Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Coastline Extraction Based on GEE and Classification
2.3.2. Calculation of Coastline Fractal Dimension
2.3.3. Coastline Artificialization Index
2.3.4. Center of Gravity Point Shift Model
2.3.5. Annual Coastline Change Rate (EPR)
2.3.6. Night Lighting Processing
2.3.7. Quantitative Analysis of Geodetector on Influencing Factors
3. Results and Analysis
3.1. Accuracy Verification of Coastline Extraction
3.2. Coastline Type
3.3. Fractal Dimension and Artificiality Rate of Coastline
3.4. Jiangsu Coastline Center of Gravity Migration
3.5. Annual Variation of Coastline
4. Discussion
4.1. Rapid Siltation and Erosion Evolution of Jiangsu Coast
4.2. Quantitative Analysis among Influencing Factors
4.3. Impact of Terrestrial Provenance
4.4. Impact of Ocean Dynamics
4.5. Impact of Human Activities
4.5.1. Impact of Land Use Change
4.5.2. Embankment Construction and Human Reclamation
4.5.3. Variation of Nighttime Lighting
4.6. Limitation and Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Mujabar, P.S.; Chandrasekar, N. Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab. J. Geosci. 2013, 6, 647–664. [Google Scholar] [CrossRef]
- Syvitski, J.P.M. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sediment. Geol. 2004, 162, 5–24, Erratum in Sediment. Geol. 2004, 164, 345. [Google Scholar] [CrossRef]
- Frihy, O.E.; Dewidar, K.M. Patterns of erosion/sedimentation, heavy mineral concentration and grain size to interpret boundaries of littoral sub-cells of the Nile Delta, Egypt. Mar. Geol. 2003, 199, 27–43. [Google Scholar] [CrossRef]
- Thanh, T.D.; Saito, Y.; Huy, D.V.; Nguyen, V.l.; Ta, T.K.O.; Tateishi, M. Regimes of human and climate impacts on coastal changes in Vietnam. Reg. Environ. Chang. 2004, 4, 49–62. [Google Scholar] [CrossRef]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Frihy, O.E. Nile Delta Shoreline Changes: Aerial Photographic Study of a 28-Year Period. J. Coast. Res. 1988, 4, 597–606. [Google Scholar]
- Cracknell, A.P. Remote sensing techniques in estuaries and coastal zones an update. Int. J. Remote Sens. 1999, 20, 485–496. [Google Scholar] [CrossRef]
- Solomon, S.M. Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Mar. Lett. 2005, 25, 127–137. [Google Scholar] [CrossRef]
- Chen, L.-C.; Rau, J.-Y. Detection of shoreline changes for tideland areas using multi-temporal satellite images. Int. J. Remote Sens. 1998, 19, 3383–3397. [Google Scholar] [CrossRef]
- Heidler, K.; Mou, L.; Baumhoer, C.; Dietz, A.; Zhu, X.X. HED-UNet: Combined segmentation and edge detection for monitoring the Antarctic coastline. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Seale, C.; Redfern, T.; Chatfield, P.; Luo, C.; Dempsey, K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. Remote Sens. Environ. 2022, 278, 113044. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. Catena 2022, 209, 105840. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Luijendijk, A.P.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S.G.J. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Hagenaars, G.; Luijendijk, A.P.; de Vries, S.; de Boer, W.P. Long Term Coastline Monitoring Derived from Satellite Imagery. 2017. Available online: http://resolver.tudelft.nl/uuid:34a0114b-5e39-4b52-9940-3a7e9f5a2982 (accessed on 20 April 2023).
- Li, X.; Damen, M.C.J. Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. J. Mar. Syst. 2010, 82, S54–S61. [Google Scholar] [CrossRef]
- Cui, B.-L.; Li, X.-Y. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 2011, 127, 32–40. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Qiu, Z.; Fan, J. Detecting coastline change from satellite images based on beach slope estimation in a tidal flat. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 165–176. [Google Scholar] [CrossRef]
- Kirui, K.B.; Kairo, J.G.; Bosire, J.O.; Viergever, K.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean Coast. Manag. 2013, 83, 19–24. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.T.; Xie, F.; Hu, Z.J.; Sun, W.W.; Yang, G.; Yu, J.; Chen, L.; Wang, L.H.; Wang, L.Y.; et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102711. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wu, T.; Wang, Y.D.; Xu, X.L.; Chen, Q.; Yu, L.J. Extraction and accuracy evaluation of multi-temporal coastlines of mainland china since 1940s. Mar. Sci. 2014, 38, 66–73. [Google Scholar]
- Hu, D.X. Upwelling and sedimentation dynamics. Chin. J. Oceanol. Limnol. 1984, 2, 12–19. [Google Scholar]
- Dong, L.X.; Guan, W.; Chen, Q.; Li, X.; Liu, X.; Zeng, X. Sediment transport in the Yellow Sea and East China Sea. Estuar. Coast. Shelf Sci. 2011, 93, 248–258. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Wang, P.; Wang, Y.P. Study on linear and nonlinear bottom friction parameterizations for regional tidal models using data assimilation. Cont. Shelf Res. 2011, 31, 555–573. [Google Scholar] [CrossRef]
- Clinton, N. Otsu’s Method for Image Segmentation. In Google Earth and Earth Engine. 2017. Available online: https://medium.com/google-earth/otsus-method-for-image-segmentation-f5c48f405e (accessed on 20 April 2023).
- Huang, C.; Wylie, B.K.; Yang, L.; Homer, C.G.; Zylstra, G.J. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Liebovitch, L.S.; Tóth, T.I. A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A 1989, 141, 386–390. [Google Scholar] [CrossRef]
- Gong, M. Reclamation Evolution of Shandong Province and Its Influence on Natural Coastline Resources. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Xie, X.M.; Li, S.; Zhang, C.; Li, M.G.; Yao, S.S.; Li, W.D. Numerical Modling of Shoreline Evolution After Harbor Construction at Strong Longshore Sediment Transport Coast. China Harb. Eng. 2017, 37, 7. [Google Scholar]
- Zhu, W.J.; Wang, N.; Zhao, Q.H.; Dong, X.T.; Shen, N.B. Analysis of Erosion and Sedimentation Variation Characteristics of Muddy Coastline in Central Jiangsu from 1984 to 2019. J. Jiangsu Ocean Univ. (Nat. Sci. Ed.) 2020, 29, 58–63. [Google Scholar]
- Ren, M.E.; Xu, T.G.; Zhu, J.W. Comprehensive Survey of Coastal Zone and Tidal Flat Resources in Jiangsu Province; China Ocean Press: Beijing, China, 1986. [Google Scholar]
- Zhang, R.S. Suspended sediment transport processes on tidal mud flat in Jiangsu Province, China. Estuar. Coast. Shelf Sci. 1992, 35, 225–233. [Google Scholar]
- Zhou, L.; Liu, J.; Saito, Y.; Zhang, Z.; Chu, H.; Hu, G. Coastal erosion as a major sediment supplier to continental shelves: Example from the abandoned Old Huanghe (Yellow River) delta. Cont. Shelf Res. 2014, 82, 43–59. [Google Scholar] [CrossRef]
- Choi, B.H.; Fang, G. A Review of Tidal Models for the East China and Yellow Seas. J. Korean Soc. Coast. Ocean. Eng. 1993, 5, 151–171. [Google Scholar]
- Wang, Y.P.; Gao, S.; Jia, J.; Thompson, C.; Gao, J.H.; Yang, Y. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar. Geol. 2012, 291, 147–161. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, Y.P.; Yu, Q.; Du, Z.; Wang, Z.B.; Gao, S. Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents. Geophys Res. Ocean. 2019, 124, 3818–3836. [Google Scholar] [CrossRef]
- Chu, L.; Oloo, F.; Sudmanns, M.; Tiede, D.; Hölbling, D.; Blaschke, T.; Teleoaca, I. Monitoring long-term shoreline dynamics and human activities in the Hangzhou Bay, China, combining daytime and nighttime EO data. Big Earth Data 2020, 4, 242–264. [Google Scholar] [CrossRef]
- Yang, Y.T.; Bian, S.H. Discussion on coastline and its delineation method. Ocean Dev. Manag. 2007, 128, 34–35. [Google Scholar]
- Xu, N.; Gao, Z.Q.; Ning, J.C. Spatial-temporal variations of coastlines in Bohai Rim based on fractal dimension and their causes analysis. J. Mar. Sci. 2016, 34, 45–51. [Google Scholar]
- Wang, L.Y.; Li, P.; Li, S.H.; Jiao, H.B. Study on Coastline Extraction of High Spatial Resolution Images: Take the WorldView-2 Data for Example. Geomat. Spat. Inf. Technol. 2016, 39, 75–78. [Google Scholar]
- Wu, C.Y.; Chen, K.L.; Cao, G.C.; Duan, S.Q.; Xue, H.J.; E, C.Y.; Luo, Z.X. The spatial and temporal differences and driving forces of wind erosion climatic erosivity in Qinghai province from 1984 to 2013. Geogr. Res. 2018, 37, 717–730. [Google Scholar]
- Wang, M. Analysis the change of urban internal spatial structure based on the shift of city gravity in Dalian city. Territ. Nat. Resour. Study 2015, 4, 1–3. [Google Scholar]
- Huang, P.T.; Zhang, X.P. Analysis of temporal and spatial movement of the gravity center of city industry: A case study of Tianjin. Econ. Geogr. 2012, 32, 89–95. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; US Geological Survey: Reston, VA, USA, 2009.
- Elvidge, C.D.; Ziskin, D.C.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M.N. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Liu, C.; Shi, R.X.; Zhang, Y.H.; Shen, Y.; Ma, J.H.; Wu, L.Z.; Chen, W.B.; Tomoko, D.; Chen, L.J.; Lv, T.T.; et al. 2015: How Many Islands (IsIes, Rocks), How Larger Land Areas, and How Long of Shorelines in the World?—Vector Data Based on Google Earth Images. J. Glob. Chang. Data Discov. 2019, 3, 124–148. [Google Scholar]
- Cai, Z.J.; Wu, S.L. Remote sensing analysis of the coastline development in Jiangsu Province. Remote Sens. Land Resour. 2002, 14, 19–23. [Google Scholar]
- Yan, Q.; Liu, R.; Yi, M. Remote sensing analysis of shoreline changes along the coast near the Sheyang River Estuary of Jiangsu Province since 1973. Mar. Sci. 2015, 39, 94–100. [Google Scholar]
- Chen, H. Recent trend and protection of delta coast of old Yellow River estuary in Northern Jiangsu. Mar. Sci. Bull. 1991, 10, 59–65. [Google Scholar]
- Qin, P.; Xie, M.; Chen, S.L.; Chung, C.H. The dynamics of energy content in artificial vegetation of Spartina alterniflora in Binhai County, Jiangsu province. J. Nanjing Univ. 1994, 30, 488–493. [Google Scholar]
- Wang, J.; Zhong, Q. Conservation and countermeasures of biodiversity in the Yancheng Natural Reserve. J. Anhui Norm. Univ. (Nat. Sci.) 2006, 5, 475–479. [Google Scholar]
- Zhang, R.S.; Shen, Y.M.; Lu, L.Y.; Yan, S.G.; Wang, Y.H.; Li, J.L.; Zhang, Z.L. Formation of Spartina alterniflora Salt Marsh on Jiangsu Coast, China. Oceanol. Limnol. Sin. 2005, 4, 358–366. [Google Scholar]
- Qiu, G.L. The impact of human activities on the historical changes of the northern Jiangsu coastline. Kejifeng 2012, 24, 231–233. [Google Scholar]
- Zhang, R.S. Land-Forming History of the Huanghe River Delta and Coastal Plain of North Jiangsu. Acta Geogr. Sin. 1984, 39, 173–184. [Google Scholar]
- Zhang, Z.; Chen, P.; Mao, S.F.; Chang, M. Analysis of coastline changes and the influencing factorsin Yancheng inthelast 20 years. Trans. Oceanol. Limnol. 2022, 44, 136–142. [Google Scholar]
- Wang, X.; Yan, F.; Su, F. Changes in coastline and coastal reclamation in the three most developed areas of China 1980–2018. Ocean Coast. Manag. 2021, 204, 105542. [Google Scholar] [CrossRef]
- Chen, H.Y. The role of Spartina alterniflora in the development of tidal flats in Jiangsu Province. Water Resour. Plan. Des. 2009, 27, 29–56. [Google Scholar]
- Tang, T.G.; Zhang, W.J. Disscussion of Ecological Engineering Benefits of Spartina spp. and Its Ecological Invasion. Strateg. Study CAE 2003, 3, 15–20. [Google Scholar]
- Zhou, L.Y.; Zhang, Z.X.; Lu, K. Shoreline Change and Reclamation of Silty Coast in Jiangsu Province during 1985–2002. Mar. Geol. Front. 2010, 26, 7–11. [Google Scholar]
- Li, M.L.; Wu, S.L.; Gong, X.L.; Yang, L.; Gou, F.G.; Li, J. Characteristics of coastline change under the influence of human activities in central Jiangsu Province from 1989–2019. Mar. Sci. 2022, 46, 60–68. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhao, C.; Jiao, C.; Zheng, G.; Zhu, J. Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu. Water 2023, 15, 1679. https://doi.org/10.3390/w15091679
Huang L, Zhao C, Jiao C, Zheng G, Zhu J. Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu. Water. 2023; 15(9):1679. https://doi.org/10.3390/w15091679
Chicago/Turabian StyleHuang, Lirong, Chengyi Zhao, Caixia Jiao, Guanghui Zheng, and Jianting Zhu. 2023. "Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu" Water 15, no. 9: 1679. https://doi.org/10.3390/w15091679
APA StyleHuang, L., Zhao, C., Jiao, C., Zheng, G., & Zhu, J. (2023). Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu. Water, 15(9), 1679. https://doi.org/10.3390/w15091679