Mechanistic Modeling of the Variability of Methane Emissions from an Artificial Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Observations
2.3. Satellite Measurements of Water Surface Temperature
2.4. The Summary of the LAKE Model
- −
- horizontal speed components;
- −
- temperature;
- −
- salinity;
- −
- concentration of dissolved oxygen and methane;
- −
- concentration of carbon in the following forms: living organic particles (phyto- and zooplankton), dead organic particles (detritus), autochthonous and allochthonous dissolved organic carbon, dissolved inorganic carbon;
- −
- concentration of phosphorus of the dissolved inorganic phosphorus (phosphates).
- −
- photosynthesis, respiration, exudation, and death of phyto- and zooplankton;
- −
- aerobic decomposition of dissolved organic compounds and detritus;
- −
- photochemical decomposition of dissolved organic compounds;
- −
- aerobic oxidation of methane.
- −
- diffusion flux from the surface of the reservoir, where the gas exchange coefficient is provided according to the surface renewal model [55];
- −
- bubble flux of methane, carbon dioxide, and oxygen are calculated separately above bottom sediments located at different depths (Figure 2);
- −
- advective flux through the outflow (or turbines in the case of hydroelectric power plants) (Equation (9)).
2.5. Setup of Numerical Experiments
3. Results and Discussion
3.1. Methane Emission by In Situ Measurements
3.2. Thermodynamic, Oxygen, Methane Concentration Regime and Methane Emissions According to the LAKE Model
3.2.1. Temperature Regime
3.2.2. Dissolved Oxygen Regime
3.2.3. Methane Concentration in Water
3.2.4. Methane Fluxes into the Atmosphere
3.3. Model Sensitivity Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.; Haywood, J.; Lean, J.; Lowe, D.; Myhre, G.; et al. Changes in atmospheric constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Nakajima, T., Ed.; Cambridge University Press: Cambridge, UK, 2007; Chapter 2; pp. 129–217. [Google Scholar]
- IPCC Sixth Assessment Report. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 10 September 2023).
- Sanuois, M.; Biusquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.; Dlugokencky, E.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef]
- Gruca-Rokosz, R.; Tomaszek, J. Methane and Carbon Dioxide in the Sediment of a Eutrophic Reservoir: Production Pathways and Diffusion Fluxes at the Sediment–Water Interface. Water Air Soil Pollut. 2015, 226, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Bazhin, N. Methane Emission from Bottom Sediments. Chem. Sustain. Dev. 2003, 11, 577–580. [Google Scholar]
- Whiticar, M.J. The Biogeochemical Methane Cycle. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate; Wilkes, H., Ed.; Springer: London, UK, 2020; pp. 669–746. [Google Scholar] [CrossRef]
- GHG Measurement Guidelines for Freshwater Reservoirs. Available online: https://www.hydropower.org/publications/ghg-measurement-guidelines-for-freshwater-reservoirs (accessed on 1 September 2023).
- Milberg, P.; Tornqvist, L.; Westerberg, L.; Bastviken, D. Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes. AoB Plants 2017, 9, 1–15. [Google Scholar] [CrossRef]
- Guerin, F.; Abril, G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. 2007, 112, 3006–3020. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.; Pace, M.; Van de Bogert, M. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. J. Geophys. Res. 2008, 113, 2024–2037. [Google Scholar] [CrossRef]
- Garkusha, D.; Fedorova, A.; Tambieva, N. Computing the Methane Cycle Elements in the Aquatic Ecosystems of the Sea of Azov and the World Ocean Based on Empirical Formulae. Russ. Meteorol. Hydrol. 2016, 41, 410–417. [Google Scholar] [CrossRef]
- Harrison, J.A.; Deemer, B.; Birchfield, M.; O’Malley, M. Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environ. Sci. Technol. 2017, 51, 1267–1277. [Google Scholar] [CrossRef]
- Ostrovsky, I.; McGinnis, D.; Lapidus, L.; Eckert, W. Quantifying gas ebullition with echosounder: The role of methane transport by bubbles in a medium-sized lake. Limnol. Ocean. Methods 2008, 6, 105–118. [Google Scholar] [CrossRef]
- Miller, B.; Arntzen, E.; Goldman, A.; Richmond, M. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions. Environ. Manag. 2017, 60, 1–15. [Google Scholar] [CrossRef]
- Beaulieu, J.; DelSontro, T.; Downing, J. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 2019, 10, 1375–1380. [Google Scholar] [CrossRef]
- Bartosiewicz, M.; Przytulska, A.; Laurion, I.; Maranger, R. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. Wat. Res. 2021, 196, 116985. [Google Scholar] [CrossRef]
- Kemenes, A.; Melack, J.; Forsberg, B. Downstream emissions of CH4 and CO2 from hydroelectric reservoirs (Tucuruí, Samuel, and Curuá-Una) in the Amazon basin. Inland Wat. 2006, 6, 295–302. [Google Scholar] [CrossRef]
- Deemer, B.; Harrison, A.; Li, S.; Beaulieu, J.; DelSontro, T.; Barros, N.; Bezerra-Neto, J.F.; Powers, S.M.; dos Santos, M.; Vonk, J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience 2016, 66, 949–964. [Google Scholar] [CrossRef]
- Li, S.; Zhuang, Q. Carbon emission from global hydroelectric reservoirs revisited. Environ. Sci. Pollut. Res. Int. 2014, 21, 131–137. [Google Scholar] [CrossRef]
- Louis, V.; Kelly, C.; Duchemin, E.; Rudd, J.; Rosenberg, D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. BioScience 2000, 50, 766–775. [Google Scholar] [CrossRef]
- Varis, O.; Kummu, M.; Harkonen, S.; Huttunen, J.T. Greenhouse Gas Emissions from Reservoirs. In Impact of large dams: A Global Assessment; Tortajada, C., Altinbilek, D., Biswas, K., Eds.; Springer: Berlin, Germany, 2012; Chapter 4; pp. 69–94. [Google Scholar]
- Adams, D.D. Diffuse Flux of Greenhouse Gases—Methane and Carbon Dioxide—At the Sediment-Water Interface of Some Lakes and Reservoirs of the World. In Greenhouse Gas Emission—Fluxes and Processes; Tremblay, A., Roehm, C., Varfalvy, L., Garneau, M., Eds.; Springer: Berlin, Germany, 2005; Chapter 5; pp. 129–152. [Google Scholar]
- Harrison, J.A.; Prairie, Y.T.; Mercier-Blais, S.; Soued, C. Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas from Reservoirs (G-res) Model. Glob. Biogeochem. Cycles 2021, 35, 1–14. [Google Scholar] [CrossRef]
- Rosentreter, J.A.; Borges, A.V.; Deemer, B.R.; Holgerson, M.A.; Liu, S.; Song, C.; Melack, J.; Raymond, P.A.; Duarte, C.M.; Allen, G.; et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 2021, 14, 225–230. [Google Scholar] [CrossRef]
- Stepanenko, V.; Mammarella, I.; Ojala, A.; Miettinen, H.; Lykossov, V.; Vesala, T. LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geosci. Model Dev. 2016, 9, 1977–2006. [Google Scholar] [CrossRef]
- Stepanenko, V.; Valerio, G.; Pilotti, M. Horizontal pressure gradient parameterization for one-dimensional lake models. J. Adv. Model. Earth Sys. 2020, 12, e21063. [Google Scholar] [CrossRef]
- Stepanenko, V.; Machul’skaya, E.; Glagolev, M.; Lykosov, V. Numerical modeling of methane emissions from lakes in the permafrost zone. Izv.-Atm. Ocean Phys. 2011, 47, 252–264. [Google Scholar] [CrossRef]
- Tan, Z.; Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 2015, 10, 054016. [Google Scholar] [CrossRef]
- Tan, Z.; Zhuang, Q.; Anthony, K. Modeling methane emissions from arctic lakes: Model development and site-level study. J. Adv. Model Earth Sys. 2017, 7, 459–483. [Google Scholar] [CrossRef]
- Tan, Z.; Zhuang, Q.; Shurpali, N.; Marushchak, M.; Biasi, C.; Eugster, W.; Anthony, K.W. Modeling CO2 emissions from Arctic lakes: Model development and site-level study. J. Adv. Model Earth Sys. 2017, 9, 2190–2213. [Google Scholar] [CrossRef]
- Guseva, S.; Stepanenko, V.; Shurpali, N.; Marushchak, M.; Lind, S.E.; Biasi, C. Numerical simulation of methane emission from subarctic lake in Komi republic (Russia). Geogr. Environ. Sustain. 2016, 2, 58–74. [Google Scholar] [CrossRef]
- Kiuru, P.; Ojala, A.; Mammarella, I.; Heiskanen, J.; Kamarainen, M.; Vesala, T.; Huttula, T.H. Effects of Climate Change on CO2 Concentration and Efflux in a Humic Boreal Lake: A Modeling Study. J. Geophys. Res. Biogeosci. 2018, 123, 2212–2233. [Google Scholar] [CrossRef]
- Guseva, S.; Bleninger, T.; Jöhnk, K.; Polli, B.; Tan, Z.; Thiery, W.; Zhuang, Q.; Rusak, J.A.; Yao, H.; Lorke, A.; et al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrol. Earth Sys. Sci. 2020, 24, 697–715. [Google Scholar] [CrossRef]
- Ishikawa, M.; Gonzalez, W.; Golyjeswski, O.; Sales, G.; Rigotti, J.A.; Bleninger, T.; Mannich, M.; Lorke, A. Effects of dimensionality on the performance of hydrodynamic models. Geosci. Model Dev. 2022, 15, 2197–2220. [Google Scholar] [CrossRef]
- Puklakov, V.; Datsenko, Y.; Goncharov, A.; Edelshtein, K.; Grechushnikova, M.; Ershova, M.; Belova, S.; Sokolov, D.; Puklakova, H.; Erina, O.; et al. Hydroecological Regime of Reservoirs in Moscow Region (Observations, Diagnosis, Forecast); “Pero” Publishing: Moscow, Russia, 2015; pp. 37–38. (In Russian) [Google Scholar]
- Bastviken, D.; Santoro, A.; Marotta, H. Methane emissions from Pantanal, South America, during the low water season: Toward more comprehensive sampling. Environ. Sci. Technol. 2010, 44, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Hosoda, K.; Murakami, H.; Sakaida, F.; Kawamura, H. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific. J. Oceanogr. 2007, 63, 267–280. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37, L22405. [Google Scholar] [CrossRef]
- Aleskerova, A.; Kubryakov, A.; Stanichny, S. A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements. Izv. Atm. Ocean Phys. 2016, 52, 1155–1161. [Google Scholar] [CrossRef]
- Carrea, L.; Embury, O.; Merchant, C.J. Datasets related to in-land water for limnology and remote sensing applications: Distance-to-land, distance-to-water, water-body identifier and lake-centre coordinates. Geosci. Data J. 2015, 2, 83–97. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, S.N.; Merchant, C.J. Surface water temperature observations of large lakes by optimal estimation. Can. J. Remote Sens. 2012, 38, 25–45. [Google Scholar] [CrossRef]
- Tikhonov, V.V.; Khvostov, I.V.; Romanov, A.N.; Sharkov, E.A. Analysis of Changes in the Ice Cover of Freshwater Lakes by SMOS data. Izv. Atm. Ocean Phys. 2018, 54, 1135–1140. [Google Scholar] [CrossRef]
- Zenodo. LAKE Model. Available online: https://zenodo.org/records/6353238#.YqjVDRlBxPY (accessed on 20 October 2023).
- Iakunin, M.; Stepanenko, V.; Salgado, R.; Potes, M.; Penha, A.; Novais, M.H.; Rodrigues, G. Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE 2.0 model. Geosci. Mod. Dev. 2020, 13, 3475–3488. [Google Scholar] [CrossRef]
- Businger, J.; Wyngaard, J.; Izumi, Y.; Bradley, E. Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Paulson, C. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- McGinnis, D.; Greinert, J.; Artemov, Y.; Beaubien, E.; Wuest, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. Ocean 2006, 111, 1–15. [Google Scholar] [CrossRef]
- Stefan, H.; Fang, X. Dissolved oxygen model for regional lake analysis. Ecol. Model. 1994, 71, 37–68. [Google Scholar] [CrossRef]
- Hanson, P.; Pollard, A.; Bade, D.; Predick, K.; Carpenter, S.R.; Foley, J.A. A model of carbon evasion and sedimentation in temperate lakes. Glob. Chang. Biol. 2004, 10, 1285–1298. [Google Scholar] [CrossRef]
- Sadeghian, A.; Chapra, S.; Hudson, J.; Wheater, H.; Lindenschmidt, K.-E. Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environ. Model. Softw. 2018, 101, 73–85. [Google Scholar] [CrossRef]
- Fichot, C.; Miller, W. An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction. Remote Sens. Environ. 2010, 114, 1363–1377. [Google Scholar] [CrossRef]
- Koehler, B.; Landelius, T.; Weyhenmeyer, G.; Machida, N.; Tranvik, L.J. Sunlight-induced carbon dioxide emissions from inland waters. Glob. Biogeochem. Cycles 2014, 28, 696–711. [Google Scholar] [CrossRef]
- Walker, R.; Snodgrass, W. Model for Sediment Oxygen Demand in Lakes. J. Environ. Eng. 1986, 112, 25–43. [Google Scholar] [CrossRef]
- Donelan, M.; Wanninkhof, R. Gas Transfer at Water Surfaces—Concepts and Issues. Geophys. Monogr. Ser. 2002, 127, 1–10. [Google Scholar] [CrossRef]
- Stepanenko, V.; Repina, I.; Ganbat, G.; Davaa, G. Numerical Simulation of Ice Cover of Saline Lakes. Izv. Atm. Ocean Phys. 2016, 55, 129–138. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef]
- Lomov, V.; Stepanenko, V.; Grechushnikova, M.; Repina, I. Methane fluxes in an artificial valley reservoir according to field observations and mathematical modeling. IOP Conf. Ser. Earth Environ. Sci. 2020, 611, 12–29. [Google Scholar] [CrossRef]
- Hondzo, M.; Stefan, H. Lake Water Temperature Simulation Model. J. Hydraul. Eng. 1993, 119, 1251–1273. [Google Scholar] [CrossRef]
- Lomov, V.; Grechushnikova, M.; Kazantsev, V.; Repina, I. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir in summer period. E3S Web Conf. IV Vinograd. Conf. 2020, 163, 03010. [Google Scholar] [CrossRef]
- Liikanen, A.; Murtoniemi, T.; Tanskanen, H.; Vaisanen, T.; Martikainen, P.J. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 2002, 59, 269–286. [Google Scholar] [CrossRef]
Length, km | Max Width, km | Mean Width, km | Max Depth, m | Area, km2 | Volume, km3 | Range of Level Fluctuations, m/Year | Water Residence Time, Year |
---|---|---|---|---|---|---|---|
28 | 2.6 | 1.1 | 22.6 | 30.7 | 0.235 | 6 | 0.6 |
Year | Measurements at All 5 Stations | Additional Flux Measurements at Station IV |
---|---|---|
2015 | - | 25 June; 29 June; 8–10 July; 28 July |
2016 | 24 June; 4 July; 13 Jule; 22 August Only concentrations | 26 June; 27 June; 3 July; 9 July; 12 July; 27 July; 28 July; 21 August |
2017 | 4 July; 5 July; 20 August Only concentrations | 20 June; 24 June; 27 June; 28 June; 3 July; 10 July; 28 July; 29 July; 31 July; 5 August; 19 August; 2 September; 9 September |
2018 | 24 June; 7 July; 19 August | 20 April; 9 May; 25 May; 17 June; 19 June; 26–29 June; 2 July; 8–10 July; 28 July; 17 August; 22 August; 28 August; 2 September; 8 September; 16 September; 21 September |
2019 | 10 June; 24 June; 5 July | 22 June; 23 June; 26 June; 2 July; 7 July; 9 July; 12 July; 12 August; 9 August |
2020 | 25 May; 12 August | 16 June; 24 June; 9 July; 12 July |
Type of Measurements | Number of Replications | Mean Value | Relative Error, % |
---|---|---|---|
Concentration | 3 | 11.3 μLCH4 L−1 | 13.9 |
Concentration | 6 | 578.3 μLCH4 L−1 | 15.3 |
Concentration | 8 | 18.7 μLCH4 L−1 | 1.8 |
Concentration | 4 | 27.7 μLCH4 L−1 | 8.2 |
Concentration | 5 | 18.0 μLCH4 L−1 | 2.2 |
Concentration | 7 | 1165.5 μLCH4 L−1 | 13.9 |
Flux into atmosphere | 7 | 15.2 mgC-CH4 m−2 d−1 | 27.0 |
Flux into atmosphere | 7 | 3.09 mgC-CH4 m−2 d−1 | 25.0 |
Flux into atmosphere | 12 | 6.74 mgC-CH4 m−2 d−1 | 25.7 |
Year | Emission from the Water Surface, tC-CH4 | Degassing through Turbines and Downstream, tC-CH4 | Total Emission, tC-CH4 |
---|---|---|---|
2017 | 334 | 13 | 347 |
2018 | 256 | 9 | 265 |
2019 | 378 | 11 | 389 |
Surface Layer | 10 m Layer | ||||||
---|---|---|---|---|---|---|---|
Year | Mean Delta, °C | Pearson R | RMSE, °C | Year | Mean Delta, °C | Pearson R | RMSE, °C |
2016 | −0.54 | 0.97 | 0.99 | 2016 | 1.32 | 0.91 | 1.89 |
2017 | −0.84 | 0.96 | 1.20 | 2017 | −0.51 | 0.96 | 0.98 |
2018 | −0.01 | 0.92 | 1.05 | 2018 | 4.26 | 0.64 | 5.07 |
2019 | 0.00 | 0.98 | 0.97 | 2019 | 2.07 | 0.78 | 2.95 |
Average | −0.34 | 0.96 | 1.06 | Average | 1.77 | 0.66 | 3.09 |
Year | Mean Delta, °C | Pearson R | RMSE, °C |
---|---|---|---|
2016 | −0.48 | 0.97 | 1.61 |
2017 | −0.84 | 0.98 | 2.05 |
Average | −0.67 | 0.97 | 1.84 |
Year | Mean Delta, mgO2 L−1 | Pearson R | RMSE, mgO2 L−1 |
---|---|---|---|
2016 (surface) | −1.67 | −0.26 | 2.71 |
2017 (surface) | −0.30 | −0.03 | 2.09 |
2019 (bottom) | −0.34 | 0.99 | 0.52 |
Year | Observations | LAKE Model | |||||
---|---|---|---|---|---|---|---|
Emission from Surface, tC-CH4 | Degassing, tC-CH4 | Total, tC-CH4 | Diffusive, tC-CH4 | Ebullition, tC-CH4 | Degassing, tC-CH4 | Total, tC-CH4 | |
2015 | 50.0 | 287.5 | 6.5 | 344.0 | |||
2016 | 47.0 | 268.0 | 11.4 | 326.4 | |||
2017 | 334 | 13 | 347 | 51.7 | 273.8 | 11.8 | 337.2 |
2018 | 256 | 9 | 265 | 52.9 | 360.8 | 15.2 | 428.9 |
2019 | 378 | 11 | 389 | 60.5 | 354.9 | 8.9 | 424.3 |
Year | Mean Delta, μmolCH4 L−1 | RMSE, μmolCH4 L−1 | ||
---|---|---|---|---|
Vmax = 0.1 | Vmax = 0.2 | Vmax = 0.1 | Vmax = 0.2 | |
2016 | 0.48 | 0.30 | 0.50 | 0.32 |
2017 | 0.28 | 0.11 | 0.34 | 0.20 |
2018 | 0.13 | −0.07 | 0.92 | 0.88 |
2019 | 0.16 | −0.01 | 0.34 | 0.27 |
All years | 0.21 | 0.02 | 0.64 | 0.59 |
Year | Mean Delta, mg C-CH4 m−2 day−1 | RMSE, mg C-CH4 m−2 day−1 | ||
---|---|---|---|---|
q10 = 2.3 | q10 = 3.0 | q10 = 2.3 | q10 = 3.0 | |
2016 | −1.8 | 32.3 | 53.76 | 58.49 |
2017 | −57.7 | −27.4 | 152.67 | 136.89 |
2018 | 49.6 | 98.2 | 177.06 | 214.52 |
2019 | −125.8 | −77.7 | 245.81 | 218.72 |
All years | −29.8 | 10.5 | 177.98 | 181.14 |
Year | Emission, tonC-CH4 Regular Conditions | Emission, tonC-CH4 Vmax = 0.2 | Emission, tonC-CH4 q10 = 3 |
---|---|---|---|
2015 | 344 | 318 | 443 |
2016 | 326 | 296 | 447 |
2017 | 337 | 306 | 430 |
2018 | 429 | 394 | 555 |
2019 | 424 | 393 | 528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lomov, V.; Stepanenko, V.; Grechushnikova, M.; Repina, I. Mechanistic Modeling of the Variability of Methane Emissions from an Artificial Reservoir. Water 2024, 16, 76. https://doi.org/10.3390/w16010076
Lomov V, Stepanenko V, Grechushnikova M, Repina I. Mechanistic Modeling of the Variability of Methane Emissions from an Artificial Reservoir. Water. 2024; 16(1):76. https://doi.org/10.3390/w16010076
Chicago/Turabian StyleLomov, Victor, Victor Stepanenko, Maria Grechushnikova, and Irina Repina. 2024. "Mechanistic Modeling of the Variability of Methane Emissions from an Artificial Reservoir" Water 16, no. 1: 76. https://doi.org/10.3390/w16010076
APA StyleLomov, V., Stepanenko, V., Grechushnikova, M., & Repina, I. (2024). Mechanistic Modeling of the Variability of Methane Emissions from an Artificial Reservoir. Water, 16(1), 76. https://doi.org/10.3390/w16010076