The Effects of Climate Change on Streamflow, Nitrogen Loads, and Crop Yields in the Gordes Dam Basin, Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Model Inputs
2.4. Model Setup and Calibration
2.5. Climate Change Scenarios
3. Results and Discussion
3.1. Model Calibration
3.1.1. Hydrological Calibration
3.1.2. Nitrogen Transport Calibration
3.1.3. Crop Yield Calibration
3.2. Climate Change Scenarios
3.2.1. Climate Signal
3.2.2. Hydrology
3.2.3. Nitrogen
3.2.4. Crop Yields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Liu, Q.; Niu, J.; Sivakumar, B.; Ding, R.; Li, S. Accessing future crop yield and crop water productivity over the Heihe River basin in northwest China under a changing climate. Geosci. Lett. 2021, 8, 2–16. [Google Scholar] [CrossRef]
- Chen, Y.; Marek, G.W.; Marek, T.H.; Porter, D.O.; Brauer, D.K.; Srinivasan, R. Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA. Agric. Water Manag. 2021, 244, 106574. [Google Scholar] [CrossRef]
- Papadopoulos, T.; Balta, M.E. Climate Change and big data analytics: Challenges and opportunities. Int. J. Inf. Manag. 2022, 63, 102448. [Google Scholar] [CrossRef]
- IPCC; Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Le Cozannet, G.; Lionello, P. Cross-Chapter Paper 4: Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2020; pp. 2233–2272. [Google Scholar] [CrossRef]
- Erol, A.; Randhir, T.O. Climatic change impacts on the ecohydrology of Mediterranean watersheds. Clim. Change 2012, 114, 319–341. [Google Scholar] [CrossRef]
- Christensen, J.H.; Kanikicharla, K.K.; Aldrian, E.; An, S.I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and Their Relevance for Future Regional Climate Change. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1217–1308. [Google Scholar]
- Coppens, J.; Trolle, D.; Jeppesen, E.; Beklioğlu, M. The impact of climate change on a Mediterranean shallow lake: Insights based on catchment and lake modelling. Reg. Environ. Change 2020, 20, 62. [Google Scholar] [CrossRef]
- Ertugrul, M.; Varol, T.; Ozel, H.B.; Cetin, M.; Sevik, H. Influence of climatic factor of changes in forest fire danger and fire season length in Turkey. Environ. Monit. Assess. 2021, 193, 28. [Google Scholar] [CrossRef]
- Demircan, M.; Gürkan, H.; Eskioğlu, O.; Arabacı, H.; Coşkun, M. Climate Change Projections for Turkey: Three Models and Two Scenarios. Turk. J. Water Sci. Manag. 2017, 1, 22–43. [Google Scholar] [CrossRef]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Xoplaki, E. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar]
- Sen, Z. Climate Change, Droughts, and Water Resources. Applied Drought Modeling, Prediction, and Mitigation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 321–391. [Google Scholar]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Nisantzi, A. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L.; Ishida, K. Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Sci. Total Environ. 2019, 648, 481–499. [Google Scholar] [CrossRef]
- Kirdemir, U.; Okkan, U.; Fistikoglu, O. Projecting aridity from statistically downscaled and bias-corrected variables for the Gediz Basin, Turkey. J. Water Clim. Change 2022, 13, 3061–3082. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Ozcan, A.; Strauss, E. An Overview of the Impacts of Global Climate Change on Farmland in Turkey. Int. J. Environ. Sci. Dev. 2016, 7, 458–463. [Google Scholar] [CrossRef]
- Bucak, T.; Trolle, D.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.İ.; Özen, A.; Jeppesen, E.; Beklioğlu, M. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Sci. Total Environ. 2018, 621, 802–816. [Google Scholar] [CrossRef]
- Dudu, H.; Çakmak, E.H. Climate change and agriculture: An integrated approach to evaluate economy-wide effects for Turkey. Clim. Dev. 2018, 10, 275–288. [Google Scholar] [CrossRef]
- Chandio, A.A.; Ozturk, I.; Akram, W.; Ahmad, F.; Mirani, A.A. Empirical analysis of climate change factors affecting cereal yield: Evidence from Turkey. Environ. Sci. Pollut. Res. 2020, 27, 11944–11957. [Google Scholar] [CrossRef]
- Kumanlioglu, A.A. Characterizing meteorological and hydrological droughts: A case study of the Gediz River Basin, Turkey. Meteorol. Appl. 2020, 27, e1857. [Google Scholar] [CrossRef]
- Yerdelen, C.; Abdelkader, M.; Eris, E. Assessment of drought in SPI series using continuous wavelet analysis for Gediz Basin, Turkey. Atmos. Res. 2021, 260, 105687. [Google Scholar] [CrossRef]
- Tan, G.; Shibasaki, R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecol. Model. 2003, 168, 357–370. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Okuda, N.; Okubo, T. Estimation of Phosphorus Transport Influenced by Climate Change in a Rice Paddy Catchment Using SWAT. Int. J. Environ. Res. 2021, 15, 759–772. [Google Scholar] [CrossRef]
- Shahvari, N.; Khalilian, S.; Mosavi, S.H.; Mortazavi, S.A. Assessing climate change impacts on water resources and crop yield: A case study of Varamin plain basin, Iran. Environ. Monit. Assess. 2019, 191, 134. [Google Scholar] [CrossRef]
- Ozdemir, A.; Leloğlu, U.M.; Abbaspour, K. Hierarchical Approach to Hydrological Model Calibration. Environ. Earth Sci. 2017, 76, 318. [Google Scholar] [CrossRef]
- Gördes PDWU. The Gördes Dam Basin Special Provisions. 04.07.2017/310. 2017. Available online: https://www.tarimorman.gov.tr/SYGM/Belgeler/i%C3%A7me%20suyu%20koruma%20planlar%C4%B1/G%C3%B6rdes%20Baraj%20G%C3%B6l%C3%BC%20%C3%96zel%20H%C3%BCk%C3%BCmleri.pdf (accessed on 28 August 2017).
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Cakir, R.; Sauvage, S.; Gerino, M.; Volk, M.; Sánchez-Pérez, J.M. Assessment of ecological function indicators related to nitrate under multiple human stressors in a large watershed. Ecol. Indic. 2020, 111, 106016. [Google Scholar] [CrossRef]
- SCD. Handbook of Hydrology; Soil Conservation Department, Ministry of Agriculture: New Delhi, India, 1972. [Google Scholar]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-Time Water and Sediment-Routing Model for Large Basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Priestley, C.; Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Hargreaves, G.; Riley, J. Agricultural benefits for Senegal River basin. J. Irrig. Drain. E-ASCE 1985, 111, 113–124. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; (TR-406); Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- Williams, J.; Berndt, H. Sediment yield prediction based on watershed hydrology. Trans. ASAE 1977, 20, 1100–1104. [Google Scholar] [CrossRef]
- Cuceloglu, G.; Ozturk, I. Assessing the Impact of CFSR and Local Climate Datasets on Hydrological Modeling Performance in the Mountainous Black Sea Catchment. Water 2019, 11, 2277. [Google Scholar] [CrossRef]
- Karakoyun, E.; Kaya, N. Hydrological simulation and prediction of soil erosion using the SWAT model in a mountainous watershed: A case study of Murat River Basin, Turkey. J. Hydroinform. 2022, 24, 1175–1193. [Google Scholar] [CrossRef]
- Ozdemir, A. Defining Groundwater Resources Protection Zones in Aquifers Using Stable Isotope Analysis: A Case Study from the Namazgah Dam Basin in Turkey. Environ. Earth Sci. 2019, 78, 509. [Google Scholar] [CrossRef]
- Ozdemir, A. Determination of protection zones in drinking water basins: A case study from Turkey, Sapanca Lake Basin. Environ. Earth Sci. 2020, 79, 178. [Google Scholar] [CrossRef]
- Oakes, H. Türkiye Toprakları; Türk Yüksek Ziraat Mühendisleri Birliği: İzmir, Turkey, 1958; Volume 18, 224p. [Google Scholar]
- Ardas, S.; Creutzberg, D. Soil Reference Profiles of Turkey; Country Report 3; Department of Soil Science-Faculty of Agriculture-Çukurova University, International Soil Reference and Information Centre: Adana, Turkey, 1995. [Google Scholar]
- Ley, T.W.; Stevens, R.G.; Topielec, R.R.; Neibling, W.H.; Soil Water Monitoring and Measurement. Pacific Northwest Cooperative Extension Bulletin—PNW0475. December 1994. Available online: http://irrigation.wsu.edu/Content/Fact-Sheets/Soil-Monitoring-and-Measurement.pdf (accessed on 30 August 2006).
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; pp. 67–77. [Google Scholar]
- Jahan, M.; Nassiri Mahallati, M.; Amiri, M.B.; Ehyayi, H.R. Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Ind. Crops Prod. 2013, 43, 606–611. [Google Scholar] [CrossRef]
- Koocheki, A.; Mahallati, M.N.; Solouki, H.; Karbor, S. Evaluation of radiation absorption and use efficiency in substitution intercropping of sesame (Sesamum indicum L.) and mung bean (Vigna radiata L.). Adv. Plants Agric. Res. 2016, 3, 145–154. [Google Scholar]
- Gloaguen, R.M.; Couch, A.; Rowland, D.L.; Bennett, J.; Hochmuth, G.; Langham, D.R.; Brym, Z.T. Root life history of non-dehiscent sesame (Sesamum indicum L.) cultivars and the relationship with canopy development. Field Crops Res. 2019, 241, 107560. [Google Scholar] [CrossRef]
- Baydar, H. Susam (Sesamum indicum L.) çeşitlerinin agronomik, fizyolojik ve teknolojik özellikleri. Süleyman Demirel Üniv. Bilim. Enst. Derg. 2001, 5, 39–48. [Google Scholar]
- Baydar, H. Susamda (Sesamum indicum L.) Verim, Yağ, Oleik ve Linoleik Tipi Hatların Tarımsal ve Teknolojik Özellikleri. Akdeniz Univ. J. Fac. Agric. 2005, 18, 267–272. Available online: https://dergipark.org.tr/tr/pub/akdenizfderg/issue/1580/19621 (accessed on 23 September 2005).
- Villalobos, F.J.; Delgado, A.; López-Bernal, Á.; Quemada, M. FertiliCalc: A Decision Support System for Fertilizer Management. Int. J. Plant Prod. 2020, 14, 299–308. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Beza, M.; Hailu, H.; Teferi, G. Modeling and Assessing Surface Water Potential Using Combined SWAT Model and Spatial Proximity Regionalization Technique for Ungauged Subwatershed of Jewuha Watershed, Awash Basin, Ethiopia. Adv. Civ. Eng. 2023, 2023, 9972801. [Google Scholar] [CrossRef]
- Volk, M.; Hirschfeld, J.; Dehnhardt, A.; Schmidt, G.; Bohn, C.; Liersch, S.; Gassman, P.W. Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin. Ecol. Econ. 2008, 66, 66–76. [Google Scholar] [CrossRef]
- Gulec, H.; Pilanali, N.; Kalinbacak, K.; Kececi, M.; Ozcan, H. Gubreleme Rehberi; Tarim ve Orman Bakanligi: Ankara, Türkiye, 2018; pp. 1–30. [Google Scholar]
- Uttormark, P.D.; Chapin, J.D.; Green, K.M. Estimating Nutrient Loading of Lakes from Non-Point Sources; Environmental Protection Agency Publication 660/3-74-020; U.S. Government Printing Office: Washington, DC, USA, 1974. [Google Scholar]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT2005 User’s Guide; Texas Agricultural Experiment 30 Station and United States Department of Agriculture: Temple, TX, USA, 2007. [Google Scholar]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Ozdemir, A.; Leloğlu, U.M. A Fast and Automated Hydrologic Calibration Tool For SWAT. Water Environ. J. 2018, 33, 488–498. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs: A User Mannual; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dübendorf, Switzerland, 2011. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, part 1—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 2015, 58, 1763–1785. [Google Scholar]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Niu, H. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Sci. Total Environ. 2019, 656, 373–387. [Google Scholar] [CrossRef]
- Zhang, H.; Väliranta, M.; Swindles, G.T.; Lopez, M.A.; Mullan, D.; Tan, N.; Amesbury, M.; Babeshko, K.V.; Bao, K.; Bobrov, A.; et al. Recent climate change has driven divergent hydrological shifts in high-latitude peatlands. Nat. Commun. 2022, 13, 4959. [Google Scholar] [CrossRef]
- Musyoka, F.K.; Strauss, P.; Zhao, G.; Srinivasan, R.; Kalik, A. Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water 2021, 13, 2238. [Google Scholar] [CrossRef]
- Karki, R.; Srivastava, P.; Bosch, D.D.; Kalin, L.; Lamba, J.; Strickland, T.C. Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling. Trans. ASABE 2020, 63, 523–539. [Google Scholar] [CrossRef]
- Malik, W.; Isla, R.; Dechmi, F. DSSAT-CERES-maize modelling to improve irrigation and nitrogen management practices under Mediterranean conditions. Agric. Water Manag. 2019, 213, 298–308. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Crafts-Brandner, S.J.; Salvucci, M.E. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Reddy, K.M. Impact of Climate Change on Cucurbitaceous Vegetables in Relation to Increasing Temperature and Drought. In Advances in Research on Vegetable Production Under a Changing Climate 1. Advances in Olericulture; Solankey, S.S., Kumari, M., Kumar, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Haverkort, A.J.; Franke, A.C.; Engelbrecht, F.A.; Steyn, J.M. Climate Change and Potato Production in Contrasting South African Agro-ecosystems 1. Effects on Land and Water Use Efficiencies. Potato Res. 2013, 56, 31–50. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Tsegaye, A.; Bergvinson, D. Climate change impacts and adaptation strategies for sorghum and millet production in developing countries. J. SAT Agric. Res. 2013, 11, 1–16. [Google Scholar]
- Kamara, A.Y.; Ekeleme, F.; Tarawali, S.A. Climate change and variability: Implications for crop production, food security and livestock in West Africa. Agric. Food Secur. 2015, 4, 19. [Google Scholar]
- Novotny, T.E.; Bialous, S.A.; Burt, L.; Curtis, C.; Iqtidar, S.U.; Liu, Y.; Pujari, S. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption. Bull. World Health Organ. 2015, 93, 877–880. [Google Scholar] [CrossRef]
- Wang, X.; Ji, Y.; Zhou, G.; Wang, S.; Yao, X. Climate Suitability and Vulnerability of Winter Wheat Planting in Gansu under the Background of Global Warming. J. Geosci. Environ. Prot. 2019, 7, 239–250. [Google Scholar] [CrossRef]
- Musyimi, J.K.; Sinclair, F.L.; Ng’ang’a, J.K.; Muchugi, A. A systematic review of the impacts of climate variability and change on agroforestry systems in Africa. Agric. Ecosyst. Environ. 2018, 258, 148–159. [Google Scholar]
- Xu, Y.; Li, T.; Xu, M.; Tan, L.; Shen, S. Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections. Agriculture 2024, 14, 469. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Mapes, K.L.; Pricope, N.G. Evaluating SWAT Model Performance for Runoff, Percolation, and Sediment Loss Estimation in Low-Gradient Watersheds of the Atlantic Coastal Plain. Hydrology 2020, 7, 21. [Google Scholar] [CrossRef]
- Hoang, B.H.; Hien, H.N.; Dinh, N.T.N.; Thao, N.A.; Ha, P.T.T.; Kandasamy, J.; Nguyen, T.V. Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam. Ecohydrol. Hydrobiol. 2019, 19, 210–223. [Google Scholar]
- Qi, J.; Zhang, X.; Yang, Q.; Srinivasan, R.; Arnold, J.G.; Li, J.; Cole, J. SWAT Ungauged: Water Quality Modeling in the Upper Mississippi River Basin. J. Hydrol. 2020, 584, 124601. [Google Scholar] [CrossRef]
Data | Description | Data Source | Year | Scale |
---|---|---|---|---|
Hydrological | Streamflow | DSI monitoring station | 1979–2018; missing data: 1997–2013 | daily |
Meteorological | Precipitation, temperature, humidity, solar radiation, and wind speed | NCEP/CFSR (The National Centers for Environmental Prediction/Climate Forecast System Reanalysis) | 1974–2014 | daily |
DEM | Delineation of cells and the generation of a stream network | 1/25,000 topographic map (Gordes 2017) | 10 m | |
Land use map | Land use types | STATIP project map (Ministry of Agriculture and Forestry), supported crop products map obtained from T.C. General Directorate of Agriculture Reform, detailed forest map obtained from T.C. General Directorate of Forestry | 2018 | 10 m |
Soil map | Soil types and properties | Ministry of Agriculture and Forestry, and shape files | 10 m | |
Pollution sources | Point and non-point pollution sources | Gordes Dam Basin Special Provision Determination, Gediz River Basin Management Plan Project | Kg/monthly | |
Climate change scenarios, RCP 4.5 and RCP 8.5 | Precipitation and temperature | The General Directorate of Meteorology | 2025–2097 | daily |
Crop Type | Planting Time | Fertilizer Type (%N-%P2O5-%K2O) | Fertilizer Time | Fertilizer Amount | Irrigation Time | Harvest Time |
---|---|---|---|---|---|---|
WWHT | 15 October | 18-46-00 46-00-00 46-00-00 | 15 October 1 February 1 March | 155 kg/ha 100 kg/ha 100 kg/ha | 15 October: Auto Irrigation 1 May: Auto Irrigation | 30 June |
TOBC | 1 April | 15-15-00 15-15-00 46-00-00 | 1 March 1 April 1 October | 140 kg/ha 150 kg/ha 200 kg/ha | 1 April: Auto Irrigation 15 April: Auto Irrigation 1 May: Auto Irrigation 15 May: Auto Irrigation 30 May: Auto Irrigation 15 June: Auto Irrigation 1 July: Auto Irrigation 15 July: Auto Irrigation 1 August: Auto Irrigation | 20 August |
POPPY | 15 October | Continuous fertilization by using animal manure 18-46-00 Urea | 30 August 10 September 16 October | Calculated based on animal numbers 150 kg/ha 40 kg/ha | 15 October: Auto Irrigation 1 June: Auto Irrigation | 30 July |
SESA | 1 May | 15-15-00 15-15-00 | 3 March 1 May | 200 kg/ha 200 kg/ha | 1 May: Auto Irrigation 1 June: Auto Irrigation 1 July: Auto Irrigation 1 August: Auto Irrigation | 30 September |
WBAR | 15 October | 18-46-00 46-00-00 46-00-00 | 15 October 1 February 1 March | 155 kg/ha 145 kg/ha 145 kg/ha | 15 October: Auto Irrigation 1 May: Auto Irrigation | 30 June |
CORN | 15 April | 20-20-00 46-00-00 | 15 April 15 May | 500 kg/ha 200 kg/ha | 15 April: Auto Irrigation 30 April: Auto Irrigation 15 May: Auto Irrigation 30 May: Auto Irrigation 1 June: Auto Irrigation 15 June: Auto Irrigation 30 June: Auto Irrigation 7 July: Auto Irrigation 20 July: Auto Irrigation 1 August: Auto Irrigation | 30 August |
POTA | 10 April | Urea 18-46-00 Continuous fertilization by using animal manure | 10 April 1 May 30 March | 200 kg/ha 100 kg/ha | 10 April: Auto Irrigation 1 May: Auto Irrigation 1 June: Auto Irrigation 1 July: Auto Irrigation 1 August: Auto Irrigation 1 September: Auto Irrigation | 30 October |
SGHY | 15 March | Urea 18-46-00 Urea | 15 March 30 March 1 May | 300 kg/ha 500 kg/ha 400 kg/ha | 15 March: Auto Irrigation 20 April: Auto Irrigation 1 May: Auto Irrigation 20 May: Auto Irrigation 20 June: Auto Irrigation 1 July: Auto Irrigation | 20 July |
CUCM | 10 May | 10-20-20 Elemental nitrogen 33-00-00 | 1 May 15 May 25 May | 500 kg/ha 400 kg/ha 140 kg/ha | 30 May: Auto Irrigation 5 June: Auto Irrigation 10 June: Auto Irrigation 16 June: Auto Irrigation 20 June: Auto Irrigation 1 July: Auto Irrigation 5 July: Auto Irrigation 10 July: Auto Irrigation 20 July: Auto Irrigation 5 August: Auto Irrigation 10 August: Auto Irrigation 20 August: Auto Irrigation | 30 August |
Parameters | Definition | Min–Max | Fitted Values | Process |
---|---|---|---|---|
r__CN2.mgt | Initial SCS runoff curve number | −0.2–0.2 | −0.113 | |
r__SOL_AWC.sol | Available water capacity of the soil layer | −0.4–0.4 | −0.01 | Surface runoff |
r__SOL_K.sol | Saturated hydraulic conductivity (mm/hr) | −0.4–0.4 | −0.322 | |
v__ESCO.hru | Soil evaporation compensation factor. | 0.8–1 | 0.9535 | |
v__SURLAG.bsn | Surface runoff lag time | 0.05–24 | 6.696125 | Lateral flow |
a__GWQMN.gw | The threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) | 0–25 | 24.062 | |
a__GW_REVAP.gw | Groundwater “revap” coefficient | −0.1–0 | −0.02875 | Base flow |
v__REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur (mm H2O) | 0–500 | 201.25 | |
v__ALPHA_BF.gw | Baseflow alpha factor (days) | 0–1 | 0.7575 | |
v__GW_DELAY.gw | Groundwater delay time (days) | 30–450 | 35.25 | |
v__SFTMP.bsn | Snowfall temperature (°C) | −5.0–5.0 | −4.525 | |
v__SMTMP.bsn | Snowmelt base temperature (°C) | −5.0–5.0 | 0.375 | Snow |
v__SMFMX.bsn | Melt factor for snow on 21 June (mm H2O/°C-day) | 0–10 | 2.375 | |
v__SMFMN.bsn | Melt factor for snow on 21 December (mm H2O/°C-day) | 0–10 | 0.825 | |
v__TIMP.bsn | Snowpack temperature lag factor | 0.01–1 | 0.037225 | |
r__SOL_BD.sol | Moist bulk density (Mg/m3 or g/cm3) | −0.4–0.4 | −0.322 | Other |
Explanation | Parameter | Min–Max | Fitted Values |
---|---|---|---|
Soil evaporation compensation factor | v__RCN.bsn | 0–15 | 10.6125 |
Nitrogen uptake distribution parameter | v__N_UPDIS.bsn | 0–100 | 88.75 |
Initial organic N concentration in the soil layer | v__SOL_ORGN().chm | 0–100 | 99.75 |
Rate constant for the biological oxidation of NH3 (1/dayy) | v__BC1_BSN.bsn | 0.1–1.0 | 0.21025 |
Rate constant for the hydrolysis of organic nitrogen to ammonia (1/dayy) | v__BC3_BSN.bsn | 0.02–0.4 | 0.37435 |
Fraction of porosity from which anions are excluded | v__ANION_E.bsn | 0.01–1 | 0.685675 |
Crop | HU | Cal | T_opt | Cal | T_base | Cal | BIO_E | Cal | HVSTI | Cal | BLAI | Cal | WSYF | Cal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WWHT | 1100 | 1300 | 18 | 18 | 0 | 4 | 30 | 30 | 0.4 | 0.52 | 4 | 3.2 | 0.2 | 0.3 |
WBAR | 1200 | 1400 | 18 | 19 | 0 | 5 | 30 | 28 | 0.54 | 0.4 | 4 | 3 | 0.2 | 0.2 |
CORN | 1537 | 1000 | 25 | 22 | 7 | 7 | 39 | 46 | 0.6 | 0.75 | 6 | 4.5 | 0.3 | 0.75 |
CUCM | 800 | 600 | 32 | 26 | 16 | 12 | 30 | 38 | 0.27 | 0.8 | 1.5 | 3.5 | 0.25 | 0.3 |
SESA | 1800 | 2000 | 25 | 25 | 10 | 10 | 30 | 30 | 0.35 | 0.35 | 3.5 | 3.5 | 0.2 | 0.2 |
SGHY | 800 | 700 | 30 | 22 | 11 | 9 | 33.5 | 42 | 0.9 | 0.95 | 4 | 4.8 | 0.9 | 0.95 |
POPY | 1800 | 2000 | 21 | 23 | 5 | 7 | 33 | 30 | 0.4 | 0.32 | 4.5 | 4.0 | 0.12 | 0.2 |
TOBC | 1800 | 1900 | 25 | 22 | 10 | 10 | 39 | 38 | 0.55 | 0.5 | 4.5 | 4.0 | 0.55 | 0.4 |
POTA | 1457 | 1050 | 22 | 22 | 7 | 8 | 25 | 34 | 0.95 | 1.1 | 4 | 4.5 | 0.95 | 0.95 |
+/−Indicates Change; Values in “()” Indicate Prediction | ||||
---|---|---|---|---|
Meteorological prediction | 1979–2014 | 2031–2040 | 2041–2050 | 2051–2060 |
RCP 4.5 Avg Temperature (°C) | +1.2 (16) | +1.2 (16) | +1.4 (16.2) | |
RCP 8.5 Avg Temperature (°C) | +1.3 (16.1) | +1.6 (16.4) | +2.2 (17) | |
RCP 4.5 Avg Precipitation (mm/d) | +6 (7.7) | +6.2 (7.9) | +6.4 (8.1) | |
RCP 8.5 Avg Precipitation (mm/d) | +6 (7.7) | +7 (8.7) | +5.4 (7.1) | |
Temperature Avg (°C) | 14.8 | |||
Precipitation (mm/d) | 1.7 | |||
Streamflow m3/s | ||||
Scenarios | 1979–1996 | 2031–2040 | 2041–2050 | 2051–2060 |
RCP 4.5 | +1.1 (4.4) | +2.5 (5.7) | +2.5 (5.7) | |
RCP 8.5 | +1.2 (4.4) | +4 (7.2) | +0.7 (3.9) | |
Reference period | 3.2 | |||
Nitrogen t/year | ||||
Scenarios | 2004–2013 | 2031–2040 | 2041–2050 | 2051–2060 |
RCP 4.5 | +8.8 (25.1) | +13.5 (29.8) | +25.1 (41.4) | |
RCP 8.5 | +12.3 (28.6) | +16.5 (32.8) | +15.7 (32) | |
Reference period | 16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdemir, A.; Volk, M.; Strauch, M.; Witing, F. The Effects of Climate Change on Streamflow, Nitrogen Loads, and Crop Yields in the Gordes Dam Basin, Turkey. Water 2024, 16, 1371. https://doi.org/10.3390/w16101371
Özdemir A, Volk M, Strauch M, Witing F. The Effects of Climate Change on Streamflow, Nitrogen Loads, and Crop Yields in the Gordes Dam Basin, Turkey. Water. 2024; 16(10):1371. https://doi.org/10.3390/w16101371
Chicago/Turabian StyleÖzdemir, Ayfer, Martin Volk, Michael Strauch, and Felix Witing. 2024. "The Effects of Climate Change on Streamflow, Nitrogen Loads, and Crop Yields in the Gordes Dam Basin, Turkey" Water 16, no. 10: 1371. https://doi.org/10.3390/w16101371
APA StyleÖzdemir, A., Volk, M., Strauch, M., & Witing, F. (2024). The Effects of Climate Change on Streamflow, Nitrogen Loads, and Crop Yields in the Gordes Dam Basin, Turkey. Water, 16(10), 1371. https://doi.org/10.3390/w16101371