Effect of Green Infrastructure with Different Woody Plant Root Systems on the Reduction of Runoff Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Column System
2.2. Scheme Design
2.3. Sampling and Analysis Method
2.3.1. Root Analysis
2.3.2. Water Sample Collection and Analysis
2.3.3. Soil Sample Collection and Analysis
3. Results and Discussion
3.1. Root Morphology Traits of Woody Plants
3.2. Reduction Rates of Runoff Nitrogen in Different GIs
3.3. Analysis on Root Characteristic Factors of Runoff Nitrogen Load Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, W.; Xiao, J.; Toor, G.S.; Li, Z. Nitrate-nitrogen transport in streamwater and groundwater in a loess covered region: Sources, drivers, and spatiotemporal variation. Sci. Total Environ. 2021, 761, 143278. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Kumar, M. Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: A case study from Texvalley (Tiruppur region) of India. Chemosphere 2021, 265, 129083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Li, Y.; Wang, D.; Zhang, J.; Zhao, L. Assessment on the cumulative effect of pollutants and the evolution of micro-ecosystems in bioretention systems with different media. Ecotoxicol. Environ. Saf. 2021, 228, 112957. [Google Scholar] [CrossRef]
- Kang, J.; Hirabayashi, S.; Shibata, S. Urban Forest ecosystem services vary with land use and species: A case study of Kyoto City. Forests 2022, 13, 67. [Google Scholar] [CrossRef]
- Szota, C.; McCarthy, M.J.; Sanders, G.J.; Farrell, C.; Fletcher, T.D.; Arndt, S.K.; Livesley, S.J. Tree water-use strategies to improve stormwater retention performance of biofiltration systems. Water Res. 2018, 144, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhu, J.; Li, G.; Yang, Y.; An, S.; Liu, C.; Wang, J. Purification effect of bioretention with improved filler on runoff pollution under low temperature conditions. J. Environ. Manag. 2021, 295, 113065. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Li, J.; Li, H.; Li, Y. Influences of stormwater concentration infiltration on soil nitrogen, phosphorus, TOC and their relations with enzyme activity in rain garden. Chemosphere 2019, 233, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Shetty, N.H. Estimating stormwater infiltration and canopy interception for street tree pits in Manhattan, New York. Forests 2023, 14, 216. [Google Scholar] [CrossRef]
- Yuan, J.; Dunnett, N.; Stovin, V. The influence of vegetation on rain garden hydrological performance. Urban Water J. 2017, 14, 1083–1089. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-induced changes of soil hydraulic properties—A review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Fan, G.; Li, Z.; Wang, S.; Huang, K.; Luo, J. Migration and transformation of nitrogen in bioretention system during rainfall runoff. Chemosphere 2019, 232, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Barron, N.J.; Hatt, B.; Jung, J.; Chen, Y.; Deletic, A. Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment. Sci. Total Environ. 2020, 715, 136680. [Google Scholar] [CrossRef] [PubMed]
- Galdos, M.V.; Brown, E.; Rosolem, C.A.; Pires, L.F.; Hallett, P.D.; Mooney, S.J. Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system. Sci. Rep. 2020, 10, 5072. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.G.; Jones, D.L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant n acquisition. Soil Biol. Biochem. 2001, 33, 651–657. [Google Scholar] [CrossRef]
- Ruan, L.; Wang, L.; Wei, K.; Cheng, H.; Li, H.; Shao, S.; Wu, L. Comparative analysis of nitrogen spatial heterogeneity responses in low nitrogen susceptible and tolerant tea plants (Camellia sinensis). Sci. Hortic. 2019, 246, 182–189. [Google Scholar] [CrossRef]
- Tang, D.; Liu, M.Y.; Zhang, Q.; Ma, L.; Shi, Y.; Ruan, J. Preferential assimilation of NH4+ over NO3− in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis. Plant Sci. 2020, 291, 110369. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, P.P.; Huang, C.H.; Liu, G.B.; Yang, Y.F. Effects of root morphological traits on soil detachment for ten herbaceous species in the Loess Plateau. Sci. Total Environ. 2021, 754, 142304. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Guo, Q.; Lian, J.; Chen, L. Increase and spatial variation in soil infiltration rates associated with fibrous and tap tree roots. Water 2019, 11, 1700. [Google Scholar] [CrossRef]
- Fishkis, O.; Noell, U.; Diehl, L.; Jaquemotte, J.; Lamparter, A.; Stange, C.F.; Burke, V.; Koeniger, P.; Stadler, S. Multitracer irrigation experiments for assessing the relevance of preferential flow for non-sorbing solute transport in agricultural soil. Geoderma 2020, 371, 114386. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Guo, Q.; Lian, J.; Yao, Y. Evaluation of ammonia and nitrate distribution and reduction within stormwater green infrastructure with different woody plants under multiple influencing factors. J. Environ. Manag. 2022, 302, 114086. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Song, W.; Tao, J.; Huang, S.; Chen, S.; Hou, M.; Xu, G.; Zhang, Y. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J. Exp. Bot. 2015, 66, 2449–2459. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Yang, J. Improving Nitrogen Use Efficiency of Rice Crop through an Optimized Root System and Agronomic Practices. Crop Environ. 2023, 2, 192–201. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, J.; Xie, X.; Liu, Y. Clogging mechanism of bioretention cell with fine-grained soil medium. J. Water Process Eng. 2023, 53, 103630. [Google Scholar] [CrossRef]
- Xiang, L.; Li, J.; Kuang, N.; Che, W.; Li, Y.; Liu, X. Discussion on the design methods of rainwater garden. Water Wastewater Eng. 2008, 34, 47–51. [Google Scholar]
- NY/T 1121.19-2008; Soil Testing. Part 19: Method for Determination of Soil Water Stable Macro-Aggregates Distribution. Ministry of Agriculture, Planting Industry Management Department: Beijing, China, 2008.
- GB/T 32737-2016; Determination of Nitrate Nitrogen in Soil—Ultraviolet Spectrophotometry Method. The National Soil Quality Standardization Technical Committee: Beijing, China, 2016.
- Zheng, Y.; Shen, P.; Sun, X.; Wu, Z.; Yu, T.; Feng, H.; Sun, Q.; Wu, J.; Wang, C.; Wu, Y. Quantifying the Role of Peanut Root and Root Nodule in Nitrogen Absorption and Fixation under Four Forms of N Fertilizers. J. Agric. Food Res. 2022, 9, 100334. [Google Scholar] [CrossRef]
- Peng, M.; He, H.; Jiang, M.; Wang, Z.; Li, G.; Zhuang, L. Morphological, Physiological and Metabolomic Analysis to Unravel the Adaptive Relationship between Root Growth of Ephemeral Plants and Different Soil Habitats. Plant Physiol. Biochem. 2023, 202, 107986. [Google Scholar] [CrossRef] [PubMed]
- Nkoh, J.N.; Shang, C.; Okeke, E.S.; Ejeromedoghene, O.; Oderinde, O.; Etafo, N.O.; Mgbechidinma, C.L.; Bakare, O.C.; Meugang, E.F. Antibiotics Soil-Solution Chemistry: A Review of Environmental Behavior and Uptake and Transformation by Plants. J. Environ. Manag. 2024, 354, 120312. [Google Scholar] [CrossRef] [PubMed]
- Yetgin, A. Exploring the Dynamic Nature of Root Plasticity and Morphology in the Face of Changing Environments. Ecol. Front. 2024, 44, 112–119. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, L.; Liu, H.; He, W.; Shi, L.; Xu, C.; Xiang, C. Coarsened Soil Reduces Drought Resistance of Fibrous-Rooted Species on Degraded Steppe. Ecol. Indic. 2022, 145, 109644. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Guo, Q.; Zhang, Z.; Lian, J. Characteristics of Nitrogen Distribution and Its Response to Microecosystem Changes in Green Infrastructure with Different Woody Plants. Chemosphere 2023, 313, 137371. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, X.; Xiao, H.; Toan, N.-S.; Liao, B.; Wu, X.; Hu, R. Leaching Is the Main Pathway of Nitrogen Loss from a Citrus Orchard in Central China. Agric. Ecosyst. Environ. 2023, 356, 108559. [Google Scholar] [CrossRef]
- Masi, F.; Sarti, C.; Cincinelli, A.; Bresciani, R.; Martinuzzi, N.; Bernasconi, M.; Rizzo, A. Constructed Wetlands for the Treatment of Combined Sewer Overflow Upstream of Centralized Wastewater Treatment Plants. Ecol. Eng. 2023, 193, 107008. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Ma, Z.; Chen, J.; Akbar, J.; Zhang, S.; Che, C.; Zhang, M.; Cerdà, A. A review of preferential water flow in 396 soil science. Can. J. Soil Sci. 2018, 98, 604–618. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, H.; Xing, S. Soil infiltration properties affected by typical plant communities on steep gully slopes on the Loess Plateau of China. J. Hydrol. 2020, 590, 125535. [Google Scholar] [CrossRef]
- Menon, M.; Mawodza, T.; Rabbani, A.; Blaud, A.; Lair, G.J.; Babaei, M.; Kercheva, M.; Rousseva, S.; Banwart, S. Pore system characteristics of soil aggregates and their relevance to aggregate stability. Geoderma 2020, 366, 114259. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; López-Vicente, M.; Wu, G.L. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena 2019, 182, 104147. [Google Scholar] [CrossRef]
- Wu, G.L.; Liu, Y.; Yang, Z.; Cui, Z.; Deng, L.; Chang, X.F.; Shi, Z.H. Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. J. Hydrol. 2017, 546, 133–139. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Zhang, Z.; Tuo, D.; Xu, M. Effect of Root Architecture on Structural Stability and Erodibility of Topsoils during Concentrated Flow in Hilly Loess Plateau. Chin. Geogr. Sci. 2015, 25, 757–764. [Google Scholar] [CrossRef]
- Leung, A.K.; Garg, A.; Coo, J.L.; Ng, C.W.W.; Hau, B.C.H. Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity. Hydrol. Process. 2015, 29, 3342–3354. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, H.; Zhao, F.; Chen, C.; Liu, W.; Yang, B.; Zhang, W. Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Sci. Total Environ. 2020, 723, 138042. [Google Scholar] [CrossRef]
- Mitchell, A.R.; Ellsworth, T.R.; Meek, B.D. Effect of root systems on preferential flow in swelling soil. Commun. Soil Sci. Plant Anal. 1995, 26, 2655–2666. [Google Scholar] [CrossRef]
- Berg, G.; Köberl, M.; Rybakova, D.; Müller, H.; Grosch, R.; Smalla, K. Plant Microbial Diversity Is Suggested as the Key to Future Biocontrol and Health Trends. FEMS Microbiol. Ecol. 2017, 93, fix050. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Sun, J.; Li, S.; Ning, T.; Li, Z. Indirect Effects of Revegetation Dominate Groundwater Recharge Change at the Basin Scale. J. Clean Prod. 2024, 456, 142396. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z.; Li, P.; Ma, B.; Xiao, L.; Cui, Z.; Wang, Z.; Min, Z. Effect of Mixed Plant Roots on Saturated Hydraulic Conductivity and Saturated Water Content of Soil in the Loess Region. Agric. Water Manag. 2024, 295, 108784. [Google Scholar] [CrossRef]
- Xiao, T.; Li, P.; Fei, W.; Wang, J. Effects of Vegetation Roots on the Structure and Hydraulic Properties of Soils: A Perspective Review. Sci. Total Environ. 2024, 906, 167524. [Google Scholar] [CrossRef]
- Liao, Y.; Dong, L.; Li, A.; Lv, W.; Wu, J.; Zhang, H.; Bai, R.; Liu, Y.; Li, J.; Shangguan, Z.; et al. Soil Physicochemical Properties and Crusts Regulate the Soil Infiltration Capacity after Land-Use Conversions from Farmlands in Semiarid Areas. J. Hydrol. 2023, 626, 130283. [Google Scholar] [CrossRef]
- Ghestem, M.; Sidle, R.C.; Stokes, A. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability. Bioscience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Anderson, M.; Zhang, C.; Rötzer, T.; Pauleit, S. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green. 2019, 38, 22–32. [Google Scholar] [CrossRef]
Date | Rainfall Intensity (L/s·hm2) | Rainfall Duration (h) | Rainfall (mm) | Influent NO3-N Concentration (mg/L) | Influent NH3-N Concentration (mg/L) |
---|---|---|---|---|---|
13 August 2021 | 91.93 | 2 | 66.33 | 3.0 | 1.5 |
21 August 2021 | 70.72 | 3 | 76.52 | 3.0 | 1.5 |
29 August 2021 | 91.93 | 2 | 66.33 | 6.0 | 3.0 |
6 September 2021 | 70.72 | 3 | 76.52 | 6.0 | 3.0 |
14 September 2021 | 91.93 | 2 | 66.33 | 9.0 | 4.5 |
22 September 2021 | 70.72 | 3 | 76.52 | 9.0 | 4.5 |
Index | Total Root Length | Total Root Surface Area | Average Root Diameter | Total Root Volume |
---|---|---|---|---|
Total root length | 1 | 0.831 * | −0.982 ** | −0.753 |
Total root surface area | 0.831 * | 1 | −0.889 * | −0.339 |
Average root diameter | −0.982 ** | −0.889 * | 1 | 0.683 |
Total root volume | −0.753 | −0.339 | 0.683 | 1 |
Root Growth Direction | Root Morphology Traits | Principal Component | |||
---|---|---|---|---|---|
F1 | F2 | Comprehensive Score | Sort | ||
Horizontal | Root surface area | −0.072 | −0.065 | −0.072 | −0.065 |
Root length | −0.091 | −0.045 | −0.091 | −0.045 | |
Root volume | −0.083 | −0.053 | −0.083 | −0.053 | |
Root diameter | −0.268 | 0.378 | −0.268 | 0.378 | |
Inclined | Root surface area | 0.072 | −0.204 | 0.072 | −0.203 |
Root length | 0.006 | −0.138 | 0.006 | −0.138 | |
Root volume | −0.101 | 0.23 | −0.101 | 0.23 | |
Root diameter | −0.12 | 0.25 | −0.12 | 0.25 | |
Vertical | Root surface area | 0.281 | −0.161 | 0.281 | −0.161 |
Root length | 0.299 | −0.186 | 0.299 | −0.186 | |
Root volume | 0.305 | −0.191 | 0.305 | −0.191 | |
Root diameter | 0.191 | −0.061 | 0.192 | −0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Chen, L.; Gao, T. Effect of Green Infrastructure with Different Woody Plant Root Systems on the Reduction of Runoff Nitrogen. Water 2024, 16, 1628. https://doi.org/10.3390/w16111628
Zhang B, Chen L, Gao T. Effect of Green Infrastructure with Different Woody Plant Root Systems on the Reduction of Runoff Nitrogen. Water. 2024; 16(11):1628. https://doi.org/10.3390/w16111628
Chicago/Turabian StyleZhang, Bei, Liang Chen, and Taolve Gao. 2024. "Effect of Green Infrastructure with Different Woody Plant Root Systems on the Reduction of Runoff Nitrogen" Water 16, no. 11: 1628. https://doi.org/10.3390/w16111628
APA StyleZhang, B., Chen, L., & Gao, T. (2024). Effect of Green Infrastructure with Different Woody Plant Root Systems on the Reduction of Runoff Nitrogen. Water, 16(11), 1628. https://doi.org/10.3390/w16111628