Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Air Sampling and Data Collection
2.2. Atmospheric PM Single-Particle Analysis
2.3. POP Determination and Quality Assurance/Quality Control (QA/QC)
2.4. Factors for Data Interpretation
2.4.1. Shape and Chemical Composition of PM as a Particle Origin Criterion
2.4.2. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
3. Results and Discussion
3.1. Atmospheric PM
3.1.1. Mineral Particles from Rocks and Soils
3.1.2. Sea-Salt Chlorides and Sulfate Particles of Anthropogenic or Natural Origin
Figure | Spot | Element (wt%) | Total (wt%) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | K | Mg | Ca | Al | Si | P | S | Cl | Mn | Zr | Fe | Cr | Cu | Zn | Pb | Sn | Ti | Ni | Nb | Pt | Au | O | |||
Figure 2A | 1 | 34.2 | - | - | - | - | - | - | - | 65.8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100.0 |
Figure 2B | 1 | 29.1 | 0.3 | - | 0.2 | 0.5 | 1.5 | - | 0.2 | 59.9 | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - | 7.8 | 100.0 |
Figure 2B | 2 | 33.7 | 0.3 | - | - | 0.7 | 1.5 | - | - | 59.2 | - | - | 0.3 | - | - | - | - | - | - | - | - | - | - | 4.3 | 100.0 |
Figure 2B | 3 | 33.1 | - | - | - | - | 0.6 | - | 0.3 | 62.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | 3.5 | 100.0 |
Figure 2B | 4 | 33.5 | 0.4 | - | - | - | 1.0 | - | 0.3 | 55.6 | - | - | - | - | - | - | - | - | - | - | - | - | - | 9.2 | 100.0 |
Figure 2C | 1 | 1.3 | - | - | 27.2 | - | - | - | 23.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 48.5 | 100.0 |
Figure 2D | 1 | 4.0 | 1.3 | 0.3 | 23.4 | 2.9 | 6.4 | - | 19.3 | 5.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | 37.2 | 100.0 |
Figure 2E | 1 | 14.1 | - | 5.4 | 17.0 | - | - | - | 25.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 37.6 | 100.0 |
Figure 2E | 2 | 16.8 | - | 1.9 | 14.4 | - | - | - | 31.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 35.7 | 100.0 |
Figure 2F | 1 | 27.3 | - | - | - | - | - | - | 36.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 36.2 | 100.0 |
Figure 2F | 2 | 23.9 | - | 2.1 | - | - | - | - | 42.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 31.1 | 100.0 |
Figure 2F | 3 | 18.5 | - | 3.4 | 10.9 | - | - | - | 44.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 22.3 | 100.0 |
Figure 3E | 1 | 4.9 | 3.4 | 0.9 | 0.7 | 6.0 | 40.5 | - | - | - | - | - | 17.1 | - | - | - | - | - | - | - | - | - | - | 26.5 | 100.0 |
Figure 3F | 1 | - | 1.7 | - | - | 10.2 | 43.6 | - | 2.2 | - | - | - | - | - | - | 13.9 | - | - | - | - | - | - | - | 28.4 | 100.0 |
Figure 3G | 1 | - | - | - | - | - | 0.8 | - | - | - | - | - | 83.7 | - | - | - | - | - | - | - | - | - | - | 15.5 | 100.0 |
Figure 3H | 1 | - | - | - | - | 0.7 | 2.0 | - | 1.6 | - | 2.5 | - | 75.7 | - | - | - | - | - | - | - | - | - | - | 17.5 | 100.0 |
Figure 4A | 1 | - | 2.7 | - | - | 5.3 | 4.4 | 0.4 | - | - | - | - | 72.9 | - | - | - | - | - | - | - | - | - | - | 14.3 | 100.0 |
Figure 4B | 1 | 2.4 | - | - | - | - | 1.6 | - | 1.6 | - | - | - | 81.9 | - | - | - | - | - | 1.4 | - | - | - | - | 11.1 | 100.0 |
Figure 4C | 1 | - | - | - | - | - | - | - | 52.5 | - | - | - | 42.5 | - | - | - | - | - | - | - | - | - | - | 5.0 | 100.0 |
Figure 4D | 1 | - | - | 0.7 | - | 0.6 | 1.3 | - | 1.1 | - | 1.7 | - | 82.6 | - | - | - | - | - | - | - | - | - | - | 12.0 | 100.0 |
Figure 4E | 1 | 7.0 | 0.5 | - | 2.1 | 0.9 | 1.0 | - | 3.3 | 3.6 | - | - | 59.5 | - | - | 5.5 | - | - | - | - | - | - | - | 16.6 | 100.0 |
Figure 4F | 1 | 3.0 | 0.2 | - | - | 0.6 | 1.5 | - | 0.4 | 1.7 | 0.3 | - | 81.2 | 9.5 | - | - | - | - | - | - | - | - | - | 1.6 | 100.0 |
Figure 4G | 1 | - | - | - | - | - | 1.7 | - | 1.3 | - | 1.7 | - | 66.1 | 15.3 | - | - | - | - | - | 11.5 | - | - | - | 2.4 | 100.0 |
Figure 4H | 1 | 2.3 | 1.6 | - | - | - | 3.0 | - | 0.5 | 0.4 | - | - | 57.1 | 10.4 | - | - | - | - | - | 6.7 | - | - | - | 18.0 | 100.0 |
Figure 5A | 1 | - | - | - | - | 7.4 | 1.7 | - | 8.5 | 1.6 | - | - | 33.6 | - | 4.5 | 17.2 | - | - | - | 0.6 | - | - | - | 24.9 | 100.0 |
Figure 5B | 1 | 1.8 | 0.3 | - | - | 0.4 | 1.7 | - | 0.4 | 1.0 | 3.1 | - | 51.9 | 17.7 | - | - | - | - | - | 5.5 | - | - | - | 16.2 | 100.0 |
Figure 5C | 1 | - | - | - | - | 3.5 | 2.2 | - | 17.6 | - | - | - | 3.1 | - | 2.4 | 41.7 | - | - | - | - | - | - | - | 29.5 | 100.0 |
Figure 5C | 2 | - | - | - | - | 10.3 | 2.4 | - | 4.7 | 2.9 | - | - | 20.5 | - | 4.8 | 16.2 | - | - | - | - | - | - | - | 38.2 | 100.0 |
Figure 5D | 1 | - | - | - | - | 1.2 | 0.8 | - | 6.4 | - | - | - | - | 63.5 | - | - | - | - | - | - | - | - | - | 28.1 | 100.0 |
Figure 5E | 1 | 1.2 | - | 2.7 | - | 2.3 | 1.4 | - | 5.8 | 23.1 | - | - | - | 30.6 | - | 3.6 | - | - | - | - | - | - | - | 29.3 | 100.0 |
Figure 5F | 1 | - | - | - | - | - | 2.5 | - | 21.2 | - | - | - | 0.4 | - | - | 50.7 | - | - | - | - | - | - | - | 25.2 | 100.0 |
Figure 5G | 1 | - | - | - | - | - | 3.4 | - | 11.2 | - | - | - | - | - | - | - | 65.2 | - | - | - | - | - | - | 20.2 | 100.0 |
Figure 5H | 1 | - | - | - | - | - | 0.5 | - | - | - | - | - | - | - | 61.6 | 37.8 | - | - | - | - | - | - | - | 0.1 | 100.0 |
Figure 6A | 1 | - | - | - | - | 1.3 | 1.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 91.5 | 5.7 | 100.0 |
Figure 6A | 2 | - | - | - | - | - | 0.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 89.0 | 10.1 | 100.0 |
Figure 6B | 1 | 3.9 | - | - | - | 2.0 | 1.8 | - | - | - | - | - | - | - | - | - | 7.3 | 64.9 | - | - | - | - | - | 20.1 | 100.0 |
Figure 6B | 2 | 3.0 | - | - | - | 1.7 | 2.6 | - | - | 0.4 | - | - | 2.5 | - | - | - | 7.4 | 60.6 | - | - | - | - | - | 21.8 | 100.0 |
Figure 6C | 1 | - | - | - | - | - | 0.8 | - | - | - | - | - | - | - | - | 91.6 | - | - | - | - | - | - | - | 7.6 | 100.0 |
Figure 6D | 1 | 0.5 | - | - | - | - | - | - | - | 1.0 | - | 89.1 | - | - | - | - | - | - | - | - | - | - | - | 9.4 | 100.0 |
Figure 6E | 1 | - | - | - | 0.7 | - | 0.7 | - | - | 2.2 | - | - | - | - | - | - | - | - | - | 39.0 | 28.1 | 26.6 | - | 2.8 | 100.0 |
Figure 6F | 1 | - | 2.9 | - | 4.3 | - | 1.2 | - | - | 1.9 | - | - | - | - | - | - | - | - | - | 27.6 | 20.6 | 18.6 | - | 21.4 | 100.0 |
Figure 6G | 1 | - | 0.5 | - | 0.5 | 1.7 | 3.3 | - | 32.5 | - | - | - | 2.8 | - | - | - | - | - | - | 41.8 | - | - | - | 16.9 | 100.0 |
Figure 6H | 1 | 2.6 | - | - | 0.5 | 34.3 | 1.2 | - | 3.5 | 4.0 | - | - | - | - | - | - | - | - | - | 8.0 | - | - | - | 45.9 | 100.0 |
3.1.3. Particles Related to Fuel Combustion
3.1.4. Metal-Rich Particles
3.2. POPs in Hornsund Air
3.3. POP Sources
3.4. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larsen, J.K.; Hemmersam, P. (Eds.) Future North: The Changing Arctic Landscapes; Routledge: London, UK, 2018. [Google Scholar]
- Schmale, J.; Sharma, S.; Decesari, S.; Pernov, J.; Massling, A.; Hansson, H.C.; Von Salzen, K.; Skov, H.; Andrews, E.; Quinn, P.K.; et al. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmos. Chem. Phys. 2022, 22, 3067–3096. [Google Scholar] [CrossRef]
- Quinn, P.K.; Shaw, G.; Andrews, E.; Dutton, E.G.; Ruoho-Airola, T.; Gong, S.L. Arctic haze: Current trends and knowledge gaps. Tellus B Chem. Phys. Meteorol. 2007, 59, 99–114. [Google Scholar] [CrossRef]
- Law, K.S.; Stohl, A. Arctic air pollution: Origins and impacts. Science 2007, 315, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Barrie, L.A.; Olson, M.P.; Oikawa, K.K. The flux of anthropogenic sulphur into the arctic from mid-latitudes in 1979/80. Atmos. Environ. 1989, 23, 2505–2512. [Google Scholar] [CrossRef]
- Amore, A.; Giardi, F.; Becagli, S.; Caiazzo, L.; Mazzola, M.; Severi, M.; Traversi, R. Source apportionment of sulphate in the High Arctic by a 10 yr-long record from Gruvebadet Observatory (Ny-Ålesund, Svalbard Islands). Atmos. Environ. 2022, 270, 118890. [Google Scholar] [CrossRef]
- Platt, S.M.; Hov, Ø.; Berg, T.; Breivik, K.; Eckhardt, S.; Eleftheriadis, K.; Evangeliou, N.; Fiebig, M.; Fisher, R.; Hansen, G.; et al. Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund. Atmos. Chem. Phys. 2022, 22, 3321–3369. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Loomis, D.; Grosse, Y.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013, 14, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Laruelle, M. The three waves of Arctic urbanisation. Drivers, evolutions, prospects. Polar Rec. (Gr. Brit). 2019, 55, 1–12. [Google Scholar] [CrossRef]
- Weber, R.; Rasmussen, R.O.; Zalkind, L.; Karlsdottir, A.; Johansen, S.T.F.; Terräs, J.; Nilsson, K. Urbanisation and Land Use Management in the Arctic: An Investigative Overview. In Springer Polar Sciences; Springer Nature: Berlin, Germany, 2017; pp. 269–284. [Google Scholar]
- Mölders, N.; Friberg, M. Changes in Aerosol Optical Depth over the Arctic Ocean as Seen by CALIOP, MAIAC, and MODIS C6.1. J. Environ. Prot. (Irvine. Calif) 2023, 14, 419–440. [Google Scholar] [CrossRef]
- Reimann, S.; Kallenborn, R.; Schmidbauer, N. Severe aromatic hydrocarbon pollution in the Arctic town of Longyearbyen (Svalbard) caused by snowmobile emissions. Environ. Sci. Technol. 2009, 43, 4791–4795. [Google Scholar] [CrossRef]
- Weinbruch, S.; Zou, L.; Ebert, M.; Benker, N.; Drotikova, T.; Kallenborn, R. Emission of nanoparticles from coal and diesel fired power plants on Svalbard: An electron microscopy study. Atmos. Environ. 2022, 282, 119138. [Google Scholar] [CrossRef]
- Zhan, J.; Gao, Y.; Li, W.; Chen, L.; Lin, H.; Lin, Q. Effects of ship emissions on summertime aerosols at Ny–Alesund in the Arctic. Atmos. Pollut. Res. 2014, 5, 500–510. [Google Scholar] [CrossRef]
- Meinander, O.; Dagsson-Waldhauserova, P.; Amosov, P.; Aseyeva, E.; Atkins, C.; Baklanov, A.; Baldo, C.; Barr, S.L.; Barzycka, B.; Benning, L.G.; et al. Newly identified climatically and environmentally significant high-latitude dust sources. Atmos. Chem. Phys. 2022, 22, 11889–11930. [Google Scholar] [CrossRef]
- Schmale, J.; Zieger, P.; Ekman, A.M.L. Aerosols in current and future Arctic climate. Nat. Clim. Change 2021, 11, 95–105. [Google Scholar] [CrossRef]
- Wawrzyniak, T.; Osuch, M. A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). Earth Syst. Sci. Data 2020, 12, 805–815. [Google Scholar] [CrossRef]
- Baek, S.Y.; Choi, S.D.; Chang, Y.S. Three-year atmospheric monitoring of organochlorine pesticides and polychlorinated biphenyls in polar regions and the south pacific. Environ. Sci. Technol. 2011, 45, 4475–4482. [Google Scholar] [CrossRef] [PubMed]
- Wania, F.; Mackay, D. Global Fractionation and Cold Condensation of Low Volatility Organochlorine Compounds in Polar Regions. Ambio 1993, 22, 10–18. [Google Scholar]
- Hung, H.; Kallenborn, R.; Breivik, K.; Su, Y.; Brorström-Lundén, E.; Olafsdottir, K.; Thorlacius, J.M.; Leppänen, S.; Bossi, R.; Skov, H.; et al. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci. Total Environ. 2010, 408, 2854–2873. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.; Katsoyiannis, A.A.; Brorström-Lundén, E.; Olafsdottir, K.; Aas, W.; Breivik, K.; Bohlin-Nizzetto, P.; Sigurdsson, A.; Hakola, H.; Bossi, R.; et al. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP). Environ. Pollut. 2016, 217, 52–61. [Google Scholar] [CrossRef]
- Wong, F.; Hung, H.; Dryfhout-Clark, H.; Aas, W.; Bohlin-Nizzetto, P.; Breivik, K.; Mastromonaco, M.N.; Lundén, E.B.; Ólafsdóttir, K.; Sigurðsson, Á.; et al. Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25 years of monitoring. Sci. Total Environ. 2021, 775, 145109. [Google Scholar] [CrossRef]
- Carlsson, P.; Christensen, J.H.; Borgå, K.; Kallenborn, R.; Aspmo Pfaffhuber, K.; Odland, J.Ø.; Reiersen, L.-O.; Pawlak, J.F. AMAP 2016. Influence of Climate Change on Transport, Levels, and Effects of Contaminants in Northern Areas—Part 2; AMAP: Tromsø, Norway, 2016; Volume 10, ISBN 9788279710998. [Google Scholar]
- AMAP. AMAP Assessment 2016: Chemicals of Emerging Arctic Concern; AMAP: Tromsø, Norway, 2017. [Google Scholar]
- Kosek, K.; Kozioł, K.; Luczkiewicz, A.; Jankowska, K.; Chmiel, S.; Polkowska, Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. Sci. Total Environ. 2019, 653, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- McGovern, M.; Borgå, K.; Heimstad, E.; Ruus, A.; Christensen, G.; Evenset, A. Small Arctic rivers transport legacy contaminants from thawing catchments to coastal areas in Kongsfjorden, Svalbard. Environ. Pollut. 2022, 304, 119191. [Google Scholar] [CrossRef] [PubMed]
- Muir, D.C.G.; Galarneau, E. Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change. Environ. Pollut. 2021, 273, 116425. [Google Scholar] [CrossRef]
- Ma, J.; Hung, H.; Macdonald, R.W. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor. Glob. Planet. Chang. 2016, 146, 89–108. [Google Scholar] [CrossRef]
- Ma, J.; Hung, H.; Tian, C.; Kallenborn, R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat. Clim. Chang. 2011, 1, 255–260. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, T.; Wang, L.; Gao, H.; Ma, J. Step changes in persistent organic pollutants over the Arctic and their implications. Atmos. Chem. Phys. 2015, 15, 3479–3495. [Google Scholar] [CrossRef]
- Pawlak, F.; Koziol, K.; Polkowska, Z. Chemical hazard in glacial melt? The glacial system as a secondary source of POPs (in the Northern Hemisphere). A systematic review. Sci. Total Environ. 2021, 778, 145244. [Google Scholar] [CrossRef]
- Pouch, A.; Zaborska, A.; Pazdro, K. Levels of dioxins and dioxin-like polychlorinated biphenyls in seawater from the Hornsund fjord (SW Svalbard). Mar. Pollut. Bull. 2021, 162, 111917. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, F.; Koziol, K.; Frankowski, M.; Nowicki, Ł.; Marlin, C.; Sulej-Suchomska, A.M.; Polkowska, Ż. Sea spray as a secondary source of chlorinated persistent organic pollutants?—Conclusions from a comparison of seven fresh snowfall events in 2019 and 2021. Sci. Total Environ. 2023, 891, 164357. [Google Scholar] [CrossRef] [PubMed]
- Marsz, A.A.; Styszyńska, A. Climate and Climate Change at Hornsund, Svalbard; Gdynia Maritime University: Gdynia, Poland, 2013. [Google Scholar]
- Bossi, R.; Vorkamp, K.; Skov, H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environ. Pollut. 2016, 217, 4–10. [Google Scholar] [CrossRef]
- Wilczyńska-Michalik, W.; Dańko, J.; Michalik, M. Characteristics of particulate matter emitted from a coal-fired power plant. Polish J. Environ. Stud. 2020, 29, 1411–1420. [Google Scholar] [CrossRef]
- Michalik, M.; Drzewicki, W.; Janus, R.; Wadrzyk, M.; Wilczynska-Michalik, W.; Ziola, N. Soot Emitted from Domestic Stoves during Solid Fuel Combustion; 2020. Available online: https://www.researchgate.net/publication/345188605_Soot_Emitted_from_Domestic_Stoves_during_Solid_Fuel_Combustion (accessed on 6 April 2021).
- Jenkins, N.T. 1973- Chemistry of airborne particles from metallurgical processing. Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA, USA, 2003. [Google Scholar]
- Jenkins, N.T.; Eagar, T.W. Chemical analysis of welding fume particles. Weld. J. 2005, 84, 87. [Google Scholar]
- Genareau, K.; Wardman, J.B.; Wilson, T.M.; McNutt, S.R.; Izbekov, P. Lightning-induced volcanic spherules. Geology 2015, 43, 319–322. [Google Scholar] [CrossRef]
- Genge, M.J.; Davies, B.; Suttle, M.D.; van Ginneken, M.; Tomkins, A.G. The mineralogy and petrology of I-type cosmic spherules: Implications for their sources, origins and identification in sedimentary rocks. Geochim. Cosmochim. Acta 2017, 218, 167–200. [Google Scholar] [CrossRef]
- Genge, M.J.; Larsen, J.; van Ginneken, M.; Suttle, M.D. An urban collection of modern-day large micrometeorites: Evidence for variations in the extraterrestrial dust flux through the Quaternary. Geology 2017, 45, 119–122. [Google Scholar] [CrossRef]
- Chakrabarty, R.K.; Moosmüller, H.; Chen, L.W.A.; Lewis, K.; Arnott, W.P.; Mazzoleni, C.; Dubey, M.K.; Wold, C.E.; Hao, W.M.; Kreidenweis, S.M. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 2010, 10, 6363–6370. [Google Scholar] [CrossRef]
- China, S.; Mazzoleni, C.; Gorkowski, K.; Aiken, A.C.; Dubey, M.K. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat. Commun. 2013, 4, 2122. [Google Scholar] [CrossRef] [PubMed]
- Makonese, T.; Meyer, J.; von Solms, S. Characteristics of spherical organic particles emitted from fixed-bed residential coal combustion. Atmosphere 2019, 10, 441. [Google Scholar] [CrossRef]
- Wilczyńska-Michalik, W.; Różańska, A.; Bulanda, M.; Chmielarczyk, A.; Pietras, B.; Michalik, M. Physicochemical and microbiological characteristics of urban aerosols in Krakow (Poland) and their potential health impact. Environ. Geochem. Health 2021, 43, 4601–4626. [Google Scholar] [CrossRef]
- Wilczyńska-Michalik, W.; Michalik, J.M.; Kapusta, C.; Michalik, M. Airborne magnetic technoparticles in soils as a record of anthropocene. Atmosphere 2020, 11, 44. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). Model Access via NOAA ARL READY Website. Available online: https://www.ready.noaa.gov/hypub-bin/trajtype.pl?runtype=archive (accessed on 6 April 2021).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Lehmann-Konera, S.; Ruman, M.; Frankowski, M.; Małarzewski, Ł.; Raczyński, K.; Pawlak, F.; Kozioł, K.; Polkowska, Ż. Rainwater chemistry composition in Bellsund: Sources of elements and deposition discrepancies in the coastal area (SW Spitsbergen, Svalbard). Chemosphere 2023, 313, 137281. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Oshima, N.; Ohata, S.; Yoshida, A.; Moteki, N.; Koike, M. Compositions and mixing states of aerosol particles by aircraft observations in the Arctic springtime, 2018. Atmos. Chem. Phys. 2021, 21, 3607–3626. [Google Scholar] [CrossRef]
- Andreae, M.O.; Charlson, R.J.; Bruynseels, F.; Storms, H.; Van Grieken, R.; Maenhaut, W. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 1986, 232, 1620–1623. [Google Scholar] [CrossRef] [PubMed]
- Wilczyńska-Michalik, W. Influence of Atmospheric Pollution on Weathering of Stones in Cracow Monuments and Rocks Outcrops in Cracow, Cracow-Częstochowa Upland and the Carpathians; Wydawnictwo Naukowe Akademii Pedagogicznej: Kraków, Poland, 2004; ISBN 83-7271-253-0. [Google Scholar]
- Dekhtyareva, A.; Edvardsen, K.; Holmén, K.; Hermansen, O.; Hansson, H.C. Influence of local and regional air pollution on atmospheric measurements in ny-alesund. Int. J. Sustain. Dev. Plan. 2016, 11, 578–587. [Google Scholar] [CrossRef]
- Xavier, C.; Baykara, M.; Wollesen De Jonge, R.; Altstädter, B.; Clusius, P.; Vakkari, V.; Thakur, R.; Beck, L.; Becagli, S.; Severi, M.; et al. Secondary aerosol formation in marine Arctic environments: A model measurement comparison at Ny-Ålesund. Atmos. Chem. Phys. 2022, 22, 10023–10043. [Google Scholar] [CrossRef]
- Udisti, R.; Bazzano, A.; Becagli, S.; Bolzacchini, E.; Caiazzo, L.; Cappelletti, D.; Ferrero, L.; Frosini, D.; Giardi, F.; Grotti, M.; et al. Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol. Rend. Lincei 2016, 27, 85–94. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, Y.; Wang, Z.; Zhang, Y.; Liu, L.; Kong, S.; Liu, F.; Shi, Z.; Li, W. Quantifying the Fractal Dimension and Morphology of Individual Atmospheric Soot Aggregates. J. Geophys. Res. Atmos. 2022, 127, e2021JD036055. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Atmospheric tar balls from biomass burning in Mexico. J. Geophys. Res. Atmos. 2011, 116, D05204. [Google Scholar] [CrossRef]
- Weinbruch, S.; Wiesemann, D.; Ebert, M.; Schütze, K.; Kallenborn, R.; Ström, J. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny ålesund, Svalbard): An electron microscopy study. Atmos. Environ. 2012, 49, 142–150. [Google Scholar] [CrossRef]
- Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy. Atmos. Environ. 2018, 172, 47–54. [Google Scholar] [CrossRef]
- Aamaas, B.; Bøggild, C.E.; Stordal, F.; Berntsen, T.; Holmén, K.; Ström, J. Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport. Tellus B 2011, 63, 340–351. [Google Scholar] [CrossRef]
- Pósfai, M.; Gelencsér, A.; Simonics, R.; Arató, K.; Li, J.; Hobbs, P.V.; Buseck, P.R. Atmospheric tar balls: Particles from biomass and biofuel burning. J. Geophys. Res. Atmos. 2004, 109, D06213. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Q.; Huang, D.; Kong, S.; Zhang, J.; Wang, X.; Lu, C.; Shi, Z.; Zhang, X.; Sun, Y.; et al. Direct Observations of Fine Primary Particles from Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity. J. Geophys. Res. Atmos. 2018, 123, 12964–12979. [Google Scholar] [CrossRef]
- Moroni, B.; Cappelletti, D.; Crocchianti, S.; Becagli, S.; Caiazzo, L.; Traversi, R.; Udisti, R.; Mazzola, M.; Markowicz, K.; Ritter, C.; et al. Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands). Atmos. Environ. 2017, 156, 135–145. [Google Scholar] [CrossRef]
- Moroni, B.; Ritter, C.; Crocchianti, S.; Markowicz, K.; Mazzola, M.; Becagli, S.; Traversi, R.; Krejci, R.; Tunved, P.; Cappelletti, D. Individual Particle Characteristics, Optical Properties and Evolution of an Extreme Long-Range Transported Biomass Burning Event in the European Arctic (Ny-Ålesund, Svalbard Islands). J. Geophys. Res. Atmos. 2020, 125, e2019JD031535. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Cooke, S.J.; Lesser, P.; Macura, B.; Nilsson, A.E.; Taylor, J.J.; Raito, K. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social-ecological systems in Arctic and boreal regions: A systematic map protocol. Environ. Evid. 2019, 8, 9. [Google Scholar] [CrossRef]
- Kruse, F. Historical perspectives—The European commercial exploitation of Arctic mineral resources after 1500 AD. Polarforschung 2016, 86, 15–26. [Google Scholar]
- Ebert, M.; Weinbruch, S.; Hoffmann, P.; Ortner, H.M. Chemical characterization of North Sea aerosol particles. J. Aerosol Sci. 2000, 31, 15–26. [Google Scholar] [CrossRef]
- Choël, M.; Deboudt, K.; Flament, P.; Aimoz, L.; Mériaux, X. Single-particle analysis of atmospheric aerosols at Cape Gris-Nez, English Channel: Influence of steel works on iron apportionment. Atmos. Environ. 2007, 41, 613–632. [Google Scholar] [CrossRef]
- Liati, A.; Pandurangi, S.S.; Boulouchos, K.; Schreiber, D.; Arroyo Rojas Dasilva, Y. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmos. Environ. 2015, 101, 34–40. [Google Scholar] [CrossRef]
- Moreno, T.; Martins, V.; Querol, X.; Jones, T.; BéruBé, K.; Minguillón, M.C.; Amato, F.; Capdevila, M.; de Miguel, E.; Centelles, S.; et al. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 2015, 505, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Michalik, J.M.; Wilczyńska-Michalik, W.; Gondek, Ł.; Tokarz, W.; Zukrowski, J.; Gajewska, M.; Michalik, M. Magnetic fraction of the atmospheric dust in Kraków—physicochemical characteristics and possible environmental impact. Atmos. Chem. Phys. 2023, 23, 1449–1464. [Google Scholar] [CrossRef]
- Rothman, S.J.; Nowicki, L.J.; Murch, G.E. Self-diffusion in austenitic Fe-Cr-Ni alloys. J. Phys. F Met. Phys. 1980, 10, 383–398. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Li, Z.; Zhu, L.; Li, Y.; Xiong, A. Microstructure and properties of Fe-Cr-Ni alloy coatings on T10 steel by laser cladding. Mater. Res. Express 2019, 7, 016513. [Google Scholar] [CrossRef]
- Igelegbai, E.E.; Alo, O.A.; Adeodu, A.O.; Daniyan, I.A. Evaluation of Mechanical and Microstructural Properties of α-Brass Alloy Produced from Scrap Copper and Zinc Metal through Sand Casting Process. J. Miner. Mater. Charact. Eng. 2017, 5, 18–28. [Google Scholar] [CrossRef]
- Meeker, K.A.; Chuan, R.L.; Kyle, P.R.; Palais, J.M. Emission of elemental gold particles from Mount Erebus, Ross Island, Antarctica. Geophys. Res. Lett. 1991, 18, 1405–1408. [Google Scholar] [CrossRef]
- Gadag, S.P.; Patra, S. Numerical prediction of mechanical properties of Pb-Sn solder alloys containing antimony, bismuth and or silver ternary trace elements. J. Electron. Mater. 2000, 29, 1392–1397. [Google Scholar] [CrossRef]
- Siviour, C.R.; Walley, S.M.; Proud, W.G.; Field, J.E. Mechanical properties of SnPb and lead-free solders at high rates of strain. J. Phys. D Appl. Phys. 2005, 38, 4131–4139. [Google Scholar] [CrossRef]
- Takamura, K.I.; Habazaki, H.; Kawashima, A.; Asami, K.; Hashimoto, K. Amorphous NiNbPt alloy catalysts for electro-oxidation of ethylene. Mater. Sci. Eng. A 1994, 181–182, 1137–1140. [Google Scholar] [CrossRef]
- Pierna, A.R.; Sistiaga, M.; Navascués, C.; Lorenzo, A. Electrochemical treatment of toxic compounds on the surface of amorphous Ni-Nb-Pt-Sn alloys. J. Non-Cryst. Solids 2001, 287, 432–436. [Google Scholar] [CrossRef]
- Lima, M.S.F.; Ferreira, P.I. Microstructure and mechanical properties of Ni-Al and Ni-Al-B alloys produced by rapid solidification technique. Intermetallics 1996, 4, 85–90. [Google Scholar] [CrossRef]
- Karakulak, E.; Koç, F.G.; Yamanoglu, R.; Zeven, M. Mechanical properties of hypoeutectic Al-Ni alloys with Al3Ni intermetallics. Mater. Test. 2016, 58, 117–121. [Google Scholar] [CrossRef]
- Tondera-Sala, A. Skład Fazowy Zanieczyszczeń Pyłowych ze Spitsbergenu; Uniwersytet Śląski: Katowice, Poland, 2009. [Google Scholar]
- Chan, W.H.; Lusis, M.A. Post-superstack sudbury smelter emissions and their fate in the atmosphere: An overview of the sudbury environment study results. Water. Air. Soil Pollut. 1985, 26, 43–58. [Google Scholar] [CrossRef]
- Gunn, J.; Keller, W.; Negusanti, J.; Potvin, R.; Beckett, P.; Winterhalder, K. Ecosystem recovery after emission reductions: Sudbury, Canada. Water Air Soil Pollut. 1995, 85, 1783–1788. [Google Scholar] [CrossRef]
- Keller, W.; Heneberry, J.H.; Gunn, J.M. Effects of emission reductions from the Sudbury smelters on the recovery of acid- and metal-damaged lakes. J. Aquat. Ecosyst. Stress Recover. 1998, 6, 189–198. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, L.; Blum, J.D.; Huang, Y.; He, W. Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Maksimenkov, L.O.; Pogarskii, F.A. Changes in the atmospheric circulation and environmental pollution in Siberia from the industrial regions of Norilsk and the Urals in the early 21st century. Atmos. Ocean. Opt. 2009, 22, 396–404. [Google Scholar] [CrossRef]
- Zhulidov, A.V.; Robarts, R.D.; Pavlov, D.F.; Kämäri, J.; Gurtovaya, T.Y.; Meriläinen, J.J.; Pospelov, I.N. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex. Environ. Monit. Assess. 2011, 181, 539–553. [Google Scholar] [CrossRef]
- Fukasawa, T.; Ohta, S.; Enomoto, K.; Murao, N.; Yamagata, S.; Shimizu, T.; Makarov, V.N.; Rastegaev, I. Measurement of air pollution in Norilsk. Polar Meteorol. Glaciol. 2000, 14, 92–102. [Google Scholar]
- Bronder, L.; Kudrik, I.; Nikitin, A.; Jorgensen, K.V.; Nikiforov, V. Norilsk Nickel: The Soviet Legacy of Industrial Pollution, Environmental Challenges in the Arctic; Bellona Report 2010. Available online: https://bellona.org/assets/sites/4/Norilsk-Nickel-The-Soviet-Legacy-of-Industrial-Pollution.pdf (accessed on 6 April 2021).
- Shevchenko, V.; Lisitzin, A.; Vinogradova, A.; Stein, R. Heavy metals in aerosols over the seas of the Russian Arctic. Sci. Total Environ. 2003, 306, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Maenhaut, W.; Cornille, P.; Pacyna, J.M.; Vitols, V. Trace element composition and origin of the atmospheric aerosol in the Norwegian arctic. Atmos. Environ. 1989, 23, 2551–2569. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Y.; Wania, F.; Yang, R.; Wang, P.; Zhang, Q.; Jiang, G. Atmospheric concentrations and temporal trends of polychlorinated biphenyls and organochlorine pesticides in the Arctic during 2011–2018. Chemosphere 2021, 267, 128859. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Sweetman, A.J.; Jones, K.C.; Malik, R.N. Higher atmospheric levels and contribution of black carbon in soil-air partitioning of organochlorines in Lesser Himalaya. Chemosphere 2018, 191, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Halsall, C.J.; Tych, W.; Kallenborn, R.; Su, Y.; Hung, H. Long-term trends in atmospheric concentrations of α- and γ-HCH in the Arctic provide insight into the effects of legislation and climatic fluctuations on contaminant levels. Atmos. Environ. 2008, 42, 8225–8233. [Google Scholar] [CrossRef]
- Dai, G.; Liu, X.; Liang, G.; Han, X.; Shi, L.; Cheng, D.; Gong, W. Distribution of organochlorine pesticides (OCPs) and poly chlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. J. Environ. Sci. 2011, 23, 1640–1649. [Google Scholar] [CrossRef]
- Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C.R.; Manø, S.; Schlabach, M.; Stohl, A. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica. Atmos. Chem. Phys. 2013, 13, 6983–6992. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.; Li, J.; Zhang, G.; Lee, C.S.L.; Li, X.; Jones, K.C.; Xiang, Y.; Zhong, L. Passive air sampling of DDT, chlordane and HCB in the Pearl River Delta, South China: Implications to regional sources. J. Environ. Monit. 2007, 9, 582–588. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, D.; Liu, X.; Zhou, Q.; Liu, Y.; Yang, W.; Jiang, G. Spatial and seasonal variations of organochlorine compounds in air on an urban–rural transect across Tianjin, China. Chemosphere 2010, 78, 92–98. [Google Scholar] [CrossRef]
- Ubl, S.; Scheringer, M.; Stohl, A.; Burkhart, J.F.; Hungerbuhler, K. Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic. Atmos. Environ. 2012, 62, 391–399. [Google Scholar] [CrossRef]
- Wania, F.; Dugani, C.B. Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models. Environ. Toxicol. Chem. 2003, 22, 1252–1261. [Google Scholar] [PubMed]
- Cai, M.; Ma, Y.; Xie, Z.; Zhong, G.; Möller, A.; Yang, H.; Sturm, R.; He, J.; Ebinghaus, R.; Meng, X.Z. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic. J. Geophys. Res. Atmos. 2012, 117, 1–9. [Google Scholar] [CrossRef]
- Halsall, C.J. Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: Their atmospheric behaviour and interaction with the seasonal snow pack. Environ. Pollut. 2004, 128, 163–175. [Google Scholar] [CrossRef]
- Hansen, K.M.; Halsall, C.J.; Christensen, J.H.; Brandt, J.; Frohn, L.M.; Geels, C.; Skjøth, C.A. The role of the snowpack on the fate of alpha-HCH in an atmospheric chemistry-transport model. Environ. Sci. Technol. 2008, 42, 2943–2948. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, D.; Ežerinskis, Ž.; Šapolaitė, J.; Bučinskas, L.; Luks, B.; Nawrot, A.; Larose, C.; Tuccella, P.; Gallet, J.C.; Crocchianti, S.; et al. Long-range transport and deposition on the Arctic snowpack of nuclear contaminated particulate matter. J. Hazard. Mater. 2023, 452, 131317. [Google Scholar] [CrossRef] [PubMed]
- Choël, M.; Deboudt, K.; Flament, P. Development of time-resolved description of aerosol properties at the particle scale during an episode of industrial pollution plume. Water. Air. Soil Pollut. 2010, 209, 93–107. [Google Scholar] [CrossRef]
- Lehmann-Konera, S.; Ruman, M.; Frankowski, M.; Małarzewski, Ł.; Raczyński, K.; Pawlak, F.; Jóźwik, J.; Potapowicz, J.; Polkowska, Z. Short-Term Observations of Rainfall Chemistry Composition in Bellsund (SW Spitsbergen, Svalbard). Water 2024, 16, 299. [Google Scholar] [CrossRef]
Sample ID | Date of Sample Collection | Sample Collection Duration [h] | Volume of Air [m3] | Filter Pore Size [µm] | Wind Direction (Sector) | Wind Speed [m/s], Averaged | Air Temperature at 2 m [°C], Averaged |
---|---|---|---|---|---|---|---|
SP1 | 14/15 April 2019 | unknown * | 1.002 | 0.1 | W | 9.7 | 1.23 |
SP2 | 17 April 2019 | 8 | 5.611 | 0.2 | SW-W | 7.0 | 1.83 |
SP3 | 23 April 2019 | 8 | 4.167 | 0.1 | NE-E | 3.0 | −4.3 |
SP4 | 24/25 April 2019 | 12 | 8.912 | 0.2 | W-NW | 4.4 | 0.74 |
SP5 | 26/27 April 2019 | 12 | 6.642 | 0.1 | E | 4.8 | −1.9 |
SP6 | 28/29 April 2019 | 15 | 5.864 | 0.1 | SW-W, N, NE | 1.2 | −0.5 |
SP7 | 02/03 May 2019 | 15 | 13.447 | 0.2 | SE, NW-N | 3.5 | −2.51 |
SP8 | 03/04 May 2019 | 24 | 21.503 | 0.2 | NE-E | 7.8 | −5.94 |
SP9 | 04/05 May 2019 | 24 | 11.502 | 0.1 | N-NE-E | 6.0 | −5.54 |
SP10 | 05/06 May 2019 | 24 | 21.522 | 0.2 | N-NE-E | 3.4 | −4.25 |
SP11 | 06/08 May 2019 | 24 | 11.083 | 0.1 | NE-E | 5.3 | −4.26 |
SP12 | 09/10 May 2019 | 24 | 21.267 | 0.2 | NE-E | 6.8 | −5.19 |
SP13 | 10/11 May 2019 | 24 | 10.722 | 0.1 | E | 9.4 | −3.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, F.; Koziol, K.; Wilczyńska-Michalik, W.; Worosz, M.; Michalik, M.; Lehmann-Konera, S.; Polkowska, Ż. Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019). Water 2024, 16, 1486. https://doi.org/10.3390/w16111486
Pawlak F, Koziol K, Wilczyńska-Michalik W, Worosz M, Michalik M, Lehmann-Konera S, Polkowska Ż. Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019). Water. 2024; 16(11):1486. https://doi.org/10.3390/w16111486
Chicago/Turabian StylePawlak, Filip, Krystyna Koziol, Wanda Wilczyńska-Michalik, Mikołaj Worosz, Marek Michalik, Sara Lehmann-Konera, and Żaneta Polkowska. 2024. "Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019)" Water 16, no. 11: 1486. https://doi.org/10.3390/w16111486
APA StylePawlak, F., Koziol, K., Wilczyńska-Michalik, W., Worosz, M., Michalik, M., Lehmann-Konera, S., & Polkowska, Ż. (2024). Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019). Water, 16(11), 1486. https://doi.org/10.3390/w16111486