Utilizing Electricity-Producing Bacteria Flora to Mitigate Hydrogen Sulfide Generation in Sewers through an Electron-Pathway Enabled Conductive Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Conductive Material and Electrodes
2.2. Hydrogen Sulfide Suppression Experiment with Conductive Concrete
2.3. Preparation and Analysis Instruction of Wastewater Samples
2.4. Analysis of the Microbial Community Involved in Inhibition of Sulfide Generation
2.4.1. Sample Collection Method of Sludge and Types of Experimental Systems
2.4.2. Analyzing the Bacterial Community by PCR-DGGE Method
2.4.3. Next-Generation Sequencing-Based 16S Metagenomic Analysis
3. Results
3.1. Inhibition of Hydrogen Sulfide Generation Using Conductive Concrete
3.2. Analyzing the Bacterial Community Involved in the Suppression of Sulfide Generation by PCR-DGGE Method
3.3. Next-Generation Sequencing-Based 16S Metagenomic Analysis: Quantitative Evaluation of Bacteria Involved in Sulfide Generation Inhibition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foorginezhad, S.; Mohseni-Dargah, M.; Firoozirad, K.; Aryai, V.; Razmjou, A.; Abbassi, R.; Garaniya, V.; Beheshti, A.; Asadnia, M. Recent Advances in Sensing and Assessment of Corrosion in Sewage Pipelines. Process Saf. Environ. Prot. 2021, 147, 192–213. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Liu, H.; Wang, W.; Guo, Y.; Wang, L. The Effect of Microbiologically Induced Concrete Corrosion in Sewer on the Bearing Capacity of Reinforced Concrete Pipes: Full-Scale Experimental Investigation. Buildings 2022, 12, 1996. [Google Scholar] [CrossRef]
- Chaudhari, B.; Panda, B.; Šavija, B.; Chandra Paul, S. Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials. Materials 2022, 15, 4279. [Google Scholar] [CrossRef] [PubMed]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauro, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.C. Microbially influenced corrosion—Any progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Zhang, L.; De Schryver, P.; De Gusseme, B.; De Muynck, W.; Boon, N.; Verstraete, W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Res. 2008, 42, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pikaar, I.; Sharma, K.R.; Hu, S.; Gernjak, W.; Keller, J.; Yuan, Z. Reducing sewer corrosion through integrated urban water management. Science 2014, 345, 812–814. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Vollertsen, J. Model Parameters for Aerobic Biological Sulfide Oxidation in Sewer Wastewater. Water 2021, 13, 981. [Google Scholar] [CrossRef]
- Anwar, A.; Liu, X.; Zhang, L. Biogenic corrosion of cementitious composite in wastewater sewerage system—A review. Process Saf. Environ. Prot. 2022, 165, 545–585. [Google Scholar] [CrossRef]
- Mohanakrishnan, J.; Gutierrez, O.; Meyer, R.L.; Yuan, Z. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor. Water Res. 2008, 42, 3961–3971. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Verma, P. Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresour. Bioprocess. 2016, 3, 38. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Prasad, R. A Critical Review on Microbial Fuel Cells Technology: Perspectives on Wastewater Treatment. Open Biotechnol. J. 2021, 15, 131–141. [Google Scholar] [CrossRef]
- Van Dinh, C. Anticorrosion Behavior of the SiO2/Epoxy Nanocomposite-Concrete Lining System under H2SO4 Acid Aqueous Environment. ACS Omega 2020, 5, 10533–10542. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E.; Fiertak, M. Biological and chemical corrosion of cement materials modified with polymer. Bull. Polish Acad. Sci. Tech. Sci. 2015, 63, 591–596. [Google Scholar] [CrossRef]
- Imai, T.; Vo, H.T.; Fukushima, M.; Suzuki, T.; Sakuma, H.; Hitomi, T. Application of Conductive Concrete as a Microbial Fuel Cell to Control H2S Emission for Mitigating Sewer Corrosion. Water 2022, 14, 3454. [Google Scholar] [CrossRef]
- Sassani, A.; Ceylan, H.; Kim, S.; Arabzadeh, A.; Taylor, P.C.; Gopalakrishnan, K. Development of Carbon Fiber-modified Electrically Conductive Concrete for Implementation in Des Moines International Airport. Case Stud. Constr. Mater. 2018, 8, 277–291. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef]
- Kongjan, P.; O-Thong, S.; Kotay, M.; Min, B.; Angelidaki, I. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol. Bioeng. 2010, 105, 899–908. [Google Scholar] [CrossRef]
- Schäfer, H.; Muyzer, M.G. Denaturing gradient gel electrophoresis in marine microbial ecology. Methods Microbiol. 2001, 30, 452–468. [Google Scholar]
- Illumina, 16S Metagenomic Sequencing Library Preparation, Part # 150. Illumina.com. 2013. Available online: https://jp.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 24 May 2022).
- Ewing, T.; Ha, P.T.; Beyenal, H. Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources. Appl. Energy 2017, 192, 490–497. [Google Scholar] [CrossRef]
- Liu, L.; Tsyganova, O.; Lee, D.-J.; Su, A.; Chang, J.-S.; Wang, A.; Ren, N. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int. J. Hydrogen Energy 2012, 37, 15792–15800. [Google Scholar] [CrossRef]
- Rubaba, O.; Araki, Y.; Yamamoto, S.; Suzuki, K.; Sakamoto, H.; Matsuda, A.; Futamata, H. No TitleElectricity Producing Property and Bacterial Community Structure in Microbial Fuel Cells Equipped with Membrane Electrode Assembly. J. Biosci. Bioeng. 2013, 116, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Kondaveeti, S.; Lee, S.H.; Park, H.D.; Min, B. Specific enrichment of different Geobacter sp. in anode biofilm by varying interspatial distance of electrodes in air-cathode microbial fuel cell (MFC). Electrochim. Acta 2020, 331, 135388. [Google Scholar] [CrossRef]
- Blanchet, E.; Desmond, E.; Erable, B.; Bridier, A.; Bouchez, T.; Bergel, A. Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment. Bioresour. Technol. 2015, 185, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annu. Rev. Microbiol. 2017, 71, 643–664. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Cho, K.; Bae, H.; Lee, C. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: Their potential for enhanced biomethanation. Appl. Microbiol. Biotechnol. 2015, 99, 10355–10366. [Google Scholar] [CrossRef]
- González, J.; Sánchez, M.; Gómez, X. Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. C J. Carbon Res. 2018, 4, 59. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef]
- Nielsen, L.P.; Risgaard-Petersen, N.; Fossing, H.; Christensen, P.B.; Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 2010, 463, 1071–1074. [Google Scholar] [CrossRef]
- Clauwaert, P.; Rabaey, K.; Aelterman, P.; de Schamphelaire, L.; Pham, T.H.; Boeckx, P.; Boon, N.; Verstraete, W. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 2007, 41, 3354–3360. [Google Scholar] [CrossRef]
- Yanuka-Golub, K.; Reshef, L.; Rishpon, J.; Gophna, U. Specific Desulfuromonas Strains Can Determine Startup Times of Microbial Fuel Cells. Appl. Sci. 2020, 10, 8570. [Google Scholar] [CrossRef]
Sample | Experimental System | Methods for Sludge Collection |
---|---|---|
➀ | Open circuit (Without electron pathway) conductive concrete | Collect sludge on electrode surfaces with a medicine spoon |
➁ | Sludge is scraped from the electrode surface using a cutter knife, enabling the accumulation and growth of microbial communities for subsequent analysis | |
➂ | Sludge obtained from the bottom of the tank | |
➃ | Closed circuit (With electron pathway) conductive concrete | Collect sludge on electrode surfaces with a medicine spoon |
➄ | Sludge is scraped from the electrode surface using a cutter knife, enabling the accumulation and growth of microbial communities for subsequent analysis | |
➅ | Sludge obtained from the bottom of the tank | |
➆ | Normal concrete | The biofilm on the surface of the concrete was removed using a cutter knife |
➇ | Sludge sample obtained from the bottom of the tank |
Symbol | Cycle | Bacteria | Similarity (%) |
---|---|---|---|
1B1 | After the end of the cycle 1 | Geobacter uraniireducens Rf4 | 98.28 |
1B2 | Geobacter psychrophilus strain P35 | 100.00 | |
1B3 | Pelobacter carbinolicus DSM 2380 | 96.88 | |
1B4 | Pelobacter carbinolicus DSM 2380 | 95.77 | |
1B5 | Desulfuromonas acetexigens strain 2873 | 97.56 | |
1B6 | Macrococcus epidermidis strain CCN 7099 | 100.00 | |
1B7 | Fusibacter fontis strain KhaIAKB1 | 98.59 | |
1B8 | Fusibacter fontis strain KhaIAKB1 | 98.63 |
Number of Reads | ||||
---|---|---|---|---|
Electrode Surfaces without Electron Pathways | Inside the Electrode without Electron Pathways | Electrode Surfaces with Electron Pathways | Inside the Electrode with Electron Pathways | |
At the start of the experiment | 217.894 | 217.894 | 217.894 | 217.894 |
1st cycle | 173.389 | 209.664 | 193.306 | 172.297 |
2nd cycle | 163.275 | 171.655 | 192.780 | 216.892 |
3rd cycle | 200.233 | 223.374 | 202.819 | 193.217 |
4th cycle | 203.301 | 197.302 | 207.014 | 217.431 |
Before the Experiment Started | After the 1st Cycle | After the 2nd Cycle | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | ||||||||||
Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits |
Dechloromonas | 5.71 | Pseudomonas | 14.49 | Clostridium | 6.28 | Trichococcus | 10.41 | Geobacter | 22.3 | Trichococcus | 9.17 | Trichococcus | 11.82 | Thauera | 12.21 | Desulfuromonas | 11.88 |
Fervidobacterium | 2.82 | Comamonas | 9.02 | Parabacteroides | 5.77 | Clostridium | 7.57 | Desulfuromonas | 8.91 | Clostridium | 7.6 | Clostridium | 9.49 | Clostridium | 6.4 | Clostridium | 10.5 |
Nitrospira | 2.39 | Stenotrophomonas | 3.92 | Trichococcus | 5.05 | Alkaliphilus | 5.47 | Parabacteroides | 4.82 | Parabacteroides | 4.55 | Parabacteroides | 3.87 | Trichococcus | 5.46 | Geobacter | 10.27 |
Anaerobaculum | 1.99 | Ochrobactrum | 3.34 | Comamonas | 4.79 | Parabacteroides | 3.9 | Clostridium | 3.6 | Cystobacter | 4.15 | Alkaliphilus | 3.54 | Chthoniobacter | 3.32 | Trichococcus | 6.4 |
Clostridium | 1.75 | Thauera | 3.12 | Fusibacter | 3.91 | Fusibacter | 2.68 | Trichococcus | 3.55 | Alkaliphilus | 2.71 | Cystobacter | 2.91 | Parabacteroides | 2.84 | Thauera | 5.07 |
Saccharopolyspora | 1.69 | Azospirillum | 2.99 | Pseudomonas | 3.55 | Geobacter | 2.22 | Alkaliphilus | 2.6 | Fusibacter | 2.25 | Pedobacter | 2.73 | Pedobacter | 2.83 | Alkaliphilus | 2.46 |
Lewinella | 1.45 | Campylobacter | 2.37 | Alkaliphilus | 3.13 | Sedimentibacter | 2.02 | Pedobacter | 2.13 | Pedobacter | 2.07 | Sedimentibacter | 2.12 | Desulfuromonas | 2.42 | Pedobacter | 2.37 |
Caldilinea | 1.31 | Diaphorobacter | 2.1 | Brevundimonas | 2.47 | Enterococcus | 1.84 | Fusibacter | 2.09 | Sedimentibacter | 2.02 | Fusibacter | 1.92 | Cystobacter | 1.81 | Parabacteroides | 2.32 |
Tepidanaerobacter | 1.27 | Shinella | 1.82 | Arcobacter | 1.71 | Nitrospira | 1.42 | Desulfobulbus | 1.6 | Chryseobacterium | 1.86 | Sphingobacterium | 1.9 | Arcobacter | 1.77 | Sedimentibacter | 1.58 |
Candidatus Scalindua | 1.25 | Delftia | 1.79 | Thauera | 1.55 | Lactococcus | 1.4 | Sedimentibacter | 1.27 | Sphingobacterium | 1.61 | Candidatus Tammella | 1.32 | Geobacter | 1.65 | Fusibacter | 1.46 |
Thauera | 1.16 | Clostridium | 1.74 | Sedimentibacter | 1.53 | Heliorestis | 1.37 | Dechloromonas | 1.14 | Chthoniobacter | 1.48 | Chryseobacterium | 1.25 | Sphaerochaeta | 1.53 | Desulfovibrio | 0.95 |
Bifidobacterium | 1.13 | Trichococcus | 1.63 | Desulfobulbus | 1.31 | Saccharopolyspora | 1.3 | Lactococcus | 1.11 | Candidatus Tammella | 1.11 | Heliorestis | 1.2 | Fusibacter | 1.5 | Candidatus Tammella | 0.93 |
Vogesella | 1.05 | Flavobacterium | 1.57 | Pedobacter | 1.22 | Desulfovibrio | 1.28 | Thauera | 0.99 | Desulfovibrio | 0.87 | Desulfovibrio | 0.78 | Sphingobacterium | 1.49 | Cystobacter | 0.86 |
Rhodobacter | 1 | Acidovorax | 1.54 | Saccharopolyspora | 1.09 | Candidatus Tammella | 0.95 | Enterococcus | 0.77 | Heliorestis | 0.76 | Myroides | 0.76 | Azoarcus | 1.36 | Lactococcus | 0.81 |
Thermodesulfovibrio | 0.97 | Uliginosibacterium | 1.53 | Desulfomicrobium | 1.07 | Desulfuromonas | 0.92 | Tolumonas | 0.65 | Aminiphilus | 0.64 | Desulfobulbus | 0.71 | Alkaliphilus | 1.31 | Sphingobacterium | 0.77 |
Dokdonella | 0.89 | Devosia | 1.52 | Stenotrophomonas | 1.02 | Dechloromonas | 0.85 | Bacteroides | 0.64 | Treponema | 0.56 | Thauera | 0.68 | Desulfovibrio | 1.3 | Arcobacter | 0.7 |
Hyphomicrobium | 0.86 | Snowella | 1.36 | Heliorestis | 0.94 | Azospirillum | 0.79 | Desulfovibrio | 0.63 | Synergistes | 0.54 | Flavobacterium | 0.64 | Pseudomonas | 1.23 | Pseudomonas | 0.7 |
Aminiphilus | 0.83 | Brevundimonas | 1.26 | Enterococcus | 0.91 | Pedobacter | 0.74 | Cystobacter | 0.6 | Fervidobacterium | 0.54 | Treponema | 0.61 | Sedimentibacter | 1.14 | Myroides | 0.69 |
Megasphaera | 0.82 | Xenophilus | 1.21 | Lactococcus | 0.9 | Candidatus Scalindua | 0.71 | Desulfosarcina | 0.56 | Acholeplasma | 0.53 | Chthoniobacter | 0.59 | Synergistes | 1.03 | Comamonas | 0.67 |
Azospirillum | 0.82 | Bdellovibrio | 1.16 | Bacteroides | 0.87 | Holdemania | 0.7 | Saccharopolyspora | 0.54 | Tepidanaerobacter | 0.52 | Synergistes | 0.56 | Aequorivita | 0.95 | Acholeplasma | 0.58 |
other | 68.86 | other | 40.51 | other | 50.94 | other | 51.48 | other | 39.49 | other | 54.46 | other | 50.6 | other | 46.47 | other | 38.05 |
After the 3rd Cycle | After the 4th Cycle | ||||||||||||||||
Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | Electrode Surface without Electron Pathway | Inside Electrode without Electron Pathway | ||||||||||
Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | Genus | %_hits | ||
Clostridium | 35.95 | Clostridium | 49.59 | Clostridium | 29.51 | Clostridium | 24.78 | Clostridium | 25.68 | Clostridium | 36.07 | Clostridium | 18.96 | Trichococcus | 28.13 | ||
Trichococcus | 17.1 | Trichococcus | 12.02 | Trichococcus | 6.24 | Desulfuromonas | 23.59 | Trichococcus | 11.16 | Trichococcus | 19.03 | Trichococcus | 12.17 | Clostridium | 20.06 | ||
Parabacteroides | 1.91 | Parabacteroides | 2.38 | Pedobacter | 4.57 | Geobacter | 13.82 | Anaerostipes | 4.14 | Pedobacter | 4 | Anaerostipes | 9.99 | Desulfuromonas | 10.16 | ||
Sedimentibacter | 1.58 | Pedobacter | 1.8 | Parabacteroides | 3.08 | Trichococcus | 4.74 | Blautia | 3.81 | Bacteroides | 1.73 | Blautia | 8.69 | Anaerostipes | 4.89 | ||
Alkaliphilus | 1.56 | Heliorestis | 1.56 | Desulfuromonas | 2.07 | Pedobacter | 2.72 | Pedobacter | 3.11 | Desulfomicrobium | 1.69 | Pseudomonas | 2.8 | Blautia | 4.04 | ||
Pedobacter | 1.38 | Sedimentibacter | 1.29 | Tolumonas | 1.75 | Parabacteroides | 1.92 | Pseudomonas | 3.08 | Anaerostipes | 1.6 | Alkaliphilus | 1.87 | Geobacter | 3.32 | ||
Heliorestis | 1.37 | Alkaliphilus | 1.23 | Bacteroides | 1.53 | Treponema | 0.76 | Desulfomicrobium | 2.43 | Blautia | 1.43 | Thauera | 1.64 | Pedobacter | 1.84 | ||
Desulfomicrobium | 0.89 | Desulfomicrobium | 0.73 | Sedimentibacter | 1.4 | Sedimentibacter | 0.73 | Bacteroides | 2.19 | Acidaminococcus | 1.22 | Hydrogenophaga | 1.59 | Parabacteroides | 1.8 | ||
Zoogloea | 0.66 | Candidatus Tammella | 0.66 | Hydrogenophaga | 1.15 | Sphingobacterium | 0.65 | Acidaminococcus | 1.62 | Treponema | 1.19 | Pedobacter | 1.54 | Desulfovibrio | 1 | ||
Blautia | 0.65 | Desulfovibrio | 0.65 | Chthoniobacter | 1.13 | Alkaliphilus | 0.6 | Parabacteroides | 1.31 | Parabacteroides | 1.16 | Shinella | 1.42 | Acidaminococcus | 1 | ||
Desulfovibrio | 0.64 | Zoogloea | 0.6 | Alkaliphilus | 1.05 | Tolumonas | 0.56 | Alkaliphilus | 1.06 | Desulfobulbus | 0.85 | Parabacteroides | 1.16 | Desulfomicrobium | 0.84 | ||
Hydrogenophaga | 0.59 | Pseudomonas | 0.57 | Geobacter | 1.03 | Desulfobulbus | 0.52 | Treponema | 1.03 | Sphingobacterium | 0.82 | Agrobacterium | 0.97 | Sedimentibacter | 0.65 | ||
Candidatus Tammella | 0.59 | Enterococcus | 0.55 | Zoogloea | 0.91 | Desulfuromusa | 0.48 | Sedimentibacter | 0.99 | Heliorestis | 0.8 | Acidaminococcus | 0.89 | Treponema | 0.63 | ||
Anaerostipes | 0.57 | Acetobacterium | 0.45 | Treponema | 0.9 | Bacteroides | 0.4 | Desulfobulbus | 0.75 | Acholeplasma | 0.78 | Bacteroides | 0.78 | Bacteroides | 0.63 | ||
Fusibacter | 0.52 | Myroides | 0.44 | Sphingobacterium | 0.87 | Lactococcus | 0.39 | Heliorestis | 0.68 | Sedimentibacter | 0.65 | Candidatus Tammella | 0.75 | Sphingobacterium | 0.62 | ||
Dechloromonas | 0.48 | Desulfonauticus | 0.41 | Desulfomicrobium | 0.81 | Desulfomicrobium | 0.37 | Bellilinea | 0.67 | Desulfovibrio | 0.59 | Arcobacter | 0.74 | Alkaliphilus | 0.62 | ||
Pseudomonas | 0.47 | Flavobacterium | 0.4 | Candidatus Tammella | 0.72 | Myroides | 0.35 | Sphingobacterium | 0.66 | Methyloversatilis | 0.54 | Comamonas | 0.74 | Candidatus Tammella | 0.54 | ||
Bacteroides | 0.46 | Fusibacter | 0.39 | Thiobacillus | 0.68 | Desulfovibrio | 0.34 | Candidatus Tammella | 0.57 | Alkaliphilus | 0.51 | Sphingobacterium | 0.66 | Desulfobulbus | 0.52 | ||
Enterococcus | 0.45 | Desulfobulbus | 0.35 | Flavobacterium | 0.67 | Cystobacter | 0.33 | Desulfotalea | 0.53 | Rhodobacter | 0.5 | Rhizobium | 0.66 | Anaeromusa | 0.48 | ||
Desulfonauticus | 0.44 | Desulfuromonas | 0.35 | Desulfovibrio | 0.65 | Desulfosarcina | 0.31 | Methyloversatilis | 0.52 | Desulfotignum | 0.49 | Desulfomicrobium | 0.62 | Heliorestis | 0.35 | ||
other | 31.74 | other | 23.61 | other | 39.28 | other | 21.66 | other | 34.03 | other | 24.36 | other | 31.38 | other | 17.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, H.T.; Imai, T.; Fukushima, M.; Suzuki, T.; Sakuma, H.; Hitomi, T.; Hung, Y.-T. Utilizing Electricity-Producing Bacteria Flora to Mitigate Hydrogen Sulfide Generation in Sewers through an Electron-Pathway Enabled Conductive Concrete. Water 2023, 15, 1749. https://doi.org/10.3390/w15091749
Vo HT, Imai T, Fukushima M, Suzuki T, Sakuma H, Hitomi T, Hung Y-T. Utilizing Electricity-Producing Bacteria Flora to Mitigate Hydrogen Sulfide Generation in Sewers through an Electron-Pathway Enabled Conductive Concrete. Water. 2023; 15(9):1749. https://doi.org/10.3390/w15091749
Chicago/Turabian StyleVo, Huy Thanh, Tsuyoshi Imai, Masato Fukushima, Tasuma Suzuki, Hiraku Sakuma, Takashi Hitomi, and Yung-Tse Hung. 2023. "Utilizing Electricity-Producing Bacteria Flora to Mitigate Hydrogen Sulfide Generation in Sewers through an Electron-Pathway Enabled Conductive Concrete" Water 15, no. 9: 1749. https://doi.org/10.3390/w15091749
APA StyleVo, H. T., Imai, T., Fukushima, M., Suzuki, T., Sakuma, H., Hitomi, T., & Hung, Y. -T. (2023). Utilizing Electricity-Producing Bacteria Flora to Mitigate Hydrogen Sulfide Generation in Sewers through an Electron-Pathway Enabled Conductive Concrete. Water, 15(9), 1749. https://doi.org/10.3390/w15091749