Comparative Study of Geospatial Techniques for Interpolating Groundwater Quality Data in Agricultural Areas of Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Interpolation Techniques
2.3.1. Inverse Distance Weighting (IDW)
2.3.2. Spline Interpolation
2.3.3. Radial Basis Function
2.3.4. Trend Interpolation
2.3.5. Natural Neighbor Technique
2.3.6. Diffusion with Barrier
2.3.7. Global Polynomial Technique
2.3.8. Local Polynomial Technique
2.3.9. Empirical Bayesian Kriging
2.3.10. Ordinary Kriging
2.4. Performance Evaluation of Interpolation Techniques
3. Results and Discussion
3.1. As Concentration in the Groundwater of Punjab
3.2. Prediction Accuracy of Interpolation Techniques under Default Spatial Extent
3.3. Prediction Accuracy of Interpolation Techniques under Varying Boundary Conditions
Type | Sr. # | Interpolation Technique | Without Boundary | With Boundary | ||
---|---|---|---|---|---|---|
RMSE | MSE | RMSE | MSE | |||
Deterministic Techniques | 1 | Inverse Distance Weighting (IDW) | 13.5 | 1.8 × 102 | 84.6 | 7.1 × 103 |
2 | Spline interpolation | 16.8 | 2.8 × 102 | 1629.0 | 2.7 × 106 | |
3 | Radial Basis Function | 90.1 | 8.1 × 103 | 55.8 | 3.1 × 103 | |
4 | Trend Surface Analysis | 2524.4 | 6.4 × 106 | 4484.2 | 2.0 × 107 | |
5 | Natural Neighbor Interpolation | 90.3 | 8.2 × 103 | 60.5 | 3.7 × 103 | |
6 | Diffusion with barrier | 90.1 | 8.1 × 103 | 55.8 | 3.1 × 103 | |
7 | Global polynomial | 79.4 | 6.3 × 103 | 64.9 | 4.2 × 103 | |
8 | Local polynomial | 30.8 | 9.5 × 102 | 68.7 | 4.7 × 103 | |
Stochastic Techniques | 9 | Empirical Bayesian Kriging | 88.3 | 7.9 × 103 | 65.6 | 4.3 × 103 |
10 | Ordinary Kriging | 88.2 | 7.8 × 103 | 65.6 | 4.3 × 103 |
3.4. Prediction Accuracy of Interpolation Techniques under Data Density Scenarios
4. Limitations and Directions for Future Research
5. Conclusions
- The As concentration in a majority of the wells is higher than the threshold limit set by the World Health Organization. Among both deterministic and stochastic interpolation techniques, the best performing technique is IDW, while the Natural Neighbor technique has the lowest performance. At the spatial scale, IDW demonstrates the highest accuracy, whereas Spline interpolation and Natural Neighbor fail to predict As concentrations in areas where observation wells are sparsely located.
- The change in spatial extent shows a significant impact on the prediction accuracy of the interpolation techniques. The IDW, Spline interpolation, Natural Neighbor, and Radial Basis Function techniques show an increase in the error magnitude. Meanwhile, the Trend Surface Analysis, Diffusion with barrier, Global polynomial, Local polynomial, Empirical Bayesian Kriging, and Ordinary Kriging show a decrease in error. The effect of the spatial extent or boundary conditions is significant for all techniques except for the Trend Surface Analysis and Local polynomial at 95% confidence interval.
- The data density, except for Natural Neighbor, exhibits a negative correlation with the prediction error (i.e., the error increases with decreasing data density). All the interpolation techniques, except for Natural Neighbor, show an increase in error in predicted As concentrations as the data density decreases. For the IDW, Spline interpolation, and Radial Basis Function interpolation techniques, the data distribution patterns also influence accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Megdal, S.B. Invisible Water: The Importance of Good Groundwater Governance and Management. NPJ Clean Water 2018, 1, 15. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.-J.; Richts, A. Groundwater—A Global Focus on the ‘Local Resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- United Nations. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; UNESCO: Paris, France, 2022; p. 246. [Google Scholar]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations. J. Geodyn. 2012, 59, 143–156. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Phan, K.A.; Huynh, T.H.N. Application of Integrated-Weight Water Quality Index in Groundwater Quality Evaluation. Civ. Eng. J. 2022, 8, 2661–2674. [Google Scholar] [CrossRef]
- Jin, K.; Rao, W.; Tan, H.; Song, Y.; Yong, B.; Zheng, F.; Chen, T.; Han, L. H-O Isotopic and Chemical Characteristics of a Precipitation-Lake Water-Groundwater System in a Desert Area. J. Hydrol. 2018, 559, 848–860. [Google Scholar] [CrossRef]
- Karan, S.; Sebok, E.; Engesgaard, P. Air/Water/Sediment Temperature Contrasts in Small Streams to Identify Groundwater Seepage Locations. Hydrol. Process. 2017, 31, 1258–1270. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of Streams, Lakes, and Wetlands to Groundwater Flow Systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Alley, W.; Alley, R. High and Dry: Meeting the Challenges of the World’s Growing Dependence on Groundwater; Yale University Press: New Haven, CT, USA, 2017; ISBN 978-0-300-22038-4. [Google Scholar]
- Rizvi, O. Pakistan’s Water Crisis. Available online: https://thediplomat.com/2022/06/pakistans-water-crisis/ (accessed on 27 August 2023).
- WWF Freshwater|Initiatives|WWF. Available online: https://www.worldwildlife.org/initiatives/freshwater (accessed on 27 August 2023).
- Akbar, A.; Sitara, U.; Khan, S.; Muhammad, N.; Khan, M.; Khan, Y.; Kakar, S. Drinking Water Quality and Risk of Waterborne Diseases in the Rural Mountainous Area of Azad Kashmir Pakistan. Int. J. Biosci. 2013, 3, 245–251. [Google Scholar] [CrossRef]
- Daud, M.K.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W.; et al. Drinking Water Quality Status and Contamination in Pakistan. BioMed Res. Int. 2017, 2017, e7908183. [Google Scholar] [CrossRef]
- Qureshi, R.H.; Ashraf, M. Water Security Issues of Agriculture in Pakistan. PAS Islamabad Pak 2019, 1, 41. [Google Scholar]
- WWF-Pakistan-2007-Pakistans. Pakistan’s Water at Risk: Water and Health-Related Issues in Pakistan and Key Recommendations: A Special Report. Available online: https://www.ircwash.org/resources/pakistans-water-risk-water-and-health-related-issues-pakistan-and-key-recommendations (accessed on 8 August 2023).
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.-P. Water Pollution in Pakistan and Its Impact on Public Health—A Review. Env. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Dumat, C.; Niazi, N.K.; Bibi, I.; Gul Bakhat, H.F.S.; Abbas, G.; Murtaza, B.; Javeed, H.M.R. Influence of Groundwater and Wastewater Irrigation on Lead Accumulation in Soil and Vegetables: Implications for Health Risk Assessment and Phytoremediation. Int. J. Phytoremediation 2017, 19, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.; Rafiq, M.; Bakhat, H.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. In Enhancing Cleanup of Environmental Pollutants; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-55422-8. [Google Scholar]
- Dars, G.; Lashari, B.; Soomro, M.; Strong, C.; Ansari, K. Pakistan’s Water Resources in the Era of Climate Change. In Water Resources of Pakistan: Issues and Impacts; Springer International Publishing: Cham, Switzerland, 2021; pp. 95–108. ISBN 978-3-030-65678-2. [Google Scholar]
- WHO Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 21 August 2023).
- Arsenic|Definition, Symbol, Uses, & Facts|Britannica. Available online: https://www.britannica.com/science/arsenic (accessed on 27 August 2023).
- Podgorski, J.E.; Eqani, S.A.M.A.S.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. Extensive Arsenic Contamination in High-PH Unconfined Aquifers in the Indus Valley. Sci. Adv. 2017, 3, e1700935. [Google Scholar] [CrossRef]
- Qurat-ul-Ain; Farooqi, A.; Sultana, J.; Masood, N. Arsenic and Fluoride Co-Contamination in Shallow Aquifers from Agricultural Suburbs and an Industrial Area of Punjab, Pakistan: Spatial Trends, Sources and Human Health Implications. Toxicol. Ind. Health 2017, 33, 655–672. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, M.; Dumat, C.; Khalid, S.; Niazi, N.K.; Imran, M.; Bibi, I.; Ahmad, I.; Hammad, H.M.; Tabassum, R.A. Arsenic Level and Risk Assessment of Groundwater in Vehari, Punjab Province, Pakistan. Expo. Health 2018, 10, 229–239. [Google Scholar] [CrossRef]
- Shakoor, A.; Khan, Z.M.; Farid, H.U.; Sultan, M.; Ahmad, I.; Ahmad, N.; Mahmood, M.H.; Ali, M.U. Delineation of Regional Groundwater Vulnerability Using DRASTIC Model for Agricultural Application in Pakistan. Arab. J. Geosci. 2020, 13, 195. [Google Scholar] [CrossRef]
- Ullah, Z.; Rashid, A.; Ghani, J.; Nawab, J.; Zeng, X.-C.; Shah, M.; Alrefaei, A.F.; Kamel, M.; Aleya, L.; Abdel-Daim, M.M.; et al. Groundwater Contamination through Potentially Harmful Metals and Its Implications in Groundwater Management. Front. Environ. Sci. 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-West China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, Y.; Zhou, J.; Jia, R.; Wu, J. Distribution and Enrichment Factors of High-Arsenic Groundwater in Inland Arid Area of P. R. China: A Case Study of the Shihezi Area, Xinjiang. Expo. Health 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T. Assessing Groundwater Quality Using GIS. Water Resour. Manag. 2007, 21, 699–715. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Saleem, A.; Mallikarjun, N.D. Groundwater Quality Mapping Using Geographic Information System (GIS): A Case Study of Gulbarga City, Karnataka, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1069–1084. [Google Scholar] [CrossRef]
- Nas, B.; Berktay, A. Groundwater Quality Mapping in Urban Groundwater Using GIS. Env. Monit. Assess 2010, 160, 215–227. [Google Scholar] [CrossRef]
- Rabah, F.; Ghabayen, S.; Salha, A. Effect of GIS Interpolation Techniques on the Accuracy of the Spatial Representation of Groundwater Monitoring Data in Gaza Strip. J. Environ. Sci. Technol. 2011, 4, 579–589. [Google Scholar] [CrossRef]
- Population Census|Pakistan Bureau of Statistics. Available online: https://www.pbs.gov.pk/content/population-census (accessed on 27 August 2023).
- Qureshi, A.S. Groundwater Governance in Pakistan: From Colossal Development to Neglected Management. Water 2020, 12, 3017. [Google Scholar] [CrossRef]
- Chen, F.-W.; Liu, C.-W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan. Paddy Water Env. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Hohn, M.E. An Introduction to Applied Geostatistics. Comput. Geosci. 1991, 17, 471–473. [Google Scholar] [CrossRef]
- Collins, F.C. A Comparison of Spatial Interpolation Techniques in Temperature Estimation. 1995. Available online: http://hdl.handle.net/10919/38139 (accessed on 8 August 2023).
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems, 3rd ed.; Oxford University Press: New York, NY, USA, 2015; ISBN 978-0-19-874284-5. [Google Scholar]
- McKinley, S.; Levine, M. Cubic Spline Interpolation. Coll. Redw. 1998, 45, 1049–1060. [Google Scholar]
- Adhikary, P.P.; Dash, C.H.J. Comparison of Deterministic and Stochastic Methods to Predict Spatial Variation of Groundwater Depth. Appl. Water Sci. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Chapter_3.Pdf. Available online: www1.maths.leeds.ac.uk/~kersale/2600/Notes/chapter_3.pdf (accessed on 17 August 2023).
- Schaum, A. Principles of Local Polynomial Interpolation. In Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2008; IEEE: Washington, DC, USA, 2008; pp. 1–6. [Google Scholar]
- Farooqi, A.; Masuda, H.; Siddiqui, R.; Naseem, M. Sources of Arsenic and Fluoride in Highly Contaminated Soils Causing Groundwater Contamination in Punjab, Pakistan. Arch. Env. Contam. Toxicol. 2009, 56, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Farooqi, A.; Masood, S.; Hussain, K. Arsenic in Groundwater and Its Health Risk Assessment in Drinking Water of Mailsi, Punjab, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 187–202. [Google Scholar] [CrossRef]
- Nicolli, H.B.; Suriano, J.M.; Gomez Peral, M.A.; Ferpozzi, L.H.; Baleani, O.A. Groundwater Contamination with Arsenic and Other Trace Elements in an Area of the Pampa, Province of Córdoba, Argentina. Environ. Geol. Water Sci. 1989, 14, 3–16. [Google Scholar] [CrossRef]
- Nickson, R.T.; McArthur, J.M.; Shrestha, B.; Kyaw-Myint, T.O.; Lowry, D. Arsenic and Other Drinking Water Quality Issues, Muzaffargarh District, Pakistan. Appl. Geochem. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Ahmad, T.; Kahlown, M.A.; Tahir, A.; Rashid, H. Arsenic an Emerging Issue: Experiences from Pakistan; Loughborough University: Loughborough, UK, 2004. [Google Scholar]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Natasha Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Env. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hamza, A.; Xie, Z.; Hussain, S.; Brestic, M.; Tahir, M.A.; Ulhassan, Z.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Arsenic Transport and Interaction with Plant Metabolism: Clues for Improving Agricultural Productivity and Food Safety. Environ. Pollut. 2021, 290, 117987. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Li, W.; Xing, X.; Xu, M.; Liu, X.; Li, H.; Xue, Y.; Liu, Z.; Tang, J. Genetic Analysis of Arsenic Accumulation in Maize Using QTL Mapping. Sci. Rep. 2016, 6, 21292. [Google Scholar] [CrossRef]
- Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the Accuracy of Kriging and IDW Interpolations in Estimating Groundwater Arsenic Concentrations in Texas. Environ. Res. 2014, 130, 59–69. [Google Scholar] [CrossRef]
- Manjarrez-Domínguez, C.B.; Prieto-Amparán, J.A.; Valles-Aragón, M.C.; Delgado-Caballero, M.D.R.; Alarcón-Herrera, M.T.; Nevarez-Rodríguez, M.C.; Vázquez-Quintero, G.; Berzoza-Gaytan, C.A. Arsenic Distribution Assessment in a Residential Area Polluted with Mining Residues. Int. J. Env. Res. Public Health 2019, 16, 375. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, E.; Karyab, H.; Emamjome, M.-M. Optimization of Interpolation Method for Nitrate Pollution in Groundwater and Assessing Vulnerability with IPNOA and IPNOC Method in Qazvin Plain. J. Env. Health Sci. Eng. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Merwade, V.M.; Maidment, D.R.; Goff, J.A. Anisotropic Considerations While Interpolating River Channel Bathymetry. J. Hydrol. 2006, 331, 731–741. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Comparative Studies of Spatial Interpolation Methods in Environmental Sciences: Performance and Impact Factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Garnero, G.; Godone, D. Comparisons between Different Interpolation Techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2013, 40, 139–144. [Google Scholar] [CrossRef]
- Schläpfer, F.; Schmid, B. Ecosystem Effects of Biodiversity: A Classification of Hypotheses and Exploration of Empirical Results. Ecol. Appl. 1999, 9, 893–912. [Google Scholar] [CrossRef]
- Martínez-Cob, A. Multivariate Geostatistical Analysis of Evapotranspiration and Precipitation in Mountainous Terrain. J. Hydrol. 1996, 174, 19–35. [Google Scholar] [CrossRef]
- Long, J.; Liu, Y.; Xing, S.; Qiu, L.; Huang, Q.; Zhou, B.; Shen, J.; Zhang, L. Effects of Sampling Density on Interpolation Accuracy for Farmland Soil Organic Matter Concentration in a Large Region of Complex Topography. Ecol. Indic. 2018, 93, 562–571. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience Australia: Canberra, Australia, 2008. [Google Scholar]
Sr. # | Descriptive Statistics | As [ppb] |
---|---|---|
1 | Arithmetic Mean | 86.2 |
2 | Median | 60.0 |
3 | Mode | 100.0 |
4 | Standard Deviation | 95.2 |
5 | Sample Variance | 9066.1 |
6 | Kurtosis | 5.2 |
7 | Skewness | 1.8 |
8 | Range | 529.9 |
9 | Minimum | 0.1 |
10 | Maximum | 530.0 |
Type | Sr. | Interpolation Technique | RMSE [ppb] | MAE [ppb] |
---|---|---|---|---|
Deterministic Techniques | 1 | Inverse Distance Weighting (IDW) | 13.5 | 87.8 |
2 | Spline interpolation | 16.7 | 89.5 | |
3 | Radial Basis Function | 30.6 | 96.7 | |
4 | Trend Surface Analysis | 89.6 | 137.8 | |
5 | Natural Neighbor Interpolation | 2508.7 | 712.1 | |
6 | Diffusion with barrier | 89.7 | 140.9 | |
7 | Global polynomial | 89.6 | 137.8 | |
8 | Local polynomial | 78.9 | 129.7 | |
Stochastic Techniques | 9 | Empirical Bayesian Kriging | 87.8 | 138.2 |
10 | Ordinary Kriging | 87.7 | 136.7 |
Sr. # | Interpolation Technique | 90% | 80% | 70% | 60% | 50% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MSE | RMSE | MSE | RMSE | MSE | RMSE | MSE | RMSE | MSE | ||
1 | Inverse Distance Weighting (IDW) | 0.0 | 0.0 | 0.04 | 0.0 | 0.2 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 |
2 | Spline interpolation | 0.5 | 0.3 | 1.2 | 1.3 | 3.1 | 9.7 | 2.8 | 7.7 | 4.1 | 16.8 |
3 | Radial Basis Function | 37.2 | 1380.7 | 55.4 | 3075.0 | 69.5 | 4830.3 | 94.4 | 8902.0 | 83.0 | 6893.2 |
4 | Trend Surface Analysis | 7119.4 | 5.1 × 107 | 5645.5 | 3.2 × 107 | 4596.8 | 2.1 × 107 | 4728.5 | 2.2 × 107 | 3896.6 | 1.5 × 107 |
5 | Natural Neighbor Interpolation | 43.6 | 1902.7 | 58.3 | 3408.8 | 71.5 | 5113.2 | 87.5 | 7649.4 | 81.1 | 6573.3 |
6 | Diffusion with barrier | 49.5 | 2454.2 | 55.8 | 3114.6 | 68.9 | 4750.1 | 88.1 | 7766.9 | 80.2 | 6427.5 |
7 | Global polynomial | 37.1 | 1380.7 | 55.4 | 3075.0 | 69.5 | 4830.3 | 88.5 | 7839.6 | 83.0 | 6893.2 |
8 | Local polynomial | 30.0 | 901.0 | 44.5 | 1988.5 | 55.5 | 3085.2 | 67.7 | 4588.4 | 64.6 | 4167.3 |
9 | Empirical Bayesian Kriging | 0.3 | 0.1 | 0.4 | 0.1 | 0.8 | 0.6 | 0.9 | 0.8 | 1.2 | 1.4 |
10 | Ordinary Kriging | 47.6 | 2262.6 | 39.8 | 1581.9 | 73.7 | 5427.2 | 49.2 | 2421.7 | 79.1 | 6254.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyab, M.; Aslam, R.A.; Farooq, U.; Ali, S.; Khan, S.N.; Iqbal, M.; Khan, M.I.; Saddique, N. Comparative Study of Geospatial Techniques for Interpolating Groundwater Quality Data in Agricultural Areas of Punjab, Pakistan. Water 2024, 16, 139. https://doi.org/10.3390/w16010139
Tayyab M, Aslam RA, Farooq U, Ali S, Khan SN, Iqbal M, Khan MI, Saddique N. Comparative Study of Geospatial Techniques for Interpolating Groundwater Quality Data in Agricultural Areas of Punjab, Pakistan. Water. 2024; 16(1):139. https://doi.org/10.3390/w16010139
Chicago/Turabian StyleTayyab, Muhammad, Rana Ammar Aslam, Umar Farooq, Sikandar Ali, Shahbaz Nasir Khan, Mazhar Iqbal, Muhammad Imran Khan, and Naeem Saddique. 2024. "Comparative Study of Geospatial Techniques for Interpolating Groundwater Quality Data in Agricultural Areas of Punjab, Pakistan" Water 16, no. 1: 139. https://doi.org/10.3390/w16010139
APA StyleTayyab, M., Aslam, R. A., Farooq, U., Ali, S., Khan, S. N., Iqbal, M., Khan, M. I., & Saddique, N. (2024). Comparative Study of Geospatial Techniques for Interpolating Groundwater Quality Data in Agricultural Areas of Punjab, Pakistan. Water, 16(1), 139. https://doi.org/10.3390/w16010139