Composite Polysilicate Metal Coagulants for Simultaneous Removal of Organic Matter, Phosphorus, and Ammonium-Nitrogen: Effects of Metal/Silicate Molar Ratio and Basicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Composite Polysilicate Metal Coagulants
2.2.1. Metal/Silicate Molar Ratio Solutions
2.2.2. pHinitial Solutions
2.3. Characterization of Composite Polysilicate Metal Coagulant
2.4. Coagulation Experiments
2.5. Relationship between pHInitial and Basicity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Morphology of Composite Polysilicate Metal Coagulant
3.2. XRD Analysis
3.3. FTIR Spectra Analysis
3.4. Composite Polysilicate-Metal Coagulant Performance
3.4.1. Influence of Metal/Silicate Molar Ratios
3.4.2. Influence of Basicity and pHInitial
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.W.; Yu, H.Q.; Rittmann, B.E. Chemistry: Reuse water pollutants. Nature 2015, 528, 29–31. [Google Scholar] [CrossRef]
- Du, W.J.; Lu, J.-Y.; Hu, Y.-R.; Xiao, J.; Yang, C.; Wu, J.; Huang, B.; Cui, S.; Wang, Y.; Li, W.-W. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 2023, 1, 166–175. [Google Scholar] [CrossRef]
- Malkoske, T.A.; Berube, P.R.; Andrews, R.C. Coagulation/flocculation prior to low pressure membranes in drinking water treatment: A review. Environ. Sci. Water Res. Technol. 2020, 6, 2993–3023. [Google Scholar] [CrossRef]
- Abujazar, M.S.S.; Karaagac, S.U.; Abu Amr, S.S.; Alazaiza, M.Y.D.; Bashir, M.J.K. Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: A review. J. Clean. Prod. 2022, 345, 131133. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Li, L.; Piao, Y.; Ma, F.; Sheng, T.; Sun, C.; Liu, W. Preparation of a novel inorganic-biological composite flocculant for the removal of turbidity and organic matter in the surface water. Desalin. Water Treat. 2020, 180, 219–226. [Google Scholar] [CrossRef]
- Yu, L.; Liu, P.; Zheng, K. Preparation of polymeric ferric sulfate -quaternary ammonium cationic-modified starch composite flocculant and its application in oily sludge treatment. Environ. Prot. Eng. 2022, 48, 35–49. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Sun, J.; Liu, Y.; Wang, H.; Ding, J.; Chen, L.; Tian, X.; Yuan, Y. Physicochemical characterization and flocculation performance evaluation of PAC/PMAPTAC composite flocculant. J. Appl. Polym. Sci. 2022, 139, 51653. [Google Scholar] [CrossRef]
- Lee, K.E.; Morad, N.; Teng, T.T.; Poh, B.T. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chem. Eng. J. 2012, 203, 370–386. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, J.; Qiu, X.; Duan, Y.; Ren, X.; Li, W.; Mu, R.; Yuan, H. Magnesium Hydroxide Slurry Coagulation-Adsorption Performance for Reactive Orange Removal Assisted with PAM. Water Air Soil Pollut. 2023, 234, 176. [Google Scholar] [CrossRef]
- Qin, J.; Wang, H.; Qin, C.; Meng, H.; Qu, W.; Qian, H. The role of sodium carbonate in PAM coagulation-flocculation for oil acidized wastewater treatment. Water Sci. Technol. 2018, 77, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Su, K.; Sun, Y.; Li, P.; Cai, J.; Yang, H. Efficient removal of nano- and micro- sized plastics using a starch-based coagulant in conjunction with polysilicic acid. Sci. Total Environ. 2022, 850, 157829. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ding, A.; Luo, F.; Li, N.; Yao, C. Comparison of polysilicic acid (PSiA) and magnesium sulfate modified polysilicic acid (PMSiS) for effective removal of Congo red from simulated wastewater. Korean J. Chem. Eng. 2020, 37, 978–984. [Google Scholar] [CrossRef]
- Deng, B.; Luo, H.; Jiang, Z.; Jiang, Z.-J.; Liu, M. Co-polymerization of polysilicic-zirconium with enhanced coagulation properties for water purification. Sep. Purif. Technol. 2018, 200, 59–67. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, X.; Cai, J.; Xi, Z.; Yang, H. An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water. Chemosphere 2020, 259, 127464. [Google Scholar] [CrossRef]
- Tansel, B.; Lunn, G.; Monje, O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere 2018, 194, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, S.; Zhang, Q.; Li, Y.; Xing, Y.; Ren, G. Reuse of ammonium sulfate double salt crystals formed during electrolytic manganese production. Water Sci. Technol. 2020, 82, 615–626. [Google Scholar] [CrossRef]
- Gan, Y.; Hang, Z.; Wu, B.; Li, H.; Zhang, W.; Sun, Y.; Li, R.; Zhang, S. Basicity of titanium-based coagulants matters in the treatment of low-turbidity water. Sep. Purif. Technol. 2022, 281, 119989. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Nakazawa, Y.; Matsui, Y.; Shirasaki, N.; Matsushita, T. Sulfate ion in raw water affects performance of high-basicity PACT coagulants produced by Al(OH)(3) dissolution and base-titration: Removal of SPAC particles by coagulation-flocculation, sedimentation, and sand filtration. Water Res. 2020, 183, 116093. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Tang, H.; Stumm, W. The coagulating behaviors of Fe(III) polymeric species—I. Preformed polymers by base addition. Water Res. 1987, 21, 115–121. [Google Scholar] [CrossRef]
- Liu, B.B.; Gao, Y.; Yue, Q.Y.; Guo, K.Y.; Gao, B.Y. The suitability and mechanism of polyaluminum-titanium chloride composite coagulant (PATC) for polystyrene microplastic removal: Structural characterization and theoretical calculation. Water Res. 2023, 232, 119690. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.Y.; Wang, Z.N.; Pan, J.W.; Liu, B.B.; Wang, Y.; Yue, Q.Y.; Gao, Y.; Gao, B.Y. Highly efficient Al-Ti gel as a coagulant for surface water treatment: Insights into the hydrolysate transformation and coagulation mechanism. Water Res. 2022, 221, 118826. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Wang, H.; Li, J.; Li, F. An Effective Method to Remove Antimony in Water by Using Iron-Based Coagulants. Water 2020, 12, 66. [Google Scholar] [CrossRef]
- Lartiges, B.; El Samrani, A.G.; Montarges-Pelletier, E.; Bihannic, I.; Briois, V.; Michot, L. Aggregating ability of ferric chloride in the presence of phosphate ligand. Water Res. 2019, 164, 114960. [Google Scholar] [CrossRef]
- Wang, W.; Qi, L.; Zhang, P.; Luo, J.; Li, J. Removal of COD in wastewater by magnetic coagulant prepared from modified fly ash. Environ. Sci. Pollut. Res. 2022, 29, 52175–52188. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Sun, Z.; Wang, Y.; Liu, H.; Tong, Y.; Wu, L.; Deng, J.; Sun, L. Effect of polyaluminium silicate sulphate with different alkyl chain lengths on oily sewage in oil fields. Chem. Eng. J. 2022, 450, 138125. [Google Scholar] [CrossRef]
- Wei, Y.; Ding, A.; Chen, Y. Removal of refractory dyes by a novel chlorine-free coagulant of polyferric-silicate-acetate (PFSA): Characterization and performance evaluation. J. Environ. Chem. Eng. 2022, 10, 108524. [Google Scholar] [CrossRef]
- Zhuang, J.; Qi, Y.; Yang, H.; Li, H.; Shi, T. Preparation of polyaluminum zirconium silicate coagulant and its performance in water treatment. J. Water Process Eng. 2021, 41, 102023. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, H.; Deng, J.; Wu, L.; Hu, M.; Tong, Y.; Sun, L.; Liu, H. Preparation of polyaluminium silicate sulphate by gravity supercritical method and its coagulation in oily sewage. Chemosphere 2023, 313, 137504. [Google Scholar] [CrossRef]
- Dayarathne, H.N.P.; Angove, M.J.; Aryal, R.; Abuel-Naga, H.; Mainali, B. Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. J. Water Process Eng. 2021, 40, 101820. [Google Scholar] [CrossRef]
- Koul, B.; Bhat, N.; Abubakar, M.; Mishra, M.; Arukha, A.P.; Yadav, D. Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals. Water 2022, 14, 3751. [Google Scholar] [CrossRef]
- Liu, H.; Dai, K.; Deng, J.; Zhao, L.; Yu, H.; Zhang, H.; Tong, Y.; Wu, L.; Sun, L. Synthesis of antibacterial polyaluminium silicate sulfate /sepiolitenano composite coagulant for oilfield sewage treatment. J. Clean. Prod. 2022, 379, 134385. [Google Scholar] [CrossRef]
- Yu, L.; Liu, P.; Zheng, K. Preparation of poly-silicate aluminium magnesium zinc (psamz) coagulant and its application for the treatment of oily sludge. Environ. Eng. Manag. J. 2022, 21, 1557–1567. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, F.; Wang, D. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review. Adv. Colloid Interface Sci. 2015, 226, 78–85. [Google Scholar] [CrossRef]
NO. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
pHInitial | 0.25 | 0.50 | 0.75 | 1 | 2 | 3 | 4 | 5 | 6.00 |
pHFinal | 0.15 | 0.26 | 0.30 | 0.48 | 1.02 | 1.24 | 1.33 | 1.55 | 1.68 |
[MT] (mol/L) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
B* | 0.58 | 0.93 | 1.29 | 0.86 | 0.34 | 0.23 | 0.19 | 0.11 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Li, P.; Du, L.; Zou, G.; Guo, X. Composite Polysilicate Metal Coagulants for Simultaneous Removal of Organic Matter, Phosphorus, and Ammonium-Nitrogen: Effects of Metal/Silicate Molar Ratio and Basicity. Water 2023, 15, 1782. https://doi.org/10.3390/w15091782
Guo H, Li P, Du L, Zou G, Guo X. Composite Polysilicate Metal Coagulants for Simultaneous Removal of Organic Matter, Phosphorus, and Ammonium-Nitrogen: Effects of Metal/Silicate Molar Ratio and Basicity. Water. 2023; 15(9):1782. https://doi.org/10.3390/w15091782
Chicago/Turabian StyleGuo, Hanxu, Peng Li, Lianfeng Du, Guoyuan Zou, and Xuan Guo. 2023. "Composite Polysilicate Metal Coagulants for Simultaneous Removal of Organic Matter, Phosphorus, and Ammonium-Nitrogen: Effects of Metal/Silicate Molar Ratio and Basicity" Water 15, no. 9: 1782. https://doi.org/10.3390/w15091782
APA StyleGuo, H., Li, P., Du, L., Zou, G., & Guo, X. (2023). Composite Polysilicate Metal Coagulants for Simultaneous Removal of Organic Matter, Phosphorus, and Ammonium-Nitrogen: Effects of Metal/Silicate Molar Ratio and Basicity. Water, 15(9), 1782. https://doi.org/10.3390/w15091782