Preparation, Properties, and Application of Biochar for Improving Sewage Sludge Dewatering Performance: A Review
Abstract
:1. Introduction
2. Preparation and Characteristics of Biochars
2.1. Preparation of Biochars
2.2. Characteristics of Biochars
3. Sewage Sludge Treatment and Conditioning Method
3.1. Sewage Sludge Treatment Method
3.2. Sewage Sludge Conditioning Method
4. Application of Biochar in Sludge Conditioning
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jafarinejad, S. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation. Appl. Water Sci. 2017, 7, 2513–2521. [Google Scholar] [CrossRef]
- Jenicek, P.; Bartacek, J.; Kutil, J.; Zabranska, J.; Dohanyos, M. Potentials and limits of anaerobic digestion of sewage sludge: Energy self-sufficient municipal wastewater treatment plant? Water Sci. Technol. 2012, 66, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, Y.; Wang, Z.; Jiang, H.; Ren, S.; Qiu, J. Achieving synergetic treatment of sludge supernatant, waste activated sludge and secondary effluent for wastewater treatment plants (WWTPs) sustainable development. Bioresour. Technol. 2021, 337, 125416. [Google Scholar] [CrossRef]
- Léonard, A.; Vandevenne, P.; Salmon, T.; Marchot, P.; Crine, M. Wastewater sludge convective drying: Influence of sludge origin. Environ. Technol. 2004, 25, 1051–1057. [Google Scholar] [CrossRef]
- Xiao, Y.; De Araujo, C.; Sze, C.C.; Stuckey, D.C. Toxicity measurement in biological wastewater treatment processes: A review. J. Hazard. Mater. 2015, 286, 15–29. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Gholikandi, G.B.; Zakizadeh, N.; Masihi, H. Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: A comparative study. J. Environ. Manag. 2018, 206, 523–531. [Google Scholar] [CrossRef]
- Ge, D.; Yuan, H.; Xiao, J.; Zhu, N. Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation. Sci. Total Environ. 2019, 679, 298–306. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, H.; Zhang, Q.; Hao, X.; Han, X.; Zhang, W.; Jiao, T. The porous structure effects of skeleton builders in sustainable sludge dewatering process. J. Environ. Manag. 2019, 230, 14–20. [Google Scholar] [CrossRef]
- Zhai, Y.; Peng, W.; Zeng, G.; Fu, Z.; Lan, Y.; Chen, H.; Wang, C.; Fan, X. Pyrolysis characteristics and kinetics of sewage sludge for different sizes and heating rates. J. Therm. Anal. Calorim. 2012, 107, 1015–1022. [Google Scholar] [CrossRef]
- Hu, K.; Jiang, J.Q.; Zhao, Q.L.; Lee, D.J.; Wang, K.; Qiu, W. Conditioning of wastewater sludge using freezing and thawing: Role of curing. Water Res. 2011, 45, 5969–5976. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Wang, W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98, 207–210. [Google Scholar] [CrossRef]
- Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, A.F. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering. Water Res. 2010, 44, 2381–2407. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, H.; Fu, B.; Liu, H. Feasibility of sludge deep-dewatering with sawdust conditioning for incineration disposal without energy input. Chem. Eng. J. 2017, 313, 655–662. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, P.; Zeng, G.; Deng, J.; Zhou, Y.; Lu, H. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem. Eng. J. 2010, 158, 616–622. [Google Scholar] [CrossRef]
- Thapa, K.B.; Qi, Y.; Hoadley, A.F.A. Interaction of polyelectrolyte with digested sewage sludge and lignite in sludge dewatering. Colloid. Surf. A 2009, 334, 66–73. [Google Scholar] [CrossRef]
- Li, H.; Zhou, M.; Han, Y.; Shi, B.; Xiong, Q.; Hou, H. Mechanism of red mud combined with steel slag conditioning for sewage sludge dewatering. Desalin. Water Treat. 2018, 135, 133–140. [Google Scholar] [CrossRef]
- Zhao, Y. Involvement of gypsum (CaSO4· 2H2O) in water treatment sludge dewatering: A potential benefit in disposal and reuse. Sep. Sci. Technol. 2006, 41, 2785–2794. [Google Scholar] [CrossRef]
- Ding, A.; Qu, F.; Liang, H.; Guo, S.; Ren, Y.; Xu, G.; Li, G. Effect of adding wood chips on sewage sludge dewatering in a pilot-scale plate-and-frame filter press process. RSC Adv. 2014, 4, 24762–24768. [Google Scholar] [CrossRef]
- Wang, T.; Xue, Y.; Hao, R.; Hou, H.; Liu, J.; Li, J. Mechanism investigations into the effect of rice husk and wood sawdust conditioning on sewage sludge thermal drying. J. Environ. Manag. 2019, 239, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lu, T.; Bi, J.; Yuan, H.; Chen, Y. A novel sewage sludge biochar and ferrate synergetic conditioning for enhancing sludge dewaterability. Chemosphere 2019, 237, 124339. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, T.M.; Mahmoud, M.E.; Ahmed, S.B.; Huff, M.D.; Lee, J.W.; Kumar, S. Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem. 2015, 22, 103–109. [Google Scholar] [CrossRef]
- Mowla, D.; Tran, H.; Allen, D.G. A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenerg. 2013, 58, 365–378. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Tan, X.; Jiang, L.; Zeng, G.; Liu, S.; Tian, S.; Liu, S.; Liu, N.; Li, M. Adsorption of 17β-estradiol by a novel attapulgite/biochar nanocomposite: Characteristics and influencing factors. Process Saf. Environ. 2019, 121, 155–164. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 2015, 134, 257–262. [Google Scholar] [CrossRef]
- Li, H.; Xiong, J.; Xiao, T.; Long, J.; Wang, Q.; Li, K.; Liu, X.; Zhang, G.; Zhang, H. Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium (I) from wastewater. Process Saf. Environ. 2019, 127, 257–266. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, G.; Zhang, L.; Sun, Z. Preparation of high performance H2S removal biochar by direct fluidized bed carbonization using potato peel waste. Process Saf. Environ. 2017, 107, 281–288. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.; Luo, W.; Sun, J.; Xu, Q.; Chen, F.; Zhao, J.; Wang, S.; Yao, F.; Wang, D.; et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresour. Technol. 2018, 247, 537–544. [Google Scholar] [CrossRef]
- Tao, S.; Liang, S.; Chen, Y.; Yu, W.; Hou, H.; Qiu, J.; Zhu, Y.; Xiao, K.; Hu, J.; Liu, B.; et al. Enhanced sludge dewaterability with sludge-derived biochar activating hydrogen peroxide: Synergism of Fe and Al elements in biochar. Water Res. 2020, 182, 115927. [Google Scholar] [CrossRef]
- Xie, S.; Yu, G.; Li, C.; You, F.; Li, J.; Tian, R.; Wang, G.; Wang, Y. Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge. Environ. Sci. Pollut. Res. 2019, 26, 16537–16547. [Google Scholar] [CrossRef]
- Perondi, D.; Poletto, P.; Restelatto, D.; Manera, C.; Silva, J.; Junges, J.; Collazzo, G.; Dettmer, A.; Godioho, M.; Vilela, A. Steam gasification of poultry litter biochar for bio-syngas production. Process Saf. Environ. 2017, 109, 478–488. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, X.; Li, X.; Jiang, L.; Wang, H. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. J. Hazard. Mater. 2021, 409, 124893. [Google Scholar] [CrossRef]
- Huang, B.C.; Jiang, J.; Huang, G.X.; Yu, H.Q. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. J. Mater. Chem. A 2018, 6, 8978–8985. [Google Scholar] [CrossRef]
- Luo, K.; Yang, Q.; Pang, Y.; Wang, D.; Li, X.; Lei, M.; Huang, Q. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin. Chem. Eng. J. 2019, 374, 520–530. [Google Scholar] [CrossRef]
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy Off. Publ. Am. Inst. Chem. Eng. 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Regmi, P.; Moscoso, J.L.G.; Kumar, S.; Cao, X.; Mao, J.; Schafran, G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manag. 2012, 109, 61–69. [Google Scholar] [CrossRef]
- Kwoczynski, Z.; Čmelík, J. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod. 2021, 280, 124302. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef] [PubMed]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Zielinska, B.; Felix, L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefinery 2013, 3, 113–126. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Benavente, V.; Calabuig, E.; Fullana, A. Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J. Anal. Appl. Pyrol. 2015, 113, 89–98. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Li, N.; Xia, Q.; Niu, M.; Ping, Q.; Xiao, H. Immobilizing laccase on different species wood biochar to remove the chlorinated biphenyl in wastewater. Sci. Rep. 2018, 8, 13947. [Google Scholar] [CrossRef]
- Kathrin, W.; Peter, Q. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar]
- Sajjadi, B.; Chen, W.Y.; Egiebor, N.O. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev. Chem. Eng. 2019, 35, 735–776. [Google Scholar] [CrossRef]
- Somerville, M.; Jahanshahi, S. The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renew. Energy 2015, 80, 471–478. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Jung, S.H.; Kim, J.S. Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2. J. Anal. Appl. Pyrol. 2014, 107, 116–122. [Google Scholar] [CrossRef]
- Lützenkirchen, J.; Preočanin, T.; Kovačević, D.; Tomišić, V.; Lövgren, L.; Kallay, N. Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta 2012, 85, 391–417. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.A.; Al-Farraj, A.S.; Ok, Y.S.; Abduljabbar, A.; Al-Faraj, A.I.; Sallam, A.S. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environ. Geochem. Health 2019, 41, 1705–1722. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587, 510–521. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Bollmann, A.F.; Seitz, W.; Prasse, C.; Lucke, T.; Schulz, W.; Ternes, T. Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J. Hazard. Mater. 2016, 320, 204–215. [Google Scholar] [CrossRef]
- Wang, W.; Luo, Y.; Qiao, W. Possible solutions for sludge dewatering in China. Front. Environ. Sci. Eng. 2010, 4, 102–107. [Google Scholar] [CrossRef]
- Čiẑinská, S.; Matěj, V.; Wase, C.; Klasson, Y.; Krejcí, J.; Dalhammar, G. Thickening of waste activated sludge by biological flotation. Water Res. 1992, 26, 139–144. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.; Yang, Z.; Xu, Q.; Yang, P.; Wang, D. Enhancement of anaerobic digestion sludge dewatering performance using in-situ crystallization in combination with cationic organic polymers flocculation. Water Res. 2018, 146, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.T. Dewatering of sewage sludge. Dry Technol. 2006, 24, 1257–1262. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Q.; Zhang, W.; Yang, P.; Du, Y.; Wang, D. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants. Water Res. 2018, 138, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Bień, B.; Bień, J.D. Conditioning of sewage sludge with physical, chemical and dual methods to improve sewage sludge dewatering. Energies 2021, 14, 5079. [Google Scholar] [CrossRef]
- Novak, J.T.; Park, C. Chemical conditioning of sludge. Water Sci. Technol. 2004, 49, 73–80. [Google Scholar] [CrossRef]
- Yu, W.; Yang, J.; Shi, Y.; Song, J.; Shi, Y.; Xiao, J.; Li, X.; Xu, X.; He, S.; Liang, S.; et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime. Water Res. 2016, 95, 124–133. [Google Scholar] [CrossRef]
- Kozak, J.; Patel, K.; Abedin, Z.; Lordi, D.; O’Connor, C.; Granato, T.; Kollias, L. Effect of ferric chloride addition and holding time on gravity belt thickening of waste activated sludge. Water Environ. Res. 2011, 83, 140–146. [Google Scholar] [CrossRef]
- Viraraghavan, T.; Dronamraju, M.M. Utilization of coal ash in water pollution control. Int. J. Environ. Stud. 1992, 40, 79–85. [Google Scholar] [CrossRef]
- Zhao, Y.Q. Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder. Colloid. Surf. A 2002, 211, 205–212. [Google Scholar] [CrossRef]
- Zhu, C.; Li, F.; Zhang, P.; Ye, J.; Lu, P.; Wang, H. Combined sludge conditioning with NaCl-cationic polyacrylamide-rice husk powders to improve sludge dewaterability. Powder Technol. 2018, 336, 191–198. [Google Scholar] [CrossRef]
- Guo, S.; Qu, F.; Ding, A.; He, J.; Yu, H.; Bai, L.; Li, G.; Liang, H. Effects of agricultural waste-based conditioner on ultrasonic-aided activated sludge dewatering. RSC Adv. 2015, 5, 43065–43073. [Google Scholar] [CrossRef]
- Wójcik, M. Investigation of filtration properties and microbiological characteristics of sewage sludge after physical conditioning with the use of ground walnut shells. Powder Technol. 2020, 361, 491–498. [Google Scholar] [CrossRef]
- Xiao, T.; Dai, X.; Wang, X.; Chen, S.; Dong, B. Enhanced sludge dewaterability via ozonation catalyzed by sludge derived biochar loaded with MnFe2O4: Performance and mechanism investigation. J. Clean. Prod. 2021, 323, 129182. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F. Benefit of lignite as a filter aid for dewatering of digested sewage sludge demonstrated in pilot scale trials. Chem. Eng. J. 2011, 166, 504–510. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, W.; Wang, D.; Chen, Y.; Chen, R. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants. Bioresour. Technol. 2013, 144, 337–343. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Gu, Y.; Xu, Y.; Zeng, G.; Hu, X.; Liu, X.; Wang, X.; Liu, X.; Li, J. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, P.; Zeng, G.; Liu, J.; Ye, J.; Zhang, H.; Fang, W.; Li, Y.; Fang, Y. Combined sludge conditioning of micro-disintegration, floc reconstruction and skeleton building (KMnO4/FeCl3/Biochar) for enhancement of waste activated sludge dewaterability. J. Taiwan Inst. Chem. Eng. 2017, 74, 121–128. [Google Scholar] [CrossRef]
- Rashmi, H.R.; Devatha, C.P. Dewatering performance of sludge using coconut shell biochar modified with ferric chloride (Sludge dewatering using bio-waste). Int. J. Environ. Sci. Technol. 2022, 19, 6033–6044. [Google Scholar] [CrossRef]
- Guo, Z.; Ma, L.; Dai, Q.; Ao, R.; Liu, H.; Yang, J. Combined application of modified corn-core powder and sludge-based biochar for sewage sludge pretreatment: Dewatering performance and dissipative particle dynamics simulation. Environ. Pollut. 2020, 265, 115095. [Google Scholar] [CrossRef]
- Guo, J.; Gao, Q.; Jiang, S. Insight into dewatering behavior and heavy metals transformation during waste activated sludge treatment by thermally-activated sodium persulfate oxidation combined with a skeleton builder—Wheat straw biochar. Chemosphere 2020, 252, 126542. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, P.; Zeng, G.; Ye, J.; Zhang, H.; Fang, W.; Liu, J. Enhancing sewage sludge dewaterability by a skeleton builder: Biochar produced from sludge cake conditioned with rice husk flour and FeCl3. ACS Sustain. Chem. Eng. 2016, 4, 5711–5717. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y. Transformation of heavy metals and dewaterability of waste activated sludge during the conditioning by Fe2+-activated peroxymonosulfate oxidation combined with rice straw biochar as skeleton builder. Chemosphere 2020, 238, 124628. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Jiang, S.; Pang, Y. Rice straw biochar modified by aluminum chloride enhances the dewatering of the sludge from municipal sewage treatment plant. Sci. Total Environ. 2019, 654, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, P.; Zhang, H.; Zeng, G.; Liu, J.; Ye, J.; Fang, W.; Gou, X. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride. Bioresour. Technol. 2016, 205, 258–263. [Google Scholar] [CrossRef]
- Guo, Z.; Ma, L.; Dai, Q.; Ao, R.; Liu, H.; Wei, Y.; Mu, L. Role of extracellular polymeric substances in sludge dewatering under modified corn-core powder and sludge-based biochar pretreatments. Ecotox. Environ. Saf. 2020, 202, 110882. [Google Scholar] [CrossRef]
- Tao, S.; Yang, J.; Hou, H.; Liang, S.; Xiao, K.; Qiu, J.; Hu, J.; Liu, B.; Yu, W.; Deng, H. Enhanced sludge dewatering via homogeneous and heterogeneous Fenton reactions initiated by Fe-rich biochar derived from sludge. Chem. Eng. J. 2019, 372, 966–977. [Google Scholar] [CrossRef]
- Li, H.; Dai, T.; Chen, J.; Chen, L.; Li, Y.; Kan, X.; Hou, H.; Han, Y. Enhanced sludge dewaterability by Fe-rich biochar activating hydrogen peroxide: Co-hydrothermal red mud and reed straw. J. Environ. Manag. 2021, 296, 113239. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, G.; Wang, Q.; Yuan, Z. A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. Rsc. Adv. 2014, 4, 50644–50652. [Google Scholar] [CrossRef]
- Guo, J.; Jia, X.; Gao, Q. Insight into the improvement of dewatering performance of waste activated sludge and the corresponding mechanism by biochar-activated persulfate oxidation. Sci. Total Environ. 2020, 744, 140912. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, L.; Huang, J.; Mo, Z.; Guan, Z.; Sun, S.; Liang, J.; Huang, S. Enhanced sludge dewaterability by a novel MnFe2O4-Biochar activated peroxymonosulfate process combined with Tannic acid. Chem. Eng. J. 2022, 429, 132280. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Shao, P.; Cui, F. Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem. Eng. J. 2015, 262, 854–861. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, Y.; Yan, J.; Qian, L.; Han, L.; Chen, M. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures. Chem. Eng. J. 2019, 370, 614–624. [Google Scholar] [CrossRef]
Feedstock | Biochar | Sewage Sludge | Dehydration Performance | Ref. |
---|---|---|---|---|
Sewage sludge | 450 °C | MC = 78.8%, ash = 57.16%, VS = 38.95%, C = 16.01%, H = 3.02%, N = 2.53%, S = 0.88%, pH = 6.89 | BC450: MC = 61.7%; BC450 + K2FeO4: MC = 58.7%. | [24] |
Activated sludge | 800 °C, sludge-derived Fe-rich BC | pH = 6.68, TSS = 32.71 g/L, VSS = 14.14 g/L, DS = 13.5 g/L, MC = 97.1%, SRF = 2.45 × 1013 m/kg, CST = 205.15 s | CST and SRF could be decreased by 23% and 44%, respectively. | [32] |
Dried sludge cake | KMnO4/FeCl3/BC | MC = 89.9−99.5%, DS = 6.87–11.26 g/L, SRF = 6.13 × 1013–8.01 × 1013 m/kg, YN= 0.81–1.56 kg/(m2 h) | The optimal condition: KMnO4 = 20 g/kg, FeCl3 = 138.09 g/kg, BC = 70%DS; SRF decreased by 99.03%, YN increased by 24.6 times, MC decreased to 60.63%. | [77] |
Coconut shell | 600 °C, MCSB-FeCl3, C 48.8%, O 48.6% | secondary sludge | MCSB-FeCl3 = 41%DS, RMT = 10 min, SMT = 19 min; the best CST was 55.8 s. | [78] |
Water supply sludge and industrial wastewater sludge | 700 °C, SA= 49.39 m2/g, total pore volume = 0.22 cc/g, pore diameters = 2–50 nm | MC = 99.4%, pH = 6.76, SRF= 12.69 × 1012 m/kg, TS = 6.478 g/L, VS = 4.426 g/L, SA = 28.18 m2/g, total pore volume = 0.22 cc/g | The optimal conditions: 20% DS of BC with modified corn-core powder at a loading of 20% of DS, the largest YN and the lowest SRF reached. | [79] |
Wheat straw | Heat/PS/BC | activated sludge | The optimal conditions: 70 °C, PS = 120 mg/g-VS, BC = 150 mg/g-VS, CST and CWR increased to 5.03 and 86.8%, MC decreased to 42.6%. | [80] |
Sludge cake | 400 °C, BC-conditioned with rice husk flour and FeCl3 | MC = 98.6–99.01%, DS = 9.52–13.97 g/L, SRF = 9.87 × 1012–26 × 1012 m/kg, YN = 1.38–2.42 kg/(m2·h) | The optimal biochar-conditioned dosage was 70% DS. SRF decreased by 63.9%, YN increased by 39.2%. | [81] |
Rice straw | Fe2+/PMS/rice straw BC (RSBC) | The optimal conditions: pH = 6.5, PMS = 0.6 mmol/g- VS, Fe2+: PMS = 0.6, RSBC = 120 mg/g-VS. | [82] | |
Rice straw | 500 °C, rice straw BC (RSB) modified by AlCl3 | pH = 6.8, TSS = 16.7 g/L, VSS = 10.4 g/L, DS = 13.5 g/L, MC = 98.7%, SRF = 13.8 × 1012 m/kg, CST = 126 s, SV30% = 96.4%, YN = 0.8 kg/(m2·h), density = 1.02 g/cm3 | MRSB = 0.3 g(RSB)/g(DS), SV30%, SRF, MC and CST were decreased to 79.8%, 1.2 × 1012 m/kg, 81.4% and 38 s, respectively. YN was increased to 19.4 kg/(m2·h). | [83] |
Rice husk | 500 °C, rice husk BC modified by FeCl3 | MC = 98.4–98.8%, DS = 12.05–16.25 g/L, SRF = 1.04 ×1013–5.13 × 1013 m/kg, YN = 0.62–0.98 kg/(m2·h) | SRF decreased by 97.9%, MC decreased to 77.9%, SV30% decreased to 60%, YN increased by 28 times. | [84] |
Sludge | 700 °C, corn-core powder and sludge-based BC | activated sludge | Aggregated strands and α -helix were released. | [85] |
Sludge | 200–900 °C, sludge-derived Fe-rich BC | thickened sludge | MS decreased to around 46%, the costs reduced by almost 29%. | [86] |
Red mud and reed straw | 800 °C, Fe-rich BC (RMRS-BC) | secondary sludge | The optimal conditions: 7.5% DS of RMRS-BC at a mass ratio of 1:1 combined with H2O2. MC 57.88. | [87] |
Corn straw | 800 °C, BC/PS | COD, VS, MC, CST and pH were 15, 824 mg/L, 14.4 g/L, 95.5%, 163.5 s and 6.5, respectively. | biochar = 2.1 g/L, PS = 7.5 mM, CST increased to 4.21 times, MC decreased to 43.4%. | [88] |
Waste tea powder | 500 °C, MnFe2O4-BC (MFB) | secondary sludge | MFB/PMS/TA, MC dropped to 40.80% at pH 5.0. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Wei, H.; Chen, L.; Li, S.; Liu, H.; Lu, H. Preparation, Properties, and Application of Biochar for Improving Sewage Sludge Dewatering Performance: A Review. Water 2023, 15, 1796. https://doi.org/10.3390/w15091796
Deng H, Wei H, Chen L, Li S, Liu H, Lu H. Preparation, Properties, and Application of Biochar for Improving Sewage Sludge Dewatering Performance: A Review. Water. 2023; 15(9):1796. https://doi.org/10.3390/w15091796
Chicago/Turabian StyleDeng, Huan, Hongyan Wei, Lizhu Chen, Shujie Li, Hongxu Liu, and Hai Lu. 2023. "Preparation, Properties, and Application of Biochar for Improving Sewage Sludge Dewatering Performance: A Review" Water 15, no. 9: 1796. https://doi.org/10.3390/w15091796
APA StyleDeng, H., Wei, H., Chen, L., Li, S., Liu, H., & Lu, H. (2023). Preparation, Properties, and Application of Biochar for Improving Sewage Sludge Dewatering Performance: A Review. Water, 15(9), 1796. https://doi.org/10.3390/w15091796