Quantifying Drivers of Methane Hydrobiogeochemistry in a Tidal River Floodplain System
Abstract
:1. Introduction
2. Site and Data
2.1. Site Description
2.2. Data Collection and Generation
3. Machine Learning of Field and Simulation Data
4. Results
4.1. Machine Learning Results
4.2. Uncertainty Quantification Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Haj, A.N.; Fulweiler, R.W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. 2020, 26, 2988–3005. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, D.; Chen, S.; Yu, Z.; Xu, Y.; Li, Y.; Ge, Z.; Chen, Z. Methane emissions from estuarine coastal wetlands: Implications for global change effect. Soil Sci. Soc. Am. J. 2019, 83, 1368–1377. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K. The global methane budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Needelman, B.A.; Megonigal, J.P. Salinity influence on methane emissions from tidal marshes. Wetlands 2011, 31, 831–842. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Giovanonni, L.; Kelly, J.; Dunstan, N.; Borde, A.; Diefenderfer, H.; Cornu, C.; Janousek, C.; Apple, J.; Brophy, L. Total ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of the Pacific Northwest Coast, United States. Glob. Change Biol. 2020, 26, 5679–5692. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, S.C.; Megonigal, J.P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 2015, 18, 1000–1013. [Google Scholar] [CrossRef]
- Chamberlain, S.D.; Hemes, K.S.; Eichelmann, E.; Szutu, D.J.; Verfaillie, J.G.; Baldocchi, D.D. Effect of drought-induced salinization on wetland methane emissions, gross ecosystem productivity, and their interactions. Ecosystems 2020, 23, 675–688. [Google Scholar] [CrossRef]
- Melton, J.; Wania, R.; Hodson, E.; Poulter, B.; Ringeval, B.; Spahni, R.; Bohn, T.; Avis, C.; Beerling, D.; Chen, G. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 2013, 10, 753–788. [Google Scholar] [CrossRef]
- Knox, S.H.; Bansal, S.; McNicol, G.; Schafer, K.; Sturtevant, C.; Ueyama, M.; Valach, A.C.; Baldocchi, D.; Delwiche, K.; Desai, A.R. Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Glob. Change Biol. 2021, 27, 3582–3604. [Google Scholar] [CrossRef]
- Weston, N.B.; Neubauer, S.C.; Velinsky, D.J.; Vile, M.A. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 2014, 120, 163–189. [Google Scholar] [CrossRef]
- Danczak, R.E.; Yabusaki, S.B.; Williams, K.H.; Fang, Y.; Hobson, C.; Wilkins, M.J. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer. Front. Earth Sci. 2016, 4, 57. [Google Scholar] [CrossRef]
- Ward, N.D.; Bianchi, T.S.; Martin, J.B.; Quintero, C.J.; Sawakuchi, H.O.; Cohen, M.J. Pathways for methane emissions and oxidation that influence the net carbon balance of a subtropical cypress swamp. Front. Earth Sci. 2020, 8, 573357. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, F.; Hanson, P.J.; Wullschleger, S.D.; Thornton, P.E.; Riley, W.J.; Song, X.; Graham, D.E.; Song, C.; Tian, H. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 2016, 13, 3735–3755. [Google Scholar] [CrossRef]
- Calabrese, S.; Garcia, A.; Wilmoth, J.L.; Zhang, X.; Porporato, A. Critical inundation level for methane emissions from wetlands. Environ. Res. Lett. 2021, 16, 044038. [Google Scholar] [CrossRef]
- Alcázar, J.; Palau, A. Establishing environmental flow regimes in a Mediterranean watershed based on a regional classification. J. Hydrol. 2010, 388, 41–51. [Google Scholar] [CrossRef]
- Fathian, F.; Mehdizadeh, S.; Sales, A.K.; Safari, M.J.S. Hybrid models to improve the monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. J. Hydrol. 2019, 575, 1200–1213. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chau, K.-W.; Cheng, C.-T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Regier, P.J.; Ward, N.D.; Myers-Pigg, A.N.; Grate, J.; Freeman, M.J.; Ghosh, R.N. Seasonal drivers of dissolved oxygen across a tidal creek–marsh interface revealed by machine learning. Limnol. Oceanogr. 2023, 68, 2359–2374. [Google Scholar] [CrossRef]
- Heuvelmans, G.; Muys, B.; Feyen, J. Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. J. Hydrol. 2006, 319, 245–265. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Kavianpour, M.R. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar. Pollut. Bull. 2015, 98, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Shamshirband, S.; Jafari Nodoushan, E.; Adolf, J.E.; Abdul Manaf, A.; Mosavi, A.; Chau, K.-w. Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 2019, 13, 91–101. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shaeri Karimi, S.; Saintilan, N.; Wen, L.; Valavi, R. Application of machine learning to model wetland inundation patterns across a large semiarid floodplain. Water Resour. Res. 2019, 55, 8765–8778. [Google Scholar] [CrossRef]
- Mosher, J.J.; Fortner, A.M.; Phillips, J.R.; Bevelhimer, M.S.; Stewart, A.J.; Troia, M.J. Spatial and temporal correlates of greenhouse gas diffusion from a hydropower reservoir in the southern United States. Water 2015, 7, 5910–5927. [Google Scholar] [CrossRef]
- Peltola, O.; Vesala, T.; Gao, Y.; Räty, O.; Alekseychik, P.; Aurela, M.; Chojnicki, B.; Desai, A.R.; Dolman, A.J.; Euskirchen, E.S. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 2019, 11, 1263–1289. [Google Scholar] [CrossRef]
- De’Ath, G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef]
- McMillan, S.K.; Noe, G.B. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention. Ecol. Eng. 2017, 108, 284–295. [Google Scholar] [CrossRef]
- Yabusaki, S.B.; Myers-Pigg, A.N.; Ward, N.D.; Waichler, S.R.; Sengupta, A.; Hou, Z.; Chen, X.; Fang, Y.; Duan, Z.; Serkowski, J.A. Floodplain inundation and salinization from a recently restored first-order tidal stream. Water Resour. Res. 2020, 56, e2019WR026850. [Google Scholar] [CrossRef]
- Sengupta, A.; Indivero, J.; Gunn, C.; Tfaily, M.M.; Chu, R.K.; Toyoda, J.; Bailey, V.L.; Ward, N.D.; Stegen, J.C. Spatial gradients in soil-carbon character of a coastal forested floodplain are associated 1 with abiotic features, but not microbial communities 2. Biogeosciences 2019, 16, 3911–3928. [Google Scholar] [CrossRef]
- Wang, W.; McDowell, N.G.; Ward, N.D.; Indivero, J.; Gunn, C.; Bailey, V.L. Constrained tree growth and gas exchange of seawater-exposed forests in the Pacific Northwest, USA. J. Ecol. 2019, 107, 2541–2552. [Google Scholar] [CrossRef]
- Regier, P.; Ward, N.D.; Indivero, J.; Wiese Moore, C.; Norwood, M.; Myers-Pigg, A. Biogeochemical control points of connectivity between a tidal creek and its floodplain. Limnol. Oceanogr. Lett. 2021, 6, 134–142. [Google Scholar] [CrossRef]
- Ward, N.; Indivero, J.; Gunn, C.; Wang, W.; Bailey, V.; McDowell, N. Longitudinal gradients in tree stem greenhouse gas concentrations across six Pacific Northwest coastal forests. J. Geophys. Res. Biogeosci. 2019, 124, 1401–1412. [Google Scholar] [CrossRef]
- Zeileis, A.; Grothendieck, G. Zoo: S3 infrastructure for regular and irregular time series. arXiv 2005, arXiv:math/0505527. [Google Scholar]
- Arellano, A.; Bianchi, T.S.; Osburn, C.; D’Sa, E.; Ward, N.D.; Oviedo-Vargas, D.; Joshi, I.; Ko, D.; Shields, M.; Kurian, G. Mechanisms of organic matter export in estuaries with contrasting carbon sources. J. Geophys. Res. Biogeosci. 2019, 124, 3168–3188. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Nielsen, D.; Van Genuchten, M.T.; Biggar, J. Water flow and solute transport processes in the unsaturated zone. Water Resour. Res. 1986, 22, 89S–108S. [Google Scholar] [CrossRef]
- Hammond, G.E.; Lichtner, P.C.; Mills, R. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN. Water Resour. Res. 2014, 50, 208–228. [Google Scholar] [CrossRef]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 493–507. [Google Scholar] [CrossRef]
- Regier, P.; Duggan, M.; Myers-Pigg, A.; Ward, N. Effects of random forest modeling decisions on biogeochemical time series predictions. Limnol. Oceanogr. Methods 2023, 21, 40–52. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Sturtevant, C.; Ruddell, B.L.; Knox, S.H.; Verfaillie, J.; Matthes, J.H.; Oikawa, P.Y.; Baldocchi, D. Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. J. Geophys. Res. Biogeosci. 2016, 121, 188–204. [Google Scholar] [CrossRef]
- RoyChowdhury, T.; Bramer, L.; Hoyt, D.W.; Kim, Y.-M.; Metz, T.O.; McCue, L.A.; Diefenderfer, H.L.; Jansson, J.K.; Bailey, V. Temporal dynamics of CO2 and CH4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils. Ecol. Eng. 2018, 114, 104–114. [Google Scholar] [CrossRef]
- Trifunovic, B.; Vázquez-Lule, A.; Capooci, M.; Seyfferth, A.L.; Moffat, C.; Vargas, R. Carbon dioxide and methane emissions from a temperate salt marsh tidal creek. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005558. [Google Scholar] [CrossRef]
- Covey, K.; Soper, F.; Pangala, S.; Bernardino, A.; Pagliaro, Z.; Basso, L.; Cassol, H.; Fearnside, P.; Navarrete, D.; Novoa, S. Carbon and beyond: The biogeochemistry of climate in a rapidly changing Amazon. Front. For. Glob. Change 2021, 4, 11. [Google Scholar] [CrossRef]
- McNicol, G.; Silver, W.L. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry. J. Geophys. Res. Biogeosci. 2014, 119, 557–566. [Google Scholar] [CrossRef]
- Sawakuchi, H.O.; Neu, V.; Ward, N.D.; Barros, M.d.L.C.; Valerio, A.M.; Gagne-Maynard, W.; Cunha, A.C.; Less, D.F.; Diniz, J.E.; Brito, D.C. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 2017, 4, 76. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Cord-Ruwisch, R.; Seitz, H.-J.; Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 1988, 149, 350–357. [Google Scholar] [CrossRef]
- Cunha, M.; Almeida, M.; Alcântara, F. Patterns of ectoenzymatic and heterotrophic bacterial activities along a salinity gradient in a shallow tidal estuary. Mar. Ecol. Prog. Ser. 2000, 204, 1–12. [Google Scholar] [CrossRef]
- He, Z.; Geng, S.; Shen, L.; Lou, L.; Zheng, P.; Xu, X.; Hu, B. The short-and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res. 2015, 68, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.H.; Jackson, R.B.; Poulter, B.; McNicol, G.; Fluet-Chouinard, E.; Zhang, Z.; Hugelius, G.; Bousquet, P.; Canadell, J.G.; Saunois, M. FLUXNET-CH 4 synthesis activity: Objectives, observations, and future directions. Bull. Am. Meteorol. Soc. 2019, 100, 2607–2632. [Google Scholar]
- Liu, J.; Zhou, Y.; Valach, A.; Shortt, R.; Kasak, K.; Rey-Sanchez, C.; Hemes, K.S.; Baldocchi, D.; Lai, D.Y. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Glob. Change Biol. 2020, 26, 4998–5016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.J.; Ward, N.D.; Myers-Pigg, A.N.; Lin, X.; Waichler, S.R.; Wiese Moore, C.; Norwood, M.J.; Regier, P.; Yabusaki, S.B. Quantifying Drivers of Methane Hydrobiogeochemistry in a Tidal River Floodplain System. Water 2024, 16, 171. https://doi.org/10.3390/w16010171
Hou ZJ, Ward ND, Myers-Pigg AN, Lin X, Waichler SR, Wiese Moore C, Norwood MJ, Regier P, Yabusaki SB. Quantifying Drivers of Methane Hydrobiogeochemistry in a Tidal River Floodplain System. Water. 2024; 16(1):171. https://doi.org/10.3390/w16010171
Chicago/Turabian StyleHou, Z. Jason, Nicholas D. Ward, Allison N. Myers-Pigg, Xinming Lin, Scott R. Waichler, Cora Wiese Moore, Matthew J. Norwood, Peter Regier, and Steven B. Yabusaki. 2024. "Quantifying Drivers of Methane Hydrobiogeochemistry in a Tidal River Floodplain System" Water 16, no. 1: 171. https://doi.org/10.3390/w16010171
APA StyleHou, Z. J., Ward, N. D., Myers-Pigg, A. N., Lin, X., Waichler, S. R., Wiese Moore, C., Norwood, M. J., Regier, P., & Yabusaki, S. B. (2024). Quantifying Drivers of Methane Hydrobiogeochemistry in a Tidal River Floodplain System. Water, 16(1), 171. https://doi.org/10.3390/w16010171