Application of a Bayesian-Based Integrated Approach for Groundwater Contamination Sources Parameter Identification Considering Observation Error
Abstract
:1. Introduction
2. Methodology
2.1. Simulation Model
2.2. Parameter Identification
2.2.1. Bayesian Inversion
2.2.2. Markov Chain Monte Carlo
2.3. Relative Entropy
2.4. Multi-Layer Perceptron
3. Numerical Applications
3.1. Case Studies
3.1.1. Case 1
3.1.2. Case 2
3.2. Surrogate Modeling
3.3. Computation Time Analysis
4. Results and Discussions
4.1. Analysis of the Surrogate Model
4.2. Analysis of the Parameter Identification Results
4.3. Analysis of the Relative Entropy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jha, M.K.; Datta, B. Linked simulation-optimization based dedicated monitoring network design for unknown pollutant source identification using dynamic time warping distance. Water Resour. Manag. 2014, 28, 4161–4182. [Google Scholar] [CrossRef]
- Kontos, Y.N.; Kassandros, T.; Perifanos, K.; Karampasis, M.; Katsifarakis, K.L.; Karatzas, K. Machine learning for groundwater pollution source identification and monitoring network optimization. Neural Comput. Appl. 2022, 34, 19515–19545. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, M.T. A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems. J. Hydrol. 2016, 538, 161–176. [Google Scholar] [CrossRef]
- Yan, X.; Dong, W.; An, Y.; Lu, W. A Bayesian-based integrated approach for identifying groundwater contamination sources. J. Hydrol. 2019, 579, 124160. [Google Scholar] [CrossRef]
- Atmadja, J.; Bagtzoglou, A.C. State of the art report on mathematical methods for groundwater pollution source identification. Environ. Forensics 2001, 2, 205–214. [Google Scholar] [CrossRef]
- Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L.J. Inverse problem in hydrogeology. Hydrogeol. J. 2005, 13, 206–222. [Google Scholar] [CrossRef]
- Gómez-Hernández, J.J.; Xu, T. Contaminant source identification in aquifers: A critical view. Math. Geosci. 2022, 54, 437–458. [Google Scholar] [CrossRef]
- Ma, X.; Zabaras, N. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Probl. 2009, 25, 035013. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, L.; Chen, C.; Chen, D.; Wu, L. Efficient Bayesian experimental design for contaminant source identification. Water Resour. Res. 2015, 51, 576–598. [Google Scholar] [CrossRef]
- Gregory, P.C. Bayesian exoplanet tests of a new method for MCMC sampling in highly correlated model parameter spaces. Mon. Not. R. Astron. Soc. 2011, 410, 94–110. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Gamerman, D.; Lopes, H.F. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2006. [Google Scholar]
- Yan, X.; Lu, W.; An, Y.; Dong, W. Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach. Environ. Pollut. 2020, 263, 114570. [Google Scholar]
- An, Y.; Yan, X.; Lu, W.; Qian, H.; Zaiyong, Z. An improved Bayesian approach linked to a surrogate model for identifying groundwater pollution sources. Hydrogeol. J. 2022, 30, 601–616. [Google Scholar] [CrossRef]
- Michalak, A.M.; Kitanidis, P.K. A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification. Water Resour. Res. 2003, 39, 1–14. [Google Scholar] [CrossRef]
- Zeng, L.; Shi, L.; Zhang, D.; Wu, L. A sparse grid based Bayesian method for contaminant source identification. Adv. Water Resour. 2012, 37, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Q.; Chen, D.; Wu, L.; Zeng, L. Surrogate-based Bayesian inverse modeling of the hydrological system: An adaptive approach considering surrogate approximation error. Water Resour. Res. 2020, 56, e2019WR025721. [Google Scholar] [CrossRef]
- Skaggs, T.H.; Kabala, Z.J. Recovering the release history of a groundwater contaminant. Water Resour. Res. 1994, 30, 71–79. [Google Scholar] [CrossRef]
- Woodbury, A.D.; Ulrych, T.J. Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant. Water Resour. Res. 1996, 32, 2671–2681. [Google Scholar] [CrossRef]
- Chen, Z.; Gomez-Hernandez, J.J.; Xu, T.; Zanini, A. Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter. J. Hydrol. 2018, 564, 1074–1084. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; He, H.; Lu, W. Application of the complementary ensemble empirical mode decomposition for the identification of simulation model parameters and groundwater contaminant sources. J. Hydrol. 2022, 612, 128244. [Google Scholar] [CrossRef]
- Wang, H.; Lu, W.; Chang, Z. Simultaneous identification of groundwater contamination source and aquifer parameters with a new weighted–average wavelet variable–threshold denoising method. Environ. Sci. Pollut. Res. 2021, 28, 38292–38307. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Zabaras, N.; Shi, X.; Wu, J. Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification. Water Resour. Res. 2019, 55, 3856–3881. [Google Scholar] [CrossRef]
- Xing, Z.; Qu, R.; Zhao, Y.; Fu, Q.; Ji, Y.; Lu, W. Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model. J. Hydrol. 2019, 572, 501–516. [Google Scholar] [CrossRef]
- He, L.; Huang, G.H.; Zeng, G.M.; Lu, H.W. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. Water Res. 2008, 42, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Mugunthan, P.; Shoemaker, C.A.; Regis, R.G. Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models. Water Resour. Res. 2005, 41, W11427. [Google Scholar] [CrossRef]
- Regis, R.G.; Shoemaker, C.A. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 2007, 19, 497–509. [Google Scholar] [CrossRef]
- Mirghani, B.Y.; Zechman, E.M.; Ranjithan, R.S.; Mahinthakumar, G. Enhanced simulation-optimization approach using surrogate modeling for solving inverse problems. Environ. Forensics 2012, 13, 348–363. [Google Scholar] [CrossRef]
- Srivastava, D.; Singh, R.M. Groundwater system modeling for simultaneous identification of pollution sources and parameters with uncertainty characterization. Water Resour. Manag. 2015, 29, 4607–4627. [Google Scholar] [CrossRef]
- Hou, Z.; Lu, W.; Chu, H.; Luo, J. Selecting parameter-optimized surrogate models in DNAPL-contaminated aquifer remediation strategies. Environ. Eng. Sci. 2015, 32, 1016–1026. [Google Scholar] [CrossRef]
- Ouyang, Q.; Lu, W.; Hou, Z.; Zhang, Y.; Li, S.; Luo, J. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method. J. Contam. Hydrol. 2017, 200, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, W.; Hou, Z.; Zhao, H.; Na, J. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites. Comput. Geosci. 2015, 84, 37–45. [Google Scholar] [CrossRef]
- Hemker, T.; Fowler, K.R.; Farthing, M.W.; von Stryk, O. A mixed-integer simulation-based optimization approach with surrogate functions in water resources management. Optim. Eng. 2008, 9, 341–360. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- An, Y.; Zhang, Y.; Yan, X. An integrated Bayesian and machine learning approach application to identification of groundwater contamination source parameters. Water 2022, 14, 2447. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, W. A Modular Three-Dimensional Finite Difference Groundwater Flow Model. In Geological Survey Techniques of Water Resources Investigations Reports; USGS: Reston, VA, USA, 1988; p. 586. [Google Scholar]
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 1999. [Google Scholar]
- Bayes, T. LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar]
- Marshall, L.; Nott, D.; Sharma, A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour. Res. 2004, 40, W02501. [Google Scholar] [CrossRef]
- Vrugt, J.A.; ter Braak, C.J.; Diks, C.G.; Robinson, B.A.; Hyman, J.M.; Higdon, D. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 273–290. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Lindley, D.V. On a measure of the information provided by an experiment. Ann. Math. Stat. 1956, 27, 986–1005. [Google Scholar] [CrossRef]
- Agirre-Basurko, E.; Ibarra-Berastegi, G.; Madariaga, I. Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environ. Model. Softw. 2006, 21, 430–446. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, W.; Xiao, C. A Kriging surrogate model coupled in simulation–optimization approach for identifying release history of groundwater sources. J. Contam. Hydrol. 2016, 185, 51–60. [Google Scholar] [CrossRef] [PubMed]
- van Griensven, A.V.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
Situations | τ |
---|---|
S1 | 0 |
S2 | 0.04 |
S3 | 0.08 |
S4 | 0.12 |
S5 | 0.16 |
S6 | 0.20 |
Parameter | True Value | Prior Range | Unit |
---|---|---|---|
55.00 | [40, 90] | ||
75.00 | [50, 100] | ||
196.00 | [160, 240] | ||
38,500.00 | [22,000, 47,000] |
Parameter | Value | Unit |
---|---|---|
Hydraulic conductivity, | 15.00 | |
Porosity, | 0.30 | / |
Longitudinal dispersivity, | 15.00 | |
Transverse dispersivity, | 3.00 | |
End release time, | 800.00 |
Parameter | True Value | Prior Range | Unit |
---|---|---|---|
75.00 | [50, 100] | ||
125.00 | [90, 140] | ||
205.00 | [160, 240] | ||
37,500.00 | [22,000, 47,000] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; An, Y. Application of a Bayesian-Based Integrated Approach for Groundwater Contamination Sources Parameter Identification Considering Observation Error. Water 2024, 16, 1618. https://doi.org/10.3390/w16111618
Yan X, An Y. Application of a Bayesian-Based Integrated Approach for Groundwater Contamination Sources Parameter Identification Considering Observation Error. Water. 2024; 16(11):1618. https://doi.org/10.3390/w16111618
Chicago/Turabian StyleYan, Xueman, and Yongkai An. 2024. "Application of a Bayesian-Based Integrated Approach for Groundwater Contamination Sources Parameter Identification Considering Observation Error" Water 16, no. 11: 1618. https://doi.org/10.3390/w16111618
APA StyleYan, X., & An, Y. (2024). Application of a Bayesian-Based Integrated Approach for Groundwater Contamination Sources Parameter Identification Considering Observation Error. Water, 16(11), 1618. https://doi.org/10.3390/w16111618