Association among the Presence of Rotavirus Group A and Types of Sources Located in Rural Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Communities Considered for Water Collections
2.2. Sample Filtration and Concentration
2.3. Extraction of Genetic Material and cDNA Synthesis
2.4. Real-Time Polymerase Chain Reaction
2.5. Sample Size and Statistical Analysis
3. Results
3.1. Percentage of Samples Collected by Counties and by Types of Sources
3.2. Positive Samples by Counties and Types of Sources
3.3. Association among Sources and Counties with Presence of Rotavirus
3.4. Comparison of the Number of Genomic Copies per Liter Considering the Types of Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Ortín, R.; Santiso-Bellón, C.; Vila-Vicent, S.; Carmona-Vicente, N.; Rodriguez-Diaz, J.; Buesa, J. Rotavirus symptomatic infection among unvaccinated and vaccinated children in Valencia, Spain. BMC Infect. Dis. 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Akdag, A.I.; Gupta, S.; Khan, N.; Upadhayay, A.; Ray, P. Epidemiology and clinical features of rotavirus, adenovirus, and astrovirus infections and coinfections in children with acute gastroenteritis prior to rotavirus vaccine introduction in Meerut, North India. J. Med Virol. 2019, 92, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Brito, R.S.; do Carmo Filho, J.R.; Vila, V.D.; Silva, A.C. Epidemiological characteristics and strategies for the prevention of diarrheal disease in indigenous children: A scoping review. Enferm. Clin. 2020, 30, 53–62. [Google Scholar] [CrossRef]
- Sadiq, A.; Bokhari, H.; Noreen, Z.; Asghar, R.M.; Bostan, N. Magnitude of Rotavirus A and Campylobacter jejuni infections in children with diarrhea in Twin cities of Rawalpindi and Islamabad, Pakistan. BMC Infect. Dis. 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.N.; de Sousa, T.T.; da Silva, R.A.; Fiaccadori, F.S.; Souza, M.; Badr, K.R.; de Paula Cardoso, D.D. Phylogenetic analysis of G1P[8] and G12P[8] rotavirus A samples obtained in the pre- and post-vaccine periods, and molecular modeling of VP4 and VP7 proteins. Acta Trop. 2017, 173, 153–159. [Google Scholar] [CrossRef]
- Almeida, T.N.V.; Fiaccadori, F.S.; Souza, M.; Borges, A.M.T.; Cardoso, D.D. Molecular characterization of group a rotavirus before and after the introduction of vaccines in Brazil. Rev. Soc. Bras. Med. Trop. 2015, 48, 599–602. [Google Scholar] [CrossRef]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Prim. 2017, 3, 1–39. [Google Scholar] [CrossRef]
- Reis, M.M.; Santos, L.D.T.; da Silva, A.J.; de Pinho, G.P.; Montes, W.G. Metal Contamination of Water and Sediments of the Vieira River, Montes Claros, Brazil. Arch. Environ. Contam. Toxicol. 2019, 77, 527–536. [Google Scholar] [CrossRef]
- Scalize, P.S.; Gabriel, E.F.M.; Lima, F.S.; Arruda, P.N.; Lopes, H.T.L.; Reis, Y.P.; Carneiro, L.C.; Bezerra, N.R.; Fiaccadori, F.S.; Baumann, L.R.F. Physicochemical, microbiological quality, and risk assessment of water consumed by a quilombola community in midwestern Brazil. Environ. Sci. Pollut. Res. 2021, 28, 35941–35957. [Google Scholar] [CrossRef]
- Do Vale, G.B.; Ruggeri Junior, H.C.; Scalize, P.S. Service and precariousness of sanitary sewage in rural communities in the state of Goiás, Brazil. Engenharia Sanitaria e Ambiental 2022, 27, 1067–1075. [Google Scholar] [CrossRef]
- Pataca, L.C.M.; Pedrosa, M.A.F.; Zolnikov, T.R.; Mol, M.P.G. Water quality index and sanitary and socioeconomic indicators in Minas Gerais, Brazil. Environ. Monit. Assess. 2020, 192, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.; Scalize, P.; Moreira Gabriel, E.; Gomes, R.; Gama, A.; Demoliner, M.; Spilki, F.R.; Vieira, J.D.; Carneiro, L.C. Escherichia coli, Species C Human Adenovirus, and Enterovirus in Water Samples Consumed in Rural Areas of Goiás, Brazil. Food Environ. Virol. 2022, 14, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Prado, T.; Miagostovich, M.P. Environmental virology and sanitation in Brazil: A narrative review. Cad. Saude Publica 2014, 30, 1367–1378. [Google Scholar] [CrossRef]
- Prez, V.E.; Poma, H.R.; Giordano, G.G.; Victoria, M.; Nates, S.V.; Rajal, V.B.; Barril, P.A. Rotavirus contamination of surface waters from the northwest of Argentina. J. Water Heal. 2020, 18, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Masachessi, G.; Pisano, M.B.; Prez, V.E.; Martínez, L.C.; Michelena, J.F.; Martínez-Wassaf, M.; Giordano, M.O.; Isa, M.B.; Pavan, J.V.; Welter, A.; et al. Enteric Viruses in Surface Waters from Argentina: Molecular and Viable-Virus Detection. Appl. Environ. Microbiol. 2018, 84, 2327–2344. [Google Scholar] [CrossRef]
- Prez, V.E.; Gil, P.I.; Temprana, C.F.; Cuadrado, P.R.; Martínez, L.C.; Giordano, M.O.; Masachessi, G.; Isa, M.B.; Ré, V.E.; Pavan, J.V.; et al. Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. Sci. Total Environ. 2015, 538, 220–229. [Google Scholar] [CrossRef]
- VinodhKumar, O.R.; Sircar, S.; Pruthvishree, B.S.; Nirupama, K.R.; Singh, B.R.; Sinha, D.K.; Rupner, R.; Karthikeyan, A.; Dubal, Z.B.; Malik, Y.S. Cross-sectional study on rotavirus A (RVA) infection and assessment of risk factors in pre- and post-weaning piglets in India. Trop. Anim. Heal. Prod. 2019, 52, 445–452. [Google Scholar] [CrossRef]
- Bortagaray, V.; Girardi, V.; Pou, S.; Lizasoain, A.; Tort, L.F.L.; Spilki, F.R.; Colina, R.; Victoria, M. Detection, Quantification, and Microbial Risk Assessment of Group A Rotavirus in Rivers from Uruguay. Food Environ. Virol. 2019, 12, 89–98. [Google Scholar] [CrossRef]
- Keller, R.; Pratte-Santos, R.; Scarpati, K.; Martins, S.A.; Loss, S.M.; Fumian, T.M.; Miagostovich, M.P.; Cassini, S.T. Surveillance of Enteric Viruses and Thermotolerant Coliforms in Surface Water and Bivalves from a Mangrove Estuary in Southeastern Brazil. Food Environ. Virol. 2019, 11, 288–296. [Google Scholar] [CrossRef]
- Leite, N.K.; Stolberg, J.; da Cruz, S.P.; Tavela, A.D.O.; Safanelli, J.L.; Marchini, H.R.; Exterkoetter, R.; Leite, G.M.C.; Krusche, A.V.; Johnson, M.S. Hydrochemistry of shallow groundwater and springs used for potable supply in Southern Brazil. Environ. Earth Sci. 2018, 77, 80. [Google Scholar] [CrossRef]
- Rodrigues Peres, M.; Ebdon, J.; Purnell, S.; Taylor, H. Potential microbial transmission pathways in rural communities using multiple alternative water sources in semi-arid Brazil. Int. J. Hyg. Environ. Health 2020, 224, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Winston, J.J.; Escamilla, V.; Perez-Heydrich, C.; Carrel, M.; Yunus, M.; Streatfield, P.K.; Emch, M. Protective Benefits of Deep Tube Wells against Childhood Diarrhea in Matlab, Bangladesh. Am. J. Public Health 2013, 103, 1287–1291. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Kumar, M. Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: A case study from Texvalley (Tiruppur region) of India. Chemosphere 2020, 265, 129083. [Google Scholar] [CrossRef]
- Amorim, M.; Tomazi, L.; Silva, R.; Gestinari, R.; Figueiredo, T. Avaliação das condições habitacionais e de saúde da comunidade quilombola boqueirão, bahia, brasil evaluation of housing and health conditions of boqueirão afro descendant community, state of bahia, brazil. Original Article Biosci J. 2013, 29, 1049–1057. [Google Scholar]
- Cruz Santos, V.; Nagib Boery, E.; Narriman Silva de Oliveira Boery, R.; Ferraz dos Anjos, K. Condições de saúde e qualidade de vida de idoso negro quilombola conditions of health and quality of life of the quilombola elderly black condiciones de salud y la calidad de vida de ancianos negros quilombolas. Rev. Enferm UFPE Line 2014, 8, 2603. [Google Scholar]
- Scalize, P.S.; Barros, E.; Soares, L.; Hora, K.; Ferreira, N.; Baumann, L. Avaliação da qualidade da água para abastecimento no as-sentamento de reforma agrária Canudos, Estado de Goiás. Revista Ambiente e Agua 2014, 9, 445–458. [Google Scholar]
- Do Silva, J.F.A.; Pereira, R.G. Panorama global da distribuição e uso de água doce. Rev. Ibero-Am. de Ciências Ambient. 2019, 10, 263–280. [Google Scholar] [CrossRef]
- Kurwadkar, S. Groundwater Pollution and Vulnerability Assessment. Water Environ. Res. 2017, 89, 1561–1577. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, T. Evaluation of quantitative and qualitative sustainability of aquifers by groundwater footprint methodology: Case study: West Azerbaijan Province, Iran. Environ. Monit. Assess. 2021, 193, 1–18. [Google Scholar] [CrossRef]
- Truchado, P.; Garre, A.; Gil, M.I.; Simón-Andreu, P.J.; Sánchez, G.; Allende, A. Monitoring of human enteric virus and coliphages throughout water reuse system of wastewater treatment plants to irrigation endpoint of leafy greens. Sci. Total. Environ. 2021, 782, 146837. [Google Scholar] [CrossRef] [PubMed]
- Upfold, N.S.; Luke, G.A.; Knox, C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. Food Environ. Virol. 2021, 13, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Hoxie, I.; Dennehy, J.J. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021, 13, 1460. [Google Scholar] [CrossRef]
- Boene, S.S.; João, E.D.; Strydom, A.; Munlela, B.; Chissaque, A.; Bauhofer, A.F.L.; Nabetse, E.; Latifo, D.; Cala, A.; Mapaco, L.; et al. Prevalence and genome characterization of porcine rotavirus A in southern Mozambique. Infect. Genet. Evol. 2020, 87, 104637. [Google Scholar] [CrossRef] [PubMed]
- Lešková, V.; Jacková, A.; Vlasáková, M.; Vilček, S. Genetic characterization of a border disease virus isolate originating from Slovakia. Acta Virol. 2013, 57, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Dóró, R.; Farkas, S.L.; Martella, V.; Bányai, K. Zoonotic transmission of rotavirus: Surveillance and control. Expert Rev. Anti-Infective Ther. 2015, 13, 1337–1350. [Google Scholar] [CrossRef]
- Gutierrez, L.; Nguyen, T.H. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement. Environ. Sci. Technol. 2012, 46, 8705–8713. [Google Scholar] [CrossRef]
- Atabakhsh, P.; Kargar, M.; Doosti, A. Detection and evaluation of rotavirus surveillance methods as viral indicator in the aquatic environments. Braz. J. Microbiol. 2021, 52, 811–820. [Google Scholar] [CrossRef]
- Katayama, H.; Shimasaki, A.; Ohgaki, S. Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl. Environ. Microbiol. 2002, 68, 1033–1039. [Google Scholar] [CrossRef]
- Vecchia, F.; Kluge, M.; Luz, R.B.; Silva, J.; Spilki, F.R. Assessment of enteric viruses in a sewage treatment plant located in Porto Alegre, southern Brazil. Braz. J. Biol. 2012, 72, 839–846. [Google Scholar] [CrossRef]
- De La Cruz Hernández, S.I.; Anaya Molina, Y.; Gómez Santiago, F.; Terán Vega, H.L.; Monroy Leyva, E.; Méndez Pérez, H.; Lozano, H.G. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico. Diagn. Microbiol. Infect. Dis. 2018, 90, 272–276. [Google Scholar] [CrossRef]
- Anaya-Molina, Y.; Hernández, S.I.D.L.C.; Andrés-Dionicio, A.E.; Terán-Vega, H.L.; Méndez-Pérez, H.; Castro-Escarpulli, G.; García-Lozano, H. A one-step real-time RT-PCR helps to identify mixed rotavirus infections in Mexico. Diagn. Microbiol. Infect. Dis. 2018, 92, 288–293. [Google Scholar] [CrossRef]
- Castells, M.; Schild, C.; Caffarena, D.; Bok, M.; Giannitti, F.; Armendano, J.; Riet-Correa, F.; Victoria, M.; Parreño, V.; Colina, R. Prevalence and viability of group A rotavirus in dairy farm water sources. J. Appl. Microbiol. 2018, 124, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Díaz Alarcón, R.G.; Liotta, D.J.; Miño, S. Zoonotic RVA: State of the Art and Distribution in the Animal World. Viruses 2022, 14, 2554. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.T.L.; Baumann, L.R.F.; Scalize, P.S. A Contamination Predictive Model for Escherichia coli in Rural Communities Dug Shallow Wells. Sustainability 2023, 15, 2408. [Google Scholar] [CrossRef]
- Baird, J.M.; Summers, R.; Plummer, R. Cisterns and safe drinking water in Canada. Can. Water Resour. J. 2012, 38, 121–134. [Google Scholar] [CrossRef]
- Steyer, A.; Torkar, K.G.; Gutiérrez-Aguirre, I.; Poljšak-Prijatelj, M. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia. Int. J. Hyg. Environ. Health 2011, 214, 392–398. [Google Scholar] [CrossRef]
- Paul, J.H.; Rose, J.B.; Jiang, S.C.; Zhou, X.; Cochran, P.; Kellogg, C.; Lukasik, J. Evidence for groundwater and surface marine water contamination by waste disposal wells in the florida keys. Water Res. 1997, 31, 1448–1454. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.; La Barbera, P. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 2012, 62, 71–80. [Google Scholar] [CrossRef]
- DaRonco, C.R.; Bárta, R.L.; Da Silva, J.A.G.; Colet, C.D.F.; Stumm, E.M.F. Bioindicadores alternativos da qualidade da água para consumo humano. Res. Soc. Dev. 2020, 9, 2–18. [Google Scholar] [CrossRef]
- Gonella, J.; Tonani, K.A.D.A.; Fregonesi, B.M.; Machado, C.S.; Trevilato, R.B.; Zagui, G.S.; Alves, R.I.D.S.; Munõz, S.I.S. Adenovírus e rotavírus em águas superficiais do córrego Ribeirão Preto, São Paulo, Brasil. Mundo da Saude 2016, 40, 474–480. [Google Scholar] [CrossRef]
- Bui, V.N.; Nguyen, K.V.; Pham, N.T.; Bui, A.N.; Dao, T.D.; Nguyen, T.T.; Nguyen, H.T.; Trinh, D.Q.; Inui, K.; Uchiumi, H.; et al. Potential of electrolyzed water for disinfection of foot-and-mouth disease virus. J. Veter.-Med. Sci. 2017, 79, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Arshad, N.; Adnan, F.; Zaidi, N.-U.S.; Shahid, M.T.; Zahoor, U.; Afzal, M.; Anjum, S. Prevalence of rotavirus, adenovirus, hepatitis A virus and enterovirus in water samples collected from different region of Peshawar, Pakistan. Ann. Agric. Environ. Med. 2016, 23, 576–580. [Google Scholar] [CrossRef] [PubMed]
Municipalities (Community) | Latitude | Longitude |
---|---|---|
Simolândia (Castelo, Retiro e Três Rios) | 14°28′18″ S | 46°29′11″ W |
Nova Roma (Magalhães) | 13°44′25″ S | 46°52′52″ W |
Mineiros (Cedro) | 17°34′43″ S | 52°32′33′′ W |
Mimoso de Goiás (Queixo Dantas) | 15°3′29″ S | 48°9′33″ W |
Cavalcante (São Domingos) | 13°47′51″ S | 47°27′20″ W |
Flores de Goiás (Canabrava) | 14°26′18″ S | 47°2′55″ W |
Cidade Ocidental (Mesquita) | 16°6′19″ S | 47°57′0″ W |
São João d’Aliança (Forte) | 14°42′31″ S | 47°31′17″ W |
Niquelândia (Rafael Machado) | 14°27′28″ S | 48°27′59″ W |
Colinas do Sul (Jose de Coleto) | 14°8′47″ S | 48°4′19″ W |
Campos Belos (Taquarussu) | 13°1′31″ S | 46°45′54″ W |
Iaciara (Extrema) | 14°5′45″ S | 46°37′55″ W |
Padre Bernardo (Sumidouro) | 15°9′36″ S | 48°17′2″ W |
São Miguel do Araguaia (Lageado settlements) | 13°16′30″ S | 50°9′46″ W |
Silvânia (São Sebastião da Garganta settlements) | 16°39′32″ S | 48°36′28″ W |
Titration | Potential Genomic Copies (GC) | Genomic Copies (GC) in Number |
---|---|---|
10−1 | 5.6 × 109 | 5,600,000,000 |
10−2 | 5.6 × 108 | 560,000,000 |
10−3 | 5.6 × 107 | 56,000,000 |
10−4 | 5.6 × 106 | 5,600,000 |
10−5 | 5.6 × 105 | 560,000 |
Counties | Total | Events (%) | Description |
---|---|---|---|
Silvania | 15 | 8 (53) | n = 4 shallow tubular wells, n = 1 spring, n = 2 shallow wells excavated and n = 1 surface spring. |
São Miguel do Araguaia | 14 | 12 (86) | n = 12 of 14 shallow wells excavated. |
Campos Belos | 2 | 1 (50) | n = 1 shallow well excavated. |
Niquelândia | 2 | 2 (100) | n = 1 spring and n = 1 deep tubular well. |
Mimoso de Goiás | 2 | 0 (0) | not detected |
Simolândia | 1 | 0 (0) | not detected |
São João da Aliança | 2 | 0 (0) | not detected |
Cidade Ocidental | 4 | 3 (75) | n = 3 of 4 shallow wells excavated. |
Padre Bernardo | 15 | 7 (47) | n = 7 shallow wells excavated from 15 sources analyzed |
Iaciara | 8 | 4 (50) | n = 4 of 8 cistern with rainwater. |
Flores de Goiás | 6 | 2 (33) | n = 2 of 6 springs. |
Cavalcante | 1 | 0 (0) | not detected |
Mineiros | 7 | 2 (29) | n = 2 of 5 springs. |
Monte Alegre de Goiás | 5 | 5 (100) | n = 5 from surface sources. |
Colina do Sul | 1 | 1 (100) | n = 1 spring. |
Nova Roma | 1 | 0 (0) | not detected |
Total | 86 | 47 (55) | All sources analyzed |
Font Type | Total | Events | OR [95% CI] | p-Value |
---|---|---|---|---|
Cistern with rainwater | 8 | 4 | 1.25 [0.23–6.63] | 0.79 |
Shallow tube well | 7 | 4 | 1.66 [0.28–9.70] | 0.57 |
Deep tube well | 3 | 1 | 0.62 [0.04–8.20] | 0.72 |
Shallow pit dug | 31 | 23 | 3.59 [1.05–12.28] | 0.04 |
Springs | 19 | 7 | 0.72 [0.19–2.72] | 0.63 |
Surface source | 18 | 8 | 1 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, L.C.G.; Lima, F.S.; Silva, P.A.N.d.; Bordoni, G.P.; Scalize, P.S.; Vieira, J.D.G.; Carneiro, L.C. Association among the Presence of Rotavirus Group A and Types of Sources Located in Rural Communities. Water 2023, 15, 1763. https://doi.org/10.3390/w15091763
Barbosa LCG, Lima FS, Silva PANd, Bordoni GP, Scalize PS, Vieira JDG, Carneiro LC. Association among the Presence of Rotavirus Group A and Types of Sources Located in Rural Communities. Water. 2023; 15(9):1763. https://doi.org/10.3390/w15091763
Chicago/Turabian StyleBarbosa, Lucas Candido Gonçalves, Fernando Santos Lima, Paulo Alex Neves da Silva, Graziela Picciola Bordoni, Paulo Sergio Scalize, José Daniel Gonçalves Vieira, and Lilian Carla Carneiro. 2023. "Association among the Presence of Rotavirus Group A and Types of Sources Located in Rural Communities" Water 15, no. 9: 1763. https://doi.org/10.3390/w15091763
APA StyleBarbosa, L. C. G., Lima, F. S., Silva, P. A. N. d., Bordoni, G. P., Scalize, P. S., Vieira, J. D. G., & Carneiro, L. C. (2023). Association among the Presence of Rotavirus Group A and Types of Sources Located in Rural Communities. Water, 15(9), 1763. https://doi.org/10.3390/w15091763