; Athamena, A.; Zekker, I.; Boudoukha, A.; Benaabidate, L.; Chenchouni, H. Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water 2020, 14, 767. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety and overtopping. J. Earth Sci. Geotech. Eng. 2020, 10, 41–78. [Google Scholar]
- Shrestha, M.S. Impacts of Floods in South Asia. J. South Asia Disaster Stud. 2008, 1, 85–106. [Google Scholar]
- Kronstadt, K.A. Flooding in Pakistan: Overview and Issues for Congress; DIANE Publishing: Collingdale, PA, USA, 2010. [Google Scholar]
- Manzoor, Z.; Ehsan, M.; Khan, M.B.; Manzoor, A.; Akhter, M.M.; Sohail, M.T.; Hussain, A.; Shafi, A.; Abu-Alam, T.; Abioui, M. Floods and flood management and its socio-economic impact on Pakistan: A review of the empirical literature. Front. Environ. Sci. 2022, 10, 1021862. [Google Scholar] [CrossRef]
- Dewan, T.H. Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather. Clim. Extrem. 2015, 7, 36–42. [Google Scholar] [CrossRef]
- Sharma, T.P.; Zhang, J.; Koju, U.; Zhang, Z.; Bai, Y.; Suwal, M.K. Review of flood disaster studies in Nepal: A remote sensing perspective. Int. J. Disaster Risk Reduct. 2019, 34, 18–27. [Google Scholar] [CrossRef]
- Kale, V.S.; Ely, L.L.; Enzel, Y.; Baker, V.R. Geomorphic and hydrologic aspects of monsoon floods on the Narmada and Tapi Rivers in central India. Geomorphology 1994, 10, 157–168. [Google Scholar] [CrossRef]
- Kale, V.S.; Hire, P.S. Effectiveness of monsoon floods on the Tapi River, India: Role of channel geometry and hydrologic regime. Geomorphology 2004, 57, 275–291. [Google Scholar] [CrossRef]
- Mooley, D.A. Some aspects of Indian monsoon depressions and the associated rainfall. Mon. Weather. Rev. 1973, 101, 271–280. [Google Scholar] [CrossRef]
- Mooley, D.A.; Shukla, J. Main features of the westward moving low pressure area system which forms over the Indian region during the summer monsoon season and their relation to the monsoon rainfall. Mausam 1989, 40, 137–152. [Google Scholar] [CrossRef]
- Patil, A.D.; Hire, P.S. Flood hydrometeorological situations associated with monsoon floods on the Par River in western India. Mausam 2021, 71, 687–698. [Google Scholar]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 708. [Google Scholar] [CrossRef]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Clim. Chang. 2014, 4, 456–461. [Google Scholar] [CrossRef]
- Mohan, T.; Rajeevan, M. Past and future trends of hydroclimatic intensity over the Indian monsoon region. J. Geophys. Res. Atmos. 2017, 122, 896–909. [Google Scholar] [CrossRef]
- Pawar, U.; Rathnayake, U. Spatiotemporal rainfall variability and trend analysis over Mahaweli Basin, Sri Lanka. Arab. J. Geosci. 2022, 15, 370–416. [Google Scholar] [CrossRef]
- Pawar, U.; Karunathilaka, P.; Rathnayake, U. Spatio-Temporal Rainfall Variability and Concentration over Sri Lanka. Adv. Meteorol. 2022, 2022, 6456761. [Google Scholar] [CrossRef]
- Ma, N.; Yu, K.; Zhang, Y.; Zhai, J.; Zhang, Y.; Zhang, H. Ground observed climatology and trend in snow cover phenology across China with consideration of snow-free breaks. Clim. Dyn. 2020, 55, 2867–2887. [Google Scholar] [CrossRef]
- Pawar, U.V. An Analytical Study of Geomorphological, Hydrological and Meteorological Characteristics of Floods in the Mahi River Basin: Western India. Ph.D. Thesis, Tilak Maharashtra Vidyapeeth, Pune, India, 2019; pp. 1–215. [Google Scholar]
- Pawar, U.V.; Hire, P.S. Flood frequency analysis of the Mahi Basin by using Log Pearson type III probability distribution. Hydrospat. Anal. 2019, 2, 102–112. [Google Scholar] [CrossRef]
- Sharma, A.; Sensarma, S.; Kumar, K.; Khanna, P.P.; Saini, N.K. Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate. Geochim. Cosmochim. Acta 2013, 104, 63–83. [Google Scholar] [CrossRef]
- Ministry of Irrigation and Power. Report of the Irrigation Commission 1972 Volume III (Part 1); Ministry of Irrigation and Power: New Delhi, India, 1972; pp. 354–383. [Google Scholar]
- Patle, P.; Singh, P.K.; Ahmad, I.; Matsuno, Y.; Leh, M.; Ghosh, S. Spatio-temporal estimation of green and blue water consumptions and water and land productivity using satellite remote sensing datasets and WA+ framework: A case study of the Mahi Basin, India. Agric. Water Manag. 2023, 277, 108097. [Google Scholar] [CrossRef]
- India Meteorological Department (IMD). Weather—Monsoon season (June–September 1973). Mausam 1974, 25, 85–92. [Google Scholar] [CrossRef]
- More, D.K. Flood Control Operation of Kadana Reservoir. Master’s Dissertation, University of Roorkee, Roorkee, India, 1986. [Google Scholar]
- Abbi, S.D.S.; Nagasubramanian, M.R.; Jain, B.C. Rainfall and floods in India during 1973 southwest monsoon period. Indian J. Meteorol. Geophys. 1974, 25, 363–370. [Google Scholar] [CrossRef]
- Alexander, G.; Grorge, C.A.; Jambunathan, R. Cyclones and depressions of 1973—Bay of Bengal and Arabian Sea. Ind. J. Meteorol. Geophys. 1974, 25, 347–362. [Google Scholar]
- Merz, B.; Plate, E.J. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resour. Res. 1997, 33, 2909–2922. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.F.; Todorovik, D.; Domergue, J.M. Assessment of initial soil moisture conditions for event-based rainfall runoff modelling. J. Hydrol. 2010, 380, 305–317. [Google Scholar] [CrossRef]
- Penna, D.; Tromp-van Meerveld, H.J.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an Alpine headwater catchment. J. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef]
- Chifflard, P.; Kranl, J.; Zur Strassen, G.; Zepp, H. The significance of soil moisture in forecasting characteristics of flood events. A statistical analysis in two nested catchments. J. Hydrol. Hydromech. 2018, 66, 1–11. [Google Scholar] [CrossRef]
- Han, H.; Kim, J.; Chandrasekhar, V.; Choi, J.; Lim, S. Modeling streamflow enhanced by precipitation from atmospheric river using the NOAA national water model: A case study of the Russian river basin for February 2004. Atmosphere 2019, 10, 466. [Google Scholar] [CrossRef]
- Bronstert, A.; Creutzfeldt, B.; Graeff, T.; Hajnsek, I.; Heistermann, M.; Itzerott, S.; Jagdhuber, T.; Kneis, D.; Lück, E.; Reusser, D.; et al. Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments. Nat. Hazards 2012, 60, 879–914. [Google Scholar] [CrossRef]
- Eagleson, P. Dynamics of flood frequency. Water Resour. Res. 1972, 14, 878–898. [Google Scholar] [CrossRef]
- Klemes, V. The improbable probabilities of extreme floods and droughts. In Hydrology of Disasters; Starosolszky, O., Melder, O.M., Eds.; James and James: London, UK, 1988; pp. 43–51. [Google Scholar]
- Kulkarni, Y.N.; Shah, C.S. Strengthening foundation of Kadana Dam. In Proceedings of the International Society for Rock Mechanics and Rock Engineering (ISRM) International Symposium, Tokyo, Japan, 21–24 September 1981. [Google Scholar]
- Pawar, U.; Suppawimut, W.; Muttil, N.; Rathnayake, U. A GIS Based Comparative Analysis of Frequency Ratio and Statistical Index Models for Flood Susceptibility Mapping in the Upper Krishna Basin, India. Water 2022, 14, 3771. [Google Scholar] [CrossRef]
- Srishantha, U.; Rathnayake, U. Sustainable urban drainage systems (SUDS) what it is and where do we stand today? Eng. Appl. Sci. Res. 2017, 44, 235–241. [Google Scholar]
- Sohail, M.T.; Hussan, A.; Ehsan, M.; Al-Ansari, N.; Akhter, M.M.; Manzoor, Z.; Elbeltagi, A. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Appl. Water Sci. 2022, 12, 267. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, Y.D.; Xu, C.Y.; Chen, X.; Chen, X.; Singh, V.P. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol. 2007, 336, 316–333. [Google Scholar] [CrossRef]
- Jain, S.K.; Mani, P.; Jain, S.K.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief review of flood forecasting techniques and their applications. Int. J. River Basin Manag. 2008, 16, 329–344. [Google Scholar] [CrossRef]
Month, Date and Year of Flood | Monsoon Rainfall of the Mahi Basin in mm | Synoptic Conditions |
---|---|---|
27 July 1913 | 1072.43 (+24.27%) | Bay of Bengal Depression |
27 July 1927 | 1143.57 (+32.51%) | Bay of Bengal Depression |
September 1933 | 1278.40 (+48.13%) | Bay of Bengal Depression |
July 1941 | 1078.33 (+24.95) | Bay of Bengal Depression |
August 1944 | 1347.11 (+56.10%) | Bay of Bengal Depression |
24 September 1945 | 1148.41 (+33.07%) | Bay of Bengal Depression |
5 August 1946 | 1184.27 (+37.23%) | Land Depression |
15 September 1959 | 1352.49 (+56.72%) | Land Depression |
6 September 1970 | 995.85 (+15.39%) | Land Depression |
7 September 1973 | 1287.94 (+49.24%) | Bay of Bengal Depression |
30 August 1976 | 1247.81 (+44.59%) | Bay of Bengal Depression |
30 August 1978 | 1025.24 (+18.80%) | Bay of Bengal Depression |
2 August 1994 | 1369.06 (+58.64%) | Bay of Bengal Depression |
August 2006 | 1580.94 (+83.19%) | Bay of Bengal Depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawar, U.; Hire, P.; Sarukkalige, R.; Rathnayake, U. Hydro-Meteorological Characteristics of the 1973 Catastrophic Flood in the Mahi Basin, India. Water 2023, 15, 1648. https://doi.org/10.3390/w15091648
Pawar U, Hire P, Sarukkalige R, Rathnayake U. Hydro-Meteorological Characteristics of the 1973 Catastrophic Flood in the Mahi Basin, India. Water. 2023; 15(9):1648. https://doi.org/10.3390/w15091648
Chicago/Turabian StylePawar, Uttam, Pramodkumar Hire, Ranjan Sarukkalige, and Upaka Rathnayake. 2023. "Hydro-Meteorological Characteristics of the 1973 Catastrophic Flood in the Mahi Basin, India" Water 15, no. 9: 1648. https://doi.org/10.3390/w15091648
APA StylePawar, U., Hire, P., Sarukkalige, R., & Rathnayake, U. (2023). Hydro-Meteorological Characteristics of the 1973 Catastrophic Flood in the Mahi Basin, India. Water, 15(9), 1648. https://doi.org/10.3390/w15091648