Environmental Health Assessment of the Northwest Portuguese Coast—Biochemical Biomarker Responses in the Marine Gastropod Phorcus lineatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Tissue Preparation for Biochemical Assays
2.3. Biochemical Biomarker Measurements
2.4. Water Collection and Analysis
2.5. Integrated Biomarker Response (IBR)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Biometric Parameters
3.3. Biochemical Biomarkers
3.4. Integrated Biomarker Response (IBR)
3.5. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Boudjema, K.; Badis, A.; Moulai-Mostefa, N. Study of heavy metal bioaccumulation in Mytilus galloprovincialis (Lamark 1819) from heavy metal mixture using the CCF design. Environ. Technol. Innov. 2022, 25, 102202. [Google Scholar] [CrossRef]
- Jin, P.; Zhang, J.; Wan, J.; Overmans, S.; Gao, G.; Ye, M.; Dai, X.; Zhao, J.; Xiao, M.; Xia, J. The Combined effects of ocean acidification and heavy metals on marine organisms: A Meta-analysis. Front. Mar. Sci. 2021, 8, 801889. [Google Scholar] [CrossRef]
- Goksøyr, S.Ø.; Sørensen, H.; Grøsvik, B.E.; Pampanin, D.M.; Goksøyr, A.; Karlsen, O.A. Toxicity assessment of urban marine sediments from Western Norway using a battery of stress-activated receptors and cell-based bioassays from fish. Environ. Toxicol. Pharmacol. 2021, 87, 103704. [Google Scholar] [CrossRef] [PubMed]
- Turan, F.; Yilmaz, M.B.; Yola, M.L.; Ergenler, A.; Ilgaz, N.S.; Oksuz, H. Bioaccumulation of trace metals and genotoxicity responses in Liza aurata as an indicator of industrial pollution. Ecotoxicology 2022, 31, 1390–1402. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Alfaro, A.C.; Merien, F.; Lulijwa, R.; Young, T. Copper-induced immunomodulation in mussel (Perna canaliculus) haemocytes. Metallomics 2018, 10, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Roma, J.; Feijão, E.; Vinagre, C.; Duarte, B.; Matos, A.R. Impacts of dissolved Zn and nanoparticle forms in the fatty acid landscape of Mytilus galloprovincialis. Sci. Total Environ. 2022, 817, 152807. [Google Scholar] [CrossRef]
- Sıkdokur, E.; Belivermiş, M.; Sezer, N.; Pekmez, M.; Bulan, Ö.K.; Kılıç, Ö. Effects of microplastics and mercury on manila clam Ruditapes philippinarum: Feeding rate, immunomodulation, histopathology and oxidative stress. Environ. Pollut. 2020, 262, 114247. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Thilagam, H.; Raja, P.V. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 2008, 71, 515–528. [Google Scholar] [CrossRef]
- Sinaei, M.; Loghmani, M.; Bolouki, M. Application of biomarkers in brown algae (Cystoseria indica) to assess heavy metals (Cd, Cu, Zn, Pb, Hg, Ni, Cr) pollution in the northern coasts of the Gulf of Oman. Ecotoxicol. Environ. Saf. 2018, 164, 675–680. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy Metal Pollution in Coastal Wetlands: A Systematic Review of Studies Globally over the Past Three Decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cid, B.; Falqué, E.; Simal-Gandara, J. Coastline Levels of Dissolved Heavy Metals in the Estuarine Water–System of Vigo. Int. J. Environ. Res. Public Health 2021, 18, 2136. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.A.; Salgado, M.A.; Vasconcelos, V. Seasonal variation of metal contamination in the barnacles Pollicipes pollicipes in northwest coast of Portugal show clear correlation with levels in the surrounding water. Mar. Pollut. Bull. 2013, 70, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Couto, C.; Ribeiro, A.R.; Maia, A.S.; Santos, M.; Tiritan, M.E.; Pinto, E.; Almeida, A.A. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Sci. Total Environ. 2018, 639, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Calisi, A. Integrating Bioindicators and Biomarkers in Aquatic Ecotoxicology: An Overview. Appl. Sci. 2023, 13, 11920. [Google Scholar] [CrossRef]
- Suter, G.W.; Norton, S.B. Ecological Risk Assessment. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 402–406. [Google Scholar]
- Calisi, A.; Giordano, M.E.; Dondero, F.; Maisano, M.; Fasulo, S.; Lionetto, M.G. Morphological and functional alterations in hemocytes of Mytilus galloprovincialis exposed in high-impact anthropogenic sites. Mar. Environ. Res. 2023, 188, 105988. [Google Scholar] [CrossRef] [PubMed]
- Stelzenmüller, V.; Coll, M.; Mazaris, A.D.; Giakoumi, S.; Katsanevakis, S.; Portman, M.E.; Degen, R.; Mackelworth, P.; Gimpel, A.; Albano, P.G. A risk-based approach to cumulative effect assessments for marine management. Sci. Total Environ. 2018, 15, 1132–1140. [Google Scholar] [CrossRef]
- Cubadda, F.; Conti, M.E.; Campanella, L. Size-dependent concentrations of trace metals in four Mediterranean gastropods. Chemosphere 2001, 45, 561–569. [Google Scholar] [CrossRef]
- Cunha, I.; Mangas-Ramirez, E.; Guilhermino, L. Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comp. Biochem. Physiol. Toxicol. Pharmacol. 2007, 145, 648–657. [Google Scholar] [CrossRef]
- García-Escárzaga, A.; Gutiérrez-Zugasti, I.; Schöne, B.R.; Cobo, A.; Martín-Chivelet, J.; González-Morales, M.R. Growth patterns of the topshell Phorcus lineatus (da Costa, 1778) in northern Iberia deduced from shell sclerochronology. Chem. Geol. Chem. Sclerochronol. 2019, 526, 49–61. [Google Scholar] [CrossRef]
- Fulton, T.W. The Sovereignty of the Sea: An Historical Account of the Claims of England to the Dominion of the British Seas, and of the Evolution of the Territorial Waters: With Special Reference to the Rights of the Fishing and the Naval Salute; W. Blackwood: Edinburgh, UK, 1911. [Google Scholar]
- Deng, J.; Yu, L.; Liu, C.; Yu, K.; Shi, X.; Yeung, L.W.; Lam, P.K.; Wu, R.S.; Zhou, B. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat. Toxicol. 2009, 93, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Durak, I.; Yurtarslanl, Z.; Canbolat, O.; Akyol, O. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin. Chim. Acta 1993, 214, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Claiborne, A. Catalase activity. In CRC Handbook of Methods for Oxygen Radical Research; CRC Press: Boca Raton, FL, USA, 1985; pp. 283–284. [Google Scholar]
- Habig, W.H.; Jakoby, W.B. [51] Assays for differentiation of glutathione S-transferases. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1981; pp. 398–405. [Google Scholar]
- Hosokawa, M.; Satoh, T. Measurement of Carboxylesterase (CES) Activities. Curr. Protoc. Toxicol. 2001, 10, 4.7.1–4.7.14. [Google Scholar] [CrossRef]
- Wallin, B.; Rosengren, B.; Shertzer, H.G.; Camejo, G. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: Its use for evaluation of antioxidants. Anal. Biochem. 1993, 208, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fuentes, G.; Rubio-Escalante, F.J.; Norena-Barroso, E.; Escalante-Herrera, K.S.; Schlenk, D. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015, 172–173, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef]
- Devin, S.; Burgeot, T.; Giambérini, L.; Minguez, L.; Pain-Devin, S. The integrated biomarker response revisited: Optimization to avoid misuse. Environ. Sci. Pollut. Res. 2014, 21, 2448–2454. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial Vol. 91; PRIMER-E: Plymouth, UK, 2015; pp. 192–296. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Boulajfene, W.; Strogyloudi, E.; Lasram, M.; El Mlayah, A.; Vassiliki-Angelique, C.; Zouari-Tlig, S. Biological and biochemical assessment in Phorcus articulatus (Lamarck 1822): Contamination and seasonal effect. Environ. Monit. Assess. 2019, 191, 555. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.M.B.; Monteiro, S.M.; Cortes, R.M.V.; Pacheco, F.A.L.; Fernandes, L.F.S. Seasonal effect of land use management on gill histopathology of Barbel and Douro Nase in a Portuguese watershed. Sci. Total Environ. 2021, 764, 142869. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.M.C.M.; Ribeiro, C. Pollution status and risk assessment of trace elements in Portuguese water, soils, sediments, and associated biota: A trend analysis from the 80s to 2021. Environ. Sci. Pollut. Res. Int. 2022, 29, 48057–48087. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.A.; Cassiano, J.; Veiga, P.; Rubal, M.; Sousa-Pinto, I. Fucus spiralis as monitoring tool of metal contamination in the northwest coast of Portugal under the European Water Framework Directives. Environ. Monit. Assess. 2014, 186, 5447–5460. [Google Scholar] [CrossRef] [PubMed]
- Boulajfene, W.; Strogyloudi, E.; Catsiki, V.-A.; El Mlayah, A.; Tlig-Zouari, S. Bio-monitoring of metal impact on metallothioneins levels in the gastropod Phorcus turbinatus (Born, 1778) in the northeastern and the eastern coasts of Tunisia. Mar. Pollut. Bull. 2017, 120, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Hagger, J.A.; Lowe, D.; Dissanayake, A.; Jones, M.B.; Galloway, T.S. The influence of seasonality on biomarker responses in Mytilus edulis. Ecotoxicology 2010, 19, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, M.; Duan, L.; Qiu, Y.; Ma, T.; Chen, L.; Breitholtz, M.; Bergman, Å.; Zhao, J.; Hecker, M.; et al. Multiple biomarker responses in caged benthic gastropods Bellamya aeruginosa after in situ exposure to Taihu Lake in China. Environ. Sci. Eur. 2018, 30, 34. [Google Scholar] [CrossRef] [PubMed]
- Otero, S.; Kristoff, G. In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity. Aquat. Toxicol. 2016, 180, 186–195. [Google Scholar] [CrossRef]
- Moreira, S.M.; Guilhermino, L. The use of Mytilus galloprovincialis acetylcholinesterase and glutathione S-transferases activities as biomarkers of environmental contamination along the Northwest Portuguese coast. Environ. Monit. Assess. 2005, 105, 309–325. [Google Scholar] [CrossRef]
- Escartín, E.; Porte, C. The use of cholinesterase and carboxylesterase activities from Mytilus galloprovincialis in pollution monitoring. Environ. Toxicol. Chem. 1997, 16, 2090–2095. [Google Scholar] [CrossRef]
- Pfeifer, S.; Schiedek, D.; Dippner, J.W. Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp. from the south-western Baltic Sea. J. Exp. Mar. Biol. Ecol. 2005, 320, 93–103. [Google Scholar] [CrossRef]
- Tim-Tim, A.L.S.; Morgado, F.; Moreira, S.; Rangel, R.; Nogueira, A.J.A.; Soares, A.M.V.M.; Guilhermino, L. Cholinesterase and glutathione S-transferase activities of three mollusc species from the NW Portuguese coast in relation to the ‘Prestige’ oil spill. Chemosphere 2009, 77, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Dellali, M.; Gnassia Barelli, M.; Romeo, M.; Aissa, P. The use of acetylcholinesterase activity in Ruditapes decussatus and Mytilus galloprovincialis in the biomonitoring of Bizerta lagoon. Comp. Biochem. Physiol. Toxicol. Pharmacol. 2001, 130, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Najimi, S.; Bouhaimi, A.; Daubèze, M.; Zekhnini, A.; Pellerin, J.; Narbonne, J.F.; Moukrim, A. Use of acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (South of Morocco). Bull. Environ. Contam. Toxicol. 1997, 58, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Boulajfene, W.; Lasram, M.; Zouari-Tlig, S. Integrated biomarker response for environmental assessment using the gastropod Phorcus turbinatus along the Northern and the Northeastern coasts of Tunisia. Life 2021, 11, 529. [Google Scholar] [CrossRef]
- Anderson, M.J. Analysis of Ecological Communities: Bruce McCune and James B. Grace, MjM Software Design, Gleneden Beach, USA, 2002, ISBN 0 9721290 0 6, US$35 (Pbk). J. Exp. Mar. Biol. Ecol. 2003, 289, 303–305. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Kruskal, J.B. Nonmetric multidimensional scaling: A numerical method. Psychometrika 1964, 29, 115–129. [Google Scholar] [CrossRef]
- Cabecinha, E.; Hughes, S.; Cortes, R. Consistent, congruent or redundant? Lotic community and organisational response to disturbance. Ecol. Indic. 2018, 89, 175–187. [Google Scholar] [CrossRef]
- Mirzaei, M.; Hatamimanesh, M.; Haghshenas, A.; Moghaddam, S.M.; Ozunu, A.; Azadi, H. Spatial-seasonal variations and ecological risk of heavy metals in Persian gulf coastal region: Case study of Iran. J. Environ. Health Sci. Eng. 2020, 18, 91–105. [Google Scholar] [CrossRef]
Summer | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Site 1 Amorosa | Site 2 Cabo do Mundo | Site 3 Homem do Leme | Site 4 S. Félix Marinha | Site 1 Amorosa | Site 2 Cabo do Mundo | Site 3 Homem do Leme | Site 4 S. Félix Marinha | |
pH | 7.73 | 7.81 | 7.87 | 8 | 8.43 | 8.13 | 8.15 | 7.89 | |
Temperature (°C) | 17 | 17.3 | 18 | 18.2 | 13 | 13.1 | 14.4 | 14.2 | |
mg/L | Nitrite (NO2−) | 0.02 | 0.16 | 0.1 | 0.03 | 0.91 | 0.01 | 0.01 | 0.02 |
Nitrate (NO3−) | 2.1 | 6.05 | 2.58 | 1.79 | 1.06 | 5.81 | 0.94 | 0.7 | |
Fluorides (F−) | 0.89 | 0.82 | 0.81 | 0.79 | 0.91 | 0.9 | 0.9 | 0.92 | |
Chlorides (Cl−) | 15,161.5 | 17,173.3 | 16,345.8 | 15,061.7 | 14,985.7 | 13,839.6 | 15,285.3 | 14,373.6 | |
Phosphate (P2O5−) | 0.12 | 0.13 | 0.14 | 0.12 | n.d. | n.d. | n.d. | n.d. | |
Sulfates (SO42−) | 2496.1 | 2713.9 | 2768.3 | 2779.2 | 2920.8 | 2659.4 | 2920.8 | 2822.7 | |
Ammonium (NH4) | 0.26 | 0.16 | 0.21 | 0.1 | 0.01 | 0.01 | 0.01 | 0.01 | |
Calcium (Ca) | 184.5 | 181.2 | 181.2 | 187.8 | 598.4 | 589.9 | 598.4 | 589.9 | |
Potassium (K) | 473.8 | 507.6 | 494.8 | 507.6 | 397.3 | 349.2 | 299.4 | 457.3 | |
Magnesium (Mg) | 1127 | 1179 | 1165 | 1125 | 1517 | 1406 | 1434 | 1734 | |
Sodium (Na) | 7318.36 | 7540.16 | 7643.64 | 7747.83 | 7074.66 | 6653.86 | 6685.77 | 6911.29 | |
Alkalinity (HCO3−) | 146.4 | 140.3 | 146.4 | 146.4 | 134.2 | 152.5 | 152.5 | 131.15 | |
Biochemical oxygen demand (BOD) | 6.25 | 12.5 | 6.25 | 6.25 | 0 | 0 | 0 | 0 | |
Chemical oxygen deficiency (COD) | 426.14 | 337.06 | 663.69 | 218.28 | 1964 | 1828 | 1988 | 2000 | |
Total Suspended Solids (TSS) | 125 | 141 | 130 | 128 | 126 | 134 | 132 | 137 | |
Total hardness (CaCO3) | 5099 | 5305 | 5248 | 5099 | 7741.5 | 7261.3 | 7399.4 | 8610.5 | |
µg/L | Arsenic (As) | 43.08 | 39.39 | 40.97 | 35.69 | 99.87 | 41.76 | 76.22 | 94.23 |
Cadmium (Cd) | 7.168 | 3.813 | 9.508 | 3.784 | 0.635 | 1.03 | 1.656 | 1.772 | |
Copper (Cu) | 6.232 | 6.634 | 14.62 | 12.74 | 7.439 | 5.816 | 19.24 | 2.078 | |
Chromium (Cr) | 0.818 | 0.936 | 3.411 | 0.398 | 0.271 | 0.503 | 0.463 | 0.209 | |
Iron (Fe) | 0.35 | 0.59 | 1 | 0.39 | 0.92 | 4.32 | 2.44 | 0.55 | |
Manganese (Mn) | 1.326 | 2.352 | 5.292 | 0.56 | 0.486 | 1.527 | 1.376 | 0.296 | |
Nickel (Ni) | 122.6 | 46.8 | 75.4 | 35 | n.d. | 1.463 | n.d. | n.d. | |
Lead (Pb) | n.d. | 0.156 | 0.129 | 0.154 | 3.846 | 6.159 | 5.389 | 5.039 | |
Zinc (Zn) | 2.6 | 2.51 | 2.7 | 10.49 | 1.052 | 0.453 | 1.244 | 0.454 |
Seasons/Sites | Total Length (cm) | Total Weight (g) | Weight of the Soft Tissues (g) | Condition Factor (CF) | |
---|---|---|---|---|---|
Summer | Site 1—Amorosa | 1.73 ± 0.12 ac | 2.38 ± 0.48 ab | 0.68 ± 0.18 a | 0.46 ± 0.06 a |
Site 2—Cabo do Mundo | 1.91 ± 0.15 b | 2.76 ± 0.61 a | 0.90 ± 0.23 b | 0.39 ± 0.07 b | |
Site 3—Homem do Leme | 1.84 ± 0.21 ab | 2.90 ± 1.11 a | 0.76 ± 0.29 ab | 0.44 ± 0.04 a | |
Site 4—S. Félix da Marinha | 1.70 ± 0.11 c | 2.17 ± 0.47 b | 0.49 ± 0.14 c | 0.44 ± 0.05 a | |
Winter | Site 1—Amorosa | 1.88 ± 0.16 a* | 3.07 ± 0.99 a* | 0.74 ± 0.20 a | 0.45 ± 0.08 ab |
Site 2—Cabo do Mundo | 2.16 ± 0.18 b* | 4.65 ± 1.34 b* | 1.44 ± 0.47 b* | 0.45 ± 0.04 a* | |
Site 3—Homem do Leme | 2.00 ± 0.14 c* | 3.41 ± 0.84 a* | 1.09 ± 0.29 bc* | 0.42 ± 0.03 ab | |
Site 4—S. Félix da Marinha | 1.93 ± 0.15 ac* | 2.99 ± 1.05 a* | 0.95 ± 0.26 c* | 0.41 ± 0.11 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.; Varandas, S.; Carrola, J.S.; Saavedra, M.J.; Luzio, A.; Monteiro, S.M.; Cabecinha, E. Environmental Health Assessment of the Northwest Portuguese Coast—Biochemical Biomarker Responses in the Marine Gastropod Phorcus lineatus. Water 2024, 16, 5. https://doi.org/10.3390/w16010005
Santos D, Varandas S, Carrola JS, Saavedra MJ, Luzio A, Monteiro SM, Cabecinha E. Environmental Health Assessment of the Northwest Portuguese Coast—Biochemical Biomarker Responses in the Marine Gastropod Phorcus lineatus. Water. 2024; 16(1):5. https://doi.org/10.3390/w16010005
Chicago/Turabian StyleSantos, Dércia, Simone Varandas, João Soares Carrola, Maria José Saavedra, Ana Luzio, Sandra M. Monteiro, and Edna Cabecinha. 2024. "Environmental Health Assessment of the Northwest Portuguese Coast—Biochemical Biomarker Responses in the Marine Gastropod Phorcus lineatus" Water 16, no. 1: 5. https://doi.org/10.3390/w16010005
APA StyleSantos, D., Varandas, S., Carrola, J. S., Saavedra, M. J., Luzio, A., Monteiro, S. M., & Cabecinha, E. (2024). Environmental Health Assessment of the Northwest Portuguese Coast—Biochemical Biomarker Responses in the Marine Gastropod Phorcus lineatus. Water, 16(1), 5. https://doi.org/10.3390/w16010005