A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation
Abstract
:1. Introduction
- (1)
- The SMVMD technique is introduced to realize the same-frequency decomposition of the measurement points within the same area, which reduces the complexity of the multi-point displacement sequence.
- (2)
- By combining the decomposition technique with mRMR, the relationship between the displacement subsequence and the influencing factors is well established, which then better explains the deformation characteristics of high-arch dams.
- (3)
- The constructed deformation prediction framework incorporates various modules to improve the prediction accuracy and reduce the complexity of deformation data in different aspects, which can provide specific guidance for the management of water conservancy projects represented by high-arch dams.
2. Methodology
2.1. Clustering Method for Deformation
2.2. SMVMD for Multi-Point Deformation Monitoring Data
2.3. Deep Learning-Based Deformation Monitoring Model
2.3.1. Model Input Factors
2.3.2. Screening of Input Factors
2.3.3. CNN-BiGRU-AM
- CNN
- 2.
- BiGRU
- 3.
- AM
3. Framework for the High-Arch Dam Deformation Monitoring Model
3.1. Main Steps of Construction
3.2. Prediction Evaluation
3.3. Computational Complexity Analysis
4. Case Study
4.1. Project Review and Data Information
4.2. Design of Ablation Tests
4.3. Partitioning of Deformation Points
4.4. Multi-Point Joint Prediction Modeling
4.5. Comparison of Model Prediction Performance
4.6. Comparison of Different Deformation Prediction Methods
4.7. Generality Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salazar, F.; Morán, R.; Toledo, M.Á.; Oñate, E. Data-Based Models for the Prediction of Dam Behavior: A Review and Some Methodological Considerations. Arch. Comput. Methods Eng. 2017, 24, 1–21. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Hu, D. Dam monitoring data analysis methods: A literature review. Struct. Control Health Monit. 2019, 27, e2501. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, B.; Gu, C.; Wu, Y.; Chen, W. Optimized multi-output LSSVR displacement monitoring model for super high arch dams based on dimensionality reduction of measured dam temperature field. Eng. Struct. 2022, 268, 114686. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, H. Automatic Damage Detection and Diagnosis for Hydraulic Structures Using Drones and Artificial Intelligence Techniques. Remote Sens. 2023, 15, 615. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Sun, L.; Khailah, E.Y.; Wang, J.; Lu, W. A critical review of statistical model of dam monitoring data. J. Build. Eng. 2023, 80, 108106. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Mahdavi, G.; Nuss, L.K.; Lall, U. The role of artificial intelligence and digital technologies in dam engineering: Narrative review and outlook. Eng. Appl. Artif. Intel. 2023, 126, 106813. [Google Scholar] [CrossRef]
- Mata, J.; Tavares de Castro, A.; Sá da Costa, J. Constructing statistical models for arch dam deformation. Struct. Control Health Monit. 2014, 21, 423–437. [Google Scholar] [CrossRef]
- Wei, B.; Chen, L.; Li, H.; Yuan, D.; Wang, G. Optimized prediction model for concrete dam displacement based on signal residual amendment. Appl. Math. Model. 2020, 78, 20–36. [Google Scholar] [CrossRef]
- Popovici, A.; Ilinca, C.; Ayvaz, T. The performance of the neural networks to model some response parameters of a buttress dam to environment actions. In Proceedings of the 9th ICOLD European Club Symposium, Venice, Italy, 10–12 April 2013. [Google Scholar]
- Su, H.; Chen, Z.; Wen, Z. Performance improvement method of support vector machine-based model monitoring dam safety. Struct. Control Health Monit. 2016, 23, 252–266. [Google Scholar] [CrossRef]
- Dai, B.; Gu, C.; Zhao, E.; Qin, X. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct. Control Health Monit. 2018, 25, e2170. [Google Scholar] [CrossRef]
- Dai, B.; Gu, C.; Zhao, E.; Zhu, K.; Cao, W.; Qin, X. Improved online sequential extreme learning machine for identifying crack behavior in concrete dam. Adv. Struct. Eng. 2019, 22, 402–412. [Google Scholar] [CrossRef]
- Lin, C.; Li, T.; Chen, S.; Liu, X.; Lin, C.; Liang, S. Gaussian process regression-based forecasting model of dam deformation. Neural Comput. Appl. 2019, 31, 8503–8518. [Google Scholar] [CrossRef]
- Zhang, K.; Gu, C.; Zhu, Y.; Li, Y.; Shu, X. A mathematical-mechanical hybrid driven approach for determining the deformation monitoring indexes of concrete dam. Eng. Struct. 2023, 277, 115353. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, M.; Zhang, K.; Li, Z. A Dam Deformation Residual Correction Method for High Arch Dams Using Phase Space Reconstruction and an Optimized Long Short-Term Memory Network. Mathematics 2023, 11, 2010. [Google Scholar] [CrossRef]
- Wen, Z.; Zhou, R.; Su, H. MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam. Expert Syst. Appl. 2022, 201, 117272. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X. Multi-Point Deformation Prediction Model for Concrete Dams Based on Spatial Feature Vector. Appl. Sci. 2023, 13, 11212. [Google Scholar] [CrossRef]
- Tao, L.; Zheng, D.; Wu, X.; Chen, X.; Liu, Y.; Chen, Z.; Jiang, H. Stress Estimation of Concrete Dams in Service Based on Deformation Data Using SIE–APSO–CNN–LSTM. Water 2022, 15, 59. [Google Scholar] [CrossRef]
- Hua, G.; Wang, S.; Xiao, M.; Hu, S. Research on the Uplift Pressure Prediction of Concrete Dams Based on the CNN-GRU Model. Water 2023, 15, 319. [Google Scholar] [CrossRef]
- Ren, Q.; Li, M.; Li, H.; Shen, Y. A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism. Adv. Eng. Inform. 2021, 50, 101407. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, T.; Li, G.; Shu, X.; Li, Y. Multi-expert attention network for long-term dam displacement prediction. Adv. Eng. Inform. 2023, 57, 102060. [Google Scholar] [CrossRef]
- Shao, C.; Gu, C.; Yang, M.; Xu, Y.; Su, H. A novel model of dam displacement based on panel data. Struct. Control Health Monit. 2018, 25, e2037. [Google Scholar] [CrossRef]
- Cao, W.; Wen, Z.; Su, H. Spatiotemporal clustering analysis and zonal prediction model for deformation behavior of super-high arch dams. Expert Syst. Appl. 2023, 216, 119439. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gong, J.; Shu, X.; Zhang, K. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network. IEEE Access 2020, 8, 94440–94452. [Google Scholar] [CrossRef]
- Song, S.; Zhou, Q.; Zhang, T.; Hu, Y. Automatic Concrete Dam Deformation Prediction Model Based on TPE-STL-LSTM. Water 2023, 15, 2090. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal Process. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Gu, C.; Li, Y.; Zhang, K.; Xie, M.; Cha, Y.-J. A Coupled Model for Dam Foundation Seepage Behavior Monitoring and Forecasting Based on Variational Mode Decomposition and Improved Temporal Convolutional Network. Struct. Control Health Monit. 2023, 2023, 3879096. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, Y.; Wang, Z.; Cao, G.; Wang, R.; Lu, S.; Li, W.; Nie, W.; Zhang, Z. A Tailings Dam Long-Term Deformation Prediction Method Based on Empirical Mode Decomposition and LSTM Model Combined with Attention Mechanism. Water 2022, 14, 1229. [Google Scholar] [CrossRef]
- Luo, S.; Wei, B.; Chen, L. Multi-point deformation monitoring model of concrete arch dam based on MVMD and 3D-CNN. Appl. Math. Model. 2024, 125, 812–826. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, H.; Li, X. An optimized zonal deformation prediction model for super-high arch dams. Structures 2023, 50, 758–774. [Google Scholar] [CrossRef]
- Liu, S.; Yu, K. Successive multivariate variational mode decomposition based on instantaneous linear mixing model. Signal Process. 2022, 190, 108311. [Google Scholar] [CrossRef]
- Cui, X.; Gu, H.; Gu, C.; Cao, W.; Wang, J. A Novel Imputation Model for Missing Concrete Dam Monitoring Data. Mathematics 2023, 11, 2178. [Google Scholar] [CrossRef]
- Yuan, D.; Gu, C.; Qin, X.; Shao, C.; He, J. Performance-improved TSVR-based DHM model of super high arch dams using measured air temperature. Eng. Struct. 2022, 250, 113400. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Cao, W.; Ma, L.; Hao, X. Application of multi-strategy improved NGO algorithm for dam parameter inversion. Water Power 2024, 50, 101–109. (In Chinese) [Google Scholar]
- Shao, L.; Wang, T.; Wang, Y.; Wang, Z.; Min, K. A Prediction Model and Factor Importance Analysis of Multiple Measuring Points for Concrete Face Rockfill Dam during the Operation Period. Water 2023, 15, 1081. [Google Scholar] [CrossRef]
- Wang, R.; Bao, T.; Li, Y.; Song, B.; Xiang, Z. Combined prediction model of dam deformation based on multi-factor fusion and Stacking ensemble learning. Shuili Xuebao 2023, 54, 497–506. (In Chinese) [Google Scholar] [CrossRef]
- Yang, X.; Xiang, Y.; Wang, Y.; Shen, G. A Dam Safety State Prediction and Analysis Method Based on EMD-SSA-LSTM. Water 2024, 16, 395. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
c | Number of input measurement points |
n | Length of the sequence of input points |
q | Number of clusters |
p | Maximum number of iterations |
K | Number of MIMFs |
f | Number of influencing factors |
w | Number of convolutional kernels |
s | Size of the convolutional kernel |
m | Number of hidden units of the BiGRU |
d | Dimension of the attentional features |
Step | Step 1 | Step 2 | Step 3 | Step 4 |
---|---|---|---|---|
Computational complexity | O(pcnq) | O(pcnK) | O(Kf3 + Kf2) | O(K(wsn + nm2 + n2d)) |
Model Mark | Model Framework | LFs | SIFs |
---|---|---|---|
M0 | clustering + SMVMD + mRMR + CNN + BiGRU + AM | √ | √ |
M1 | SMVMD + mRMR + CNN + BiGRU + AM | √ | √ |
M2 | SVMD + mRMR + CNN + BiGRU + AM | √ | × |
M3 | clustering + mRMR + CNN + BiGRU + AM | √ | √ |
M4 | Clustering + MEMD + mRMR + CNN + BiGRU + AM | √ | √ |
M5 | clustering + SMVMD + CNN + BiGRU + AM | × | √ |
M6 | SVMD + CNN + BiGRU + AM | × | × |
M7 | clustering + SMVMD + CNN + BiGRU + AM | √ | √ |
M8 | clustering + SMVMD + mRMR + GRU | √ | √ |
M9 | CNN + BiGRU + AM | √ | × |
M10 | SVR | √ | √ |
Name of Component | Number of Factors | Selected Factors (in Order of Importance) |
---|---|---|
MIMF1,TP | 11 | MIMF1,SIF3, MIMF1,SIF4, MIMF1,SIF5, H1, H2, H3, H4, MIMF1,SIF6, θ, lnθ, MIMF1,SIF2 |
MIMF2,TP | 14 | MIMF2,SIF5, MIMF2,SIF3, MIMF2,SIF7, MIMF2,SIF6, MIMF2,SIF4, H4, H3, H2, H1, MIMF2,SIF2, θ, lnθ, T16–30, T7–15 |
MIMF3,TP | 15 | MIMF3,SIF3, MIMF3,SIF4, MIMF3,SIF7, MIMF3,SIF6, MIMF3,SIF5, MIMF3,SIF2, MIMF3,SIF1, T7–15, T3–6, T16–30, T2, T1, T0 |
MIMF4,TP | 5 | MIMF4,SIF3, MIMF4,SIF4, MIMF4,SIF5, MIMF4,SIF6, MIMF4,SIF7 |
Hyperparameters | Value | |||
---|---|---|---|---|
MIMF1,TP | MIMF2,TP | MIMF3,TP | MIMF4,TP | |
Conv1D units | 64 | 64 | 64 | 64 |
Kernel size | 3 | 3 | 3 | 3 |
Learning rate | 0.0017 | 0.0019 | 0.0016 | 0.0016 |
BiGRU units | 49 | 19 | 48 | 44 |
Model | Parameters | Optimal Parameter |
---|---|---|
SVR | C | 64.44 |
Gamma | 1.73 | |
GRU | Number of units | [18;80;108;30] |
Learning rate | [0.015;0.01;0.01;0.0055] |
Model Mark | R2 | MAE (mm) | RMSE (mm) | MAPE (%) | Model Mark | R2 | MAE (mm) | RMSE (mm) | MAPE (%) |
---|---|---|---|---|---|---|---|---|---|
M0 | 0.998 | 0.304 | 0.344 | 1.086 | M6 | 0.966 | 1.393 | 1.601 | 5.315 |
M1 | 0.986 | 0.869 | 1.019 | 2.959 | M7 | 0.991 | 0.667 | 0.801 | 2.674 |
M2 | 0.982 | 0.959 | 1.142 | 3.274 | M8 | 0.995 | 0.486 | 0.591 | 1.941 |
M3 | 0.963 | 1.356 | 1.658 | 5.008 | M9 | 0.919 | 1.920 | 2.439 | 7.865 |
M4 | 0.995 | 0.429 | 0.584 | 1.619 | M10 | 0.854 | 2.836 | 1.814 | 9.190 |
M5 | 0.985 | 0.776 | 1.043 | 3.34 |
Model Mark | Without SIFs | Model Mark | With SIFs | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE (mm) | RMSE (mm) | MAPE (%) | R2 | MAE (mm) | RMSE (mm) | MAPE (%) | ||
/ | / | / | / | / | M0 | 0.998 | 0.304 | 0.344 | 1.086 |
M11 | 0.927 | 1.936 | 2.331 | 6.92 | M11 | 0.995 | 0.442 | 0.563 | 1.631 |
M12 | 0.943 | 1.444 | 2.057 | 5.875 | M12 | 0.996 | 0.363 | 0.479 | 1.377 |
M13 | 0.960 | 1.501 | 1.732 | 4.846 | M13 | 0.997 | 0.343 | 0.476 | 1.339 |
Model Mark | DM Value | Model Mark | DM Value |
---|---|---|---|
M11 (without SIFs) | 14.2395 * | M11 (with SIFs) | 6.6259 * |
M12 (without SIFs) | 9.482 * | M12 (with SIFs) | 2.9003 * |
M13 (without SIFs) | 22.5113 * | M13 (with SIFs) | 3.0211 * |
Point | M0 | Point | M9 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE (mm) | RMSE (mm) | MAPE (%) | R2 | MAE (mm) | RMSE (mm) | MAPE (%) | ||
PL5-3 | 0.997 | 0.166 | 0.223 | 1.058 | PL5-3 | 0.918 | 0.761 | 1.022 | 4.907 |
PL13-1 | 0.996 | 0.608 | 0.808 | 2.092 | PL13-1 | 0.928 | 2.606 | 3.289 | 6.028 |
PL13-5 | 0.998 | 0.099 | 0.132 | 0.332 | PL13-5 | 0.946 | 0.549 | 0.706 | 1.836 |
PL19-3 | 0.996 | 0.152 | 0.196 | 0.944 | PL19-3 | 0.942 | 0.598 | 0.696 | 2.623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Wen, Z.; Feng, Y.; Zhang, S.; Su, H. A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation. Water 2024, 16, 1388. https://doi.org/10.3390/w16101388
Cao W, Wen Z, Feng Y, Zhang S, Su H. A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation. Water. 2024; 16(10):1388. https://doi.org/10.3390/w16101388
Chicago/Turabian StyleCao, Wenhan, Zhiping Wen, Yanming Feng, Shuai Zhang, and Huaizhi Su. 2024. "A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation" Water 16, no. 10: 1388. https://doi.org/10.3390/w16101388
APA StyleCao, W., Wen, Z., Feng, Y., Zhang, S., & Su, H. (2024). A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation. Water, 16(10), 1388. https://doi.org/10.3390/w16101388