Detection of Landfill Leachate Leakage Based on ERT and OCTEM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Background
2.2. Basic Physical Structure of the Domestic Waste Landfill
2.3. Geophysical Properties
3. Experimental Methods
3.1. Electrical Resistivity Tomography Method
3.2. Opposing-Coil Transient Electromagnetic Method
4. Results and Discussion
4.1. Electrical Resistivity Tomography Method
4.2. Opposing-Coil Transient Electromagnetic Method
4.3. Distribution Characteristics of the Leakage Area and Borehole Verification
5. Conclusions
- (1)
- The inversion sections of the electrical resistivity tomography method and opposing-coil transient electromagnetic method showed a clear low–middle–high resistivity spectrum in the longitudinal direction corresponding to an upper landfill layer, impermeable bottom layer, and the lower part of the argillaceous sandstone. The anomalous area of the pollution plume was observed at the bottom of the leakage area, and the gradually decreased concentration reflected the characteristics of pollution diffusion.
- (2)
- On the basis of the characteristics of the low-resistance anomalies of the inversion section found with the electrical resistivity tomography method and opposing-coil transient electromagnetic method, three low-resistance anomalous areas were delineated in Zone B of the landfill that were identified as impermeable layer seepage areas after being verified using drilling.
- (3)
- The opposing-coil transient electromagnetic method is more sensitive to abnormal changes in resistivity, and is accurate and effective for landfill leakage detection. OCTEM has broad application prospects in landfill leakage detection.
- (4)
- Future studies could focus on the exposure of subsurface information obtained with this study by using the ETR and OCTEM methods. Various exploration methods such as trail trenches and drilling could be used to determine whether the zone was accurately detected or not. Anti-seepage measures could also be taken to prevent possible leakage in the landfill.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huangpu, H.H.; Li, H.Y. Analysis of the factors affecting the production of municipal solid waste. Sci. Technol. Manag. 2018, 20, 44–49. [Google Scholar]
- Xiang, R.; Lei, G.Y.; Xu, Y.; Zhou, Q.; Liu, Y.Q.; Dong, L.; Liu, J.C.; Huang, Q.F. Aging Behaviors of HDPE geomembrane in Landfill environment and its impact on pollution risk of surrounding groundwater. Res. Environ. Sci. 2020, 33, 978–986. [Google Scholar]
- Wang, Q. What causes landfill leakage? Environ. Econ. 2015, 21, 27. [Google Scholar]
- Yuan, W.X.; Chen, S.P.; Tai, J.; Song, L.J. Present situation, problems and development countermeasures of landfill in China. Environ. Sanit. Eng. 2016, 24, 8–11. [Google Scholar]
- Liu, Y.; Bouazza, A.; Gates, W.P.; Rowe, R.K. Hydraulic performance of geosynthetic clay liners to sulfuric acid solutions. Geotext. Geomembr. 2015, 43, 14–23. [Google Scholar] [CrossRef]
- Wang, L.Q.; Li, X.M.; Zhu, F.H. Current situation of municipal solid wastes disposal and development proposals in China. Environ. Pollut. Control. 2015, 37, 106–109. [Google Scholar]
- Li, Y.C.; Xu, Z.; Ma, H.; Hursthouse, A.S. Removal of Manganese (II) from acid mine wastewater: A review of the challenges and opportunities with special emphasis on Mn-Oxidizing bacteria and microalgae. Water 2019, 11, 2493. [Google Scholar] [CrossRef]
- Meng, D.; Li, J.; Liu, T.; Liu, Y.; Yan, M.; Hu, J.; Li, H.; Liu, X.; Liang, Y.; Liu, H.; et al. Effects of redox potential on soil cadmium solubility: Insight into microbial community. J. Environ. Sci. 2019, 75, 224–232. [Google Scholar] [CrossRef]
- Deng, R.J.; Jin, C.S.; Ren, B.Z.; Hou, B.L.; Hursthouse, A.S. The potential for the treatment of antimony-containing wastewater by iron-based adsorbents. Water 2017, 9, 794. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, L.; Hursthouse, A.; Song, N.; Ren, B.Z. Sepiolite-based adsorbents for the removal of potentially toxic elements from water: A strategic review for the case of environmental contamination in Hunan, China. Int. J. Environ. Res. Public Health 2018, 15, 1653. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, C.S.; Wang, Y.X.; Lin, H. Shear-related roughness classification and strength model of natural rock joint based on fuzzy comprehensive evaluation. Int. J. Rock Mech. Min. Sci. 2021, 137, 104550. [Google Scholar] [CrossRef]
- Xie, Q.; Ren, B.Z.; Hursthouse, A.S.; Shi, X.Y. Effects of mining activities on the distribution, controlling factors, and sources of metals in soils from the Xikuangshan south mine, Hunan Province. Integr. Environ. Assess. Manag. 2022, 18, 748–756. [Google Scholar] [CrossRef]
- Feng, H.; Liu, F.; Luo, P.; Xie, G.; Xiao, R.; Hu, W.; Peng, J.; Wu, J. Performance of integrated ecological treatment system for decentralized rural wastewater and significance of plant harvest management. Ecol. Eng. 2018, 124, 69–76. [Google Scholar]
- Zhao, Y.L.; Zhang, L.Y.; Liao, J.; Wang, W.J.; Liu, Q.; Tang, L.M. Experimental study of fracture toughness and subcritical crack growth of three rocks under different environments. Int. J. Geomech. 2020, 20, 04020128. [Google Scholar] [CrossRef]
- Liu, Y.; He, B.; Xie, J.; Lu, Y.; Zhang, L. Compatibility of geosynthetic clay liners at different temperatures. J. Environ. Prot. Ecol. 2021, 22, 2295–2306. [Google Scholar]
- Pandey, L.M.S.; Shukla, S.K. An insight into waste management in Australia with a focus on landfill technology and liner leak detection. J. Clean. Prod. 2019, 225, 1147–1154. [Google Scholar] [CrossRef]
- Tang, L.; Tang, X.W.; Liu, Y.; Qu, S.X. Prediction of pore size characteristics of woven slit-film geotextiles subjected to unequal biaxial tensile strains. Geotext. Geomembr. 2020, 48, 724–734. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, R.J.; Ren, B.Z.; Hou, B.L.; Hursthouse, A. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution. Sci. Rep. 2019, 9, 13021. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y.; Lu, Y. Improved design of risk assessment model for PPP project under the development of marine architecture. J. Coast. Res. 2018, 83, 74–80. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, C.; Dong, X. Fluorescence excitation-emission matrix spectroscopy analysis of landfill leachate DOM in coagulation-flocculation process. Environ. Technol. 2017, 9, 1489–1497. [Google Scholar] [CrossRef]
- Tian, K.; Benson, C.H.; Yang, Y.M.; Tinjum, J.M. Radiation dose and antioxidant depletion in a HDPE geomembrane. Geotext. Geomembr. 2018, 46, 426–435. [Google Scholar] [CrossRef]
- Li, L.; Yu, X.; Wang, T.J.; Tan, Y.G. The in fluence analysis of Jinkou landfill on the ground water quality in Wuhan City. Environ. Pollut. Control. 2016, 38, 7–12. [Google Scholar]
- Li, Y.; Hu, X.; Ren, B.Z. Treatment of antimony mine drainage: Challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria. Water Sci. Technol. 2016, 73, 2039–2051. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ren, B.Z.; Hursthouse, A.S.; Thacker, J.R.M.; Wang, Z.H. Soil from an abandoned manganese mining area (Hunan, China): Significance of health risk from potentially toxic element pollution and its spatial context. Int. J. Environ. Res. Public Health 2020, 17, 6554. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, B.Z.; Hursthouse, A.S.; Zhou, S. Antimony ore tailings: Heavy metals, chemical speciation, and leaching characteristics. Pol. J. Environ. Stud. 2019, 28, 485–495. [Google Scholar] [CrossRef]
- Liu, Y.; Gates, W.P.; Bouazza, A. Acid induced degradation of the bentonite component used in geosynthetic clay liners. Geotext. Geomembr. 2013, 36, 71–80. [Google Scholar] [CrossRef]
- He, Z.; Ren, B.Z.; Hursthouse, A.; Wang, Z. Efficient removal of Cd(II) using SiO2-Mg(OH)2 nanocomposites derived from sepiolite. Int. J. Environ. Res. Public Health 2020, 17, 2223. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, B.Z.; Hursthouse, A.; Deng, R.J.; Hou, B.L. Leaching and releasing characteristics and regularities of Sb and As from antimony mining waste rocks. Pol. J. Environ. Stud. 2019, 28, 4017–4025. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Luo, S.L.; Wang, Y.X.; Wang, W.J.; Zhang, L.Y.; Wan, W. Numerical analysis of karst water inrush and a criterion for establishing the width of water-resistant rock pillars. Mine Water Environ. 2017, 36, 508–519. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhu, G. A review on metal organic frameworks (MOFs) modified membrane for remediation of water pollution. Environ. Eng. Res. 2021, 26, 190435. [Google Scholar] [CrossRef]
- Deng, R.J.; Shao, R.; Ren, B.Z.; Hou, B.L.; Tang, Z.E.; Hursthouse, A. Adsorption of antimony(III) onto Fe(III)-treated humus sludge adsorbent: Behavior and mechanism Insights. Pol. J. Environ. Stud. 2019, 28, 577–586. [Google Scholar] [CrossRef]
- Liu, S.; Fan, S.G.; Sun, Z.H.; Zhang, X.X. Analysis of metal ion content in different treatment stages of landfill leachate. Applied Chem. Ind. 2018, 47, 1304–1307. [Google Scholar]
- Xie, J.; Liu, Y.; Lu, Y.; Zhang, L. Application of the high-density resistivity method in detecting a mined-out area of a quarry in Xiangtan City, Hunan Province. Front. Environ. Sci. 2022, 10, 1068956. [Google Scholar]
- Lu, Y.L.; Yang, T.C.; Abdollah, T.T.; Liu, Y. Fast recognition on shallow groundwater and anomaly analysis using frequency selection sounding method. Water 2023, 15, 96. [Google Scholar] [CrossRef]
- Lu, Y.L.; Cao, C.H.; Liu, Y.Q.; Liu, Y. Study on application of comprehensive geophysical prospecting method in urban geological survey-Taking concealed bedrock detection as an example in Dingcheng district, Changde City, Hunan province, China. Appl. Sci. 2023, 13, 417. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Liu, Q.; Zhang, C.; Liao, J.P.; Lin, H.; Wang, Y. Coupled seepage-damage effect in fractured rock masses: Model development and a case study. Int. J. Rock Mech. Min. Sci. 2021, 144, 104822. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, B.Z.; Hursthouse, A.; Deng, R.J.; Hou, B.L. Study on the migration rules of Sb in antimony ore soil based on HYDRUS-1D. Pol. J. Environ. Stud. 2018, 28, 965–972. [Google Scholar] [CrossRef]
- Liu, Y.; Gates, W.P.; Bouazza, A. Impact of acid leachates on microtexture of bentonites used in geosynthetic clay liners. Geosynth. Int. 2019, 26, 136–145. [Google Scholar] [CrossRef]
- Hou, B.L.; Liu, X.; Li, Z.; Ren, B.Z.; Kuang, Y. Heterogeneous fenton oxidation of butyl xanthate catalyzed by iron-loaded sewage sludge. Fresenius Environ. Bull. 2022, 31, 4125–4131. [Google Scholar]
- Zhao, Y.L.; Zhang, L.; Wang, W.; Tang, J.; Lin, H.; Wan, W. Transient pulse test and morphological analysis of single rock fractures. Int. J. Rock Mech. Min. Sci. 2017, 91, 139–154. [Google Scholar] [CrossRef]
- Hou, B.L.; Li, Z.; Deng, R.J.; Ren, B.Z. Advanced treatment of coal chemical industry wastewater by expansive flow biological aerated filter. Fresenius Environ. Bull. 2017, 26, 4517–4521. [Google Scholar]
- Shi, X.; Ren, B.Z.; Hursthouse, A. Source identification and groundwater health risk assessment of PTEs in the stormwater runoff in an abandoned mining area. Environ. Geochem. Health 2022, 44, 3555–3570. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Y.; Yang, C. Research on the slurry for long-distance large-diameter pipe jacking in expansive soil. Adv. Civ. Eng. 2018, 9, 47–54. [Google Scholar] [CrossRef]
- Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. J. Hydrol. 2012, 454, 101–112. [Google Scholar] [CrossRef]
- Xie, Q.; Ren, B.Z. Pollution and risk assessment of heavy metals in rivers in the antimony capital of Xikuangshan. Sci. Rep. 2022, 12, 14393. [Google Scholar] [CrossRef]
- Cheng, Y.X.; Liu, H.S.; Zhao, Z.Y. Investigation of urban landfill contamination using geophysical methods. Chin. J. Eng. Geophys. 2004, 1, 26–30. [Google Scholar]
- Wang, L.; Long, X.; Wang, T.T.; Xi, Z.Z.; Chen, X.F.; Zhong, M.F.; Dong, Z.Q. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities. Geophys. Geochem. Explor. 2022, 46, 1289–1295. [Google Scholar]
- Yang, T.C.; Gao, Q.S.; Li, H.; Fu, G.H.; Hussain, Y. New insights into the anomaly genesis of the frequency selection method: Supported by numerical modeling and case studies. Pure Appl. Geophys. 2023, 180, 969–982. [Google Scholar] [CrossRef]
- Xi, Z.Z.; Long, X.; Zhou, S.; Huang, L.; Song, G.; Hou, H.T.; Wang, L. Opposing coils transient electro-magnetic method for shallow subsurface detection. Chin. J. Geophys. 2016, 59, 3428–3435. [Google Scholar]
- Coggon, J.H. Electromagnetic and electrical modeling by the finite element method. Geophysics 1970, 36, 132–153. [Google Scholar] [CrossRef]
- Leng, J.H.; Lu, Y.L.; Li, X.Q.; Zhao, X.Y.; Liu, Y. Metallogenetic Potential of the Ziyunshan Pluton in Central Hunan, South China: Insights from Element Geochemistry of Granites. Minerals 2023, 13, 144. [Google Scholar] [CrossRef]
- Lu, Y.L.; Li, X.Q.; Liu, Y.; Leng, J.H. The Establishment of Ore-Controlling Fracture System of Baoginshan Gold Mine Based on Fracture-Tectonic Analysis. Mob. Inf. Syst. 2021, 2021, 5887680. [Google Scholar] [CrossRef]
- Key, K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys. J. Int. 2016, 207, 571–588. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Tao, J.; Cao, C.; Liu, H.; Liu, Y.; Ge, Z. Detection of Landfill Leachate Leakage Based on ERT and OCTEM. Water 2023, 15, 1778. https://doi.org/10.3390/w15091778
Lu Y, Tao J, Cao C, Liu H, Liu Y, Ge Z. Detection of Landfill Leachate Leakage Based on ERT and OCTEM. Water. 2023; 15(9):1778. https://doi.org/10.3390/w15091778
Chicago/Turabian StyleLu, Yulong, Jialuo Tao, Chuanghua Cao, Hanlin Liu, Yang Liu, and Zhengbin Ge. 2023. "Detection of Landfill Leachate Leakage Based on ERT and OCTEM" Water 15, no. 9: 1778. https://doi.org/10.3390/w15091778
APA StyleLu, Y., Tao, J., Cao, C., Liu, H., Liu, Y., & Ge, Z. (2023). Detection of Landfill Leachate Leakage Based on ERT and OCTEM. Water, 15(9), 1778. https://doi.org/10.3390/w15091778