An Extensive Analysis of Combined Processes for Landfill Leachate Treatment
Abstract
:1. Introduction
2. Methodology
3. Leachate from Landfill
- Aerobic stage;
- Anaerobic and acidogenic stage;
- Unstable methanogenic stage;
- Stable methanogenic stage.
4. Leachate Transfer
4.1. CO-Treating Landfill Leachate and Urban Wastewater
4.2. Recycling
5. Combined Treatment Processes
5.1. Chemical + Chemical Integrated Processes
5.2. Chemical + Physical Integrated Processes
5.3. Chemical + Biological Integrated Processes
5.4. Physical + Physical Integrated Processes
5.5. Physical + Chemical Integrated Processes
5.6. Physical + Biological Integrated Processes
5.7. Biological + Biological Integrated Processes
5.8. Biological + Chemical Integrated Processes
5.9. Biological + Physical Integrated Processes
6. Conclusions
- It was found that combining successive chemical processes was the most popular and widely used treatment.
- The most successful treatment processes were found to be a sequential combination of chemical treatments, followed by biological–physical treatment processes.
- In comparison to single treatment processes, the use of various combined treatments demonstrated an improvement in efficiency in terms of not only removing COD, TN, TDS, NH3-N, SS, color, turbidity, and heavy metals such as Ni, Cd, Mn, and Fe, but also in terms of process simplicity and sludge reduction.
- Compatible processes that showed higher efficiency in COD removal included MBR with NF (with removal rates reaching 99 ± 1%), Fenton with adsorption (with removal rates up to 99%), PF with biological treatment (with removal rates up to 98%), EF with biological treatment (with removal rates up to 97%), PEF with MBR (with removal rates up to 96.2%), and electrochemical with EF (with removal rates reaching 95.9 ± 0.4%).
- The compatible combination of the Fenton process with adsorption and the EC process with SPF showed improvements in biodegradability, with the BOD5/COD ratio increasing from 0.084 to 0.82 and from 0.35 to 0.75, respectively.
- The co-treatment of LL with wastewater using combined treatment processes has proven to be highly beneficial in terms of pollutant removal and treatment efficiency. Among the commonly employed co-treatment processes, the combination of the SBR with EC demonstrated exceptional performance. This integrated approach achieved remarkable removal efficiencies, with COD, TSS, ammonia, nitrate, and phosphate reaching levels as high as 98% and 99%, respectively. These findings underscore the effectiveness of co-treatment processes in addressing the challenges associated with landfill leachate and wastewater, leading to enhanced removal of pollutants and improved treatment outcomes.
- Countries with heavy rainfall, such as those with tropical Savanna, continental, and humid subtropical climates, tend to generate more waste compared to regions with humid continental, Mediterranean, and semi-arid climates.
- Croatia exhibits the highest waste generation levels, ranging from 1000 to 21,000 mg/L, attributed to its continental climate conditions.
- Significant concentrations of organic LL, measured as COD, were found in Morocco (COD = 22,000 mg/L), China (COD = 6880 ± 180 mg/L), and Algeria (COD = 3847.7 mg/L) for young, intermediate, and stabilized LL.
7. Recommendation
- The utilization of environmentally friendly technologies, such as solar energy, on an industrial scale, offers a cost-effective solution. By incorporating solar energy into industrial processes, businesses can reduce their environmental footprint while also benefiting from the economic advantages associated with renewable energy sources. This approach aligns with the principles of sustainability and promotes a cleaner and more sustainable industrial sector.
- The recovery and utilization of valuable substances from LL presents a significant opportunity for resource optimization. LL is rich in metal elements, making it a potential source for secondary resources. To fully harness this potential, it is crucial to focus on the advancement of scientifically grounded processes that enable efficient separation and enrichment of valuable substances present in LL. By doing so, we can capitalize on the extensive resources found within LL, consequently reducing the reliance on costly synthetic substances.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abuabdou, S.M.; Bashir, M.J.; Choon Aun, N.; Sethupathi, S. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012033. [Google Scholar] [CrossRef]
- Bilgili, M.; Demir, A.; Özkaya, B. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. J. Hazard. Mater. 2007, 143, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, Q.; Hua, T. Removal of organic matter from landfill leachate by advanced oxidation processes: A review. Int. J. Chem. Eng. 2010, 2010, 270532. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, R.; Al-Zghoul, T.M.; Khan, A.; Hussain, A.; Baarimah, A.O.; Arshad, M.A. Optimizing municipal solid waste management in urban Peshawar: A linear mathematical modeling and GIS approach for efficiency and sustainability. Case Stud. Chem. Environ. Eng. 2024, 9, 100704. [Google Scholar] [CrossRef]
- Fan, H.J.; Shu, H.Y.; Yang, H.S.; Chen, W.C. Characteristics of landfill leachates in central Taiwan. Sci. Total Environ. 2006, 361, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Wijekoon, P.; Koliyabandara, P.A.; Cooray, A.T.; Lam, S.S.; Athapattu, B.C.; Vithanage, M. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. J. Hazard. Mater. 2022, 421, 126627. [Google Scholar] [CrossRef] [PubMed]
- Genethliou, C.; Tatoulis, T.; Charalampous, N.; Dailianis, S.; Tekerlekopoulou, A.G.; Vayenas, D.V. Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. J. Environ. Manag. 2023, 330, 117129. [Google Scholar] [CrossRef]
- Swar, S.S.; Boonnorat, J.; Ghimire, A. Algae-based treatment of a landfill leachate pretreated by coagulation-flocculation. J. Environ. Manag. 2023, 342, 118223. [Google Scholar] [CrossRef] [PubMed]
- Jotin, R.; Ibrahim, S.; Halimoon, N. Electro coagulation for removal of chemical oxygen demand in sanitary landfill leachate. Int. J. Environ. Sci. 2012, 3, 921. [Google Scholar]
- Elleuch, L.; Messaoud, M.; Djebali, K.; Attafi, M.; Cherni, Y.; Kasmi, M.; Elaoud, A.; Trabelsi, I.; Chatti, A. A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J. Hazard. Mater. 2020, 382, 121119. [Google Scholar] [CrossRef]
- Bouchareb, R.; Isik, Z.; Ozay, Y.; Karagunduz, A.; Keskinler, B.; Dizge, N. A hybrid process for leachate wastewater treatment: Evaporation and reverse osmosis/sequencing batch reactor. Water Environ. Res. 2022, 94, e10717. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.N.; Lan, C.Q. Treatment of landfill leachate using membrane bioreactors: A review. Desalination 2012, 287, 41–54. [Google Scholar] [CrossRef]
- Abdelaal, F.B.; Rowe, R.K.; Islam, M.Z. Effect of leachate composition on the long-term performance of a HDPE geomembrane. Geotext. Geomembr. 2014, 42, 348–362. [Google Scholar] [CrossRef]
- Keyikoglu, R.; Karatas, O.; Rezania, H.; Kobya, M.; Vatanpour, V.; Khataee, A. A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep. Purif. Technol. 2021, 259, 118182. [Google Scholar] [CrossRef]
- Maiti, S.K.; De, S.; Hazra, T.; Debsarkar, A.; Dutta, A. Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite–a case study at Dhapa, Kolkata, India. Procedia Environ. Sci. 2016, 35, 391–399. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, X.; Chen, N.; Feng, C.; Wang, H.; Kuang, P.; Hu, W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Sci. Total Environ. 2020, 745, 140768. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.A.; Aziz; Bashir, M.J.K.; Mojiri, A. Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Glob. Nest J. 2015, 17, 1–13. [Google Scholar]
- Bashir, M.J.; Aziz, H.A.; Amr, S.S.A.; Sethupathi, S.A.P.; Ng, C.A.; Lim, J.W. The competency of various applied strategies in treating tropical municipal landfill leachate. Desalin. Water Treat. 2015, 54, 2382–2395. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ratnaweera, H.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Asakura, H. Treatment of landfill leachate with different techniques: An overview. Water Reuse 2021, 11, 66–96. [Google Scholar] [CrossRef]
- Hasar, H.; Unsal, S.A.; Ipek, U.; Karatas, S.; Cınar, O.; Yaman, C.; Kınacı, C. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. J. Hazard. Mater. 2009, 171, 309–317. [Google Scholar] [CrossRef]
- Assou, M.; El Fels, L.; El Asli, A.; Fakidi, H.; Souabi, S.; Hafidi, M. Landfill leachate treatment by a coagulation–flocculation process: Effect of the introduction order of the reagents. Desalin. Water Treat. 2016, 57, 21817–21826. [Google Scholar] [CrossRef]
- Fernandes, A.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal. B Environ. 2015, 176, 183–200. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Qiu, D.; Mao, J.; Zhang, H. Pilot-scale in situ treatment of landfill leachate using combined coagulation–flocculation, hydrolysis acidification, SBR and electro-Fenton oxidation. Environ. Technol. 2019, 40, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- Singa, P.K.; Isa, M.H.; Sivaprakash, B.; Ho, Y.C.; Lim, J.W.; Rajamohan, N. PAHs remediation from hazardous waste landfill leachate using fenton, photo–fenton and electro-fenton oxidation processes–performance evaluation under optimized conditions using RSM and ANN. Environ. Res. 2023, 231, 116191. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.A.; Galvão, R.B.; Júnior, V.A. Post-treatment of landfill leachate from Cianorte-PR by upward filtration in gravel followed by adsorption on granular activated carbon. Environ. Forum High. Paul. 2014, 10, 220–233. [Google Scholar]
- Contrera, R.C.; da Cruz Silva, K.C.; Morita, D.M.; Rodrigues, J.A.D.; Zaiat, M.; Schalch, V. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor. J. Environ. Manag. 2014, 145, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Pasalari, H.; Farzadkia, M.; Gholami, M.; Emamjomeh, M.M. Management of landfill leachate in Iran: Valorization, characteristics, and environmental approaches. Environ. Chem. Lett. 2019, 17, 335–348. [Google Scholar] [CrossRef]
- Wijerathna, W.S.M.S.K.; Lindamulla, L.M.L.K.B.; Nanayakkara, K.G.N.; Rathnayake, R.M.L.D.; Jegatheesan, V.; Jinadasa, K.B.S.N. Post-treatment of matured landfill leachate: Synthesis and evaluation of chitosan biomaterial based derivatives as adsorbents. Environ. Res. 2023, 218, 115018. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Zghoul, T.M.; Darwish, M.M. A comprehensive review of combined processes for olive mill wastewater treatments. Case Stud. Chem. Environ. Eng. 2023, 8, 100493. [Google Scholar] [CrossRef]
- Li, Q.; Cui, H.; Li, Y.; Song, X.; Liu, W.; Wang, Y.; Hou, H.; Zhang, H.; Li, Y.; Wang, F.; et al. Challenges and engineering application of landfill leachate concentrate treatment. Environ. Res. 2023, 231 Pt 1, 116028. [Google Scholar] [CrossRef]
- Mostafa, H.; Iqdiam, B.M.; Abuagela, M.; Marshall, M.R.; Pullammanappallil, P.; Goodrich-Schneider, R. Treatment of olive mill wastewater using High Power Ultrasound (HPU) and Electro-Fenton (EF) method. Chem. Eng. Process.-Process Intensif. 2018, 131, 131–136. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Ighalo, J.O.; Iwuozor, K.O.; Onukwuli, O.D.; Okoye, P.U.; Al-Rawajfeh, A.E. Prediction and optimisation of coagulation-flocculation process for turbidity removal from aquaculture effluent using Garcinia kola extract: Response surface and artificial neural network methods. Clean. Chem. Eng. 2022, 4, 100076. [Google Scholar] [CrossRef]
- Jegadeesan, C.; Somanathan, A.; Jeyakumar, R.B.; Godvin Sharmila, V. Combination of electrocoagulation with solar photo Fenton process for treatment of landfill leachate. Environ. Technol. 2022, 44, 4441–4459. [Google Scholar] [CrossRef] [PubMed]
- Tałałaj, I.A.; Bartkowska, I.; Biedka, P. Treatment of young and stabilized landfill leachate by integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100502. [Google Scholar]
- Al-Zghoul, T.M.; Al-Qodah, Z.; Al-Jamrah, A. Performance, Modeling, and Cost Analysis of Chemical Coagulation-Assisted Solar Powered Electrocoagulation Treatment System for Pharmaceutical Wastewater. Water 2023, 15, 980. [Google Scholar] [CrossRef]
- Al-Rawajfeh, A.E.; Jawabreh, B.; Ahmad, M. The Prophetic Speeches (Hadith) on Sciences and Scientists: Application of the “Text from Text and D+” Theory. J. Coll. Educ. Women 2023, 34, 1–19. [Google Scholar] [CrossRef]
- Grosser, A.; Neczaj, E.; Madela, M.; Celary, P. Ultrasound-assisted treatment of landfill leachate in a sequencing batch reactor. Water 2019, 11, 516. [Google Scholar] [CrossRef]
- Salem, Z.; Hamouri, K.; Djemaa, R.; Allia, K. Evaluation of landfill leachate pollution and treatment. Desalination 2008, 220, 108–114. [Google Scholar] [CrossRef]
- Schiopu, A.M.; Gavrilescu, M. Options for the treatment and management of municipal landfill leachate: Common and specific issues. CLEAN–Soil Air Water 2010, 38, 1101–1110. [Google Scholar] [CrossRef]
- Reinhart, D.R.; Townsend, T.G. Landfill Bioreactor Design & Operation; CRC: Boca Raton, FL, USA, 1997. [Google Scholar]
- Abbas, A.A.; Jingsong, G.; Ping, L.Z.; Ya, P.Y.; Al-Rekabi, W.S. Review on LandWll leachate treatments. J. Appl. Sci. Res. 2009, 5, 534–545. [Google Scholar]
- Miao, L.; Yang, G.; Tao, T.; Peng, Y. Recent advances in nitrogen removal from landfill leachate using biological treatments—A review. J. Environ. Manag. 2019, 235, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Badri Narayan, R.; Zargham, B.I.; Ngambia, A.; Riyanto, A.R. Economic and environmental impact analysis of ammoniacal nitrogen removal from landfill leachate using sequencing batch reactor: A case study from Czech Republic. J. Water Supply Res. Technol.—AQUA 2019, 68, 816–828. [Google Scholar] [CrossRef]
- Lema, J.M.; Mendez, R.; Blazquez, R. Characteristics of landfill leachates and alternatives for their treatment: A review. Water Air Soil Pollut. 1988, 40, 223–250. [Google Scholar] [CrossRef]
- Bove, D.; Merello, S.; Frumento, D.; Arni, S.A.; Aliakbarian, B.; Converti, A. A critical review of biological processes and technologies for landfill leachate treatment. Chem. Eng. Technol. 2015, 38, 2115–2126. [Google Scholar] [CrossRef]
- Cossu, R.; Raga, R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008, 28, 381–388. [Google Scholar] [CrossRef]
- Collivignarelli, C. II Trattamento del Percolato da Discarica RSU Situazioni e Prospettive; CIPA: Brescia, Italy, 1995. [Google Scholar]
- Shooshtari, A.A.; Amin, M.M.; Nabizadeh, R.; Jaafarzadeh, N. Treating municipal solid waste leachate in a pilot scale upflow anaerobic sludge blanket reactor under tropical temperature. Int. J. Environ. Health Eng. 2012, 1, 36–40. [Google Scholar]
- Torretta, V.; Ferronato, N.; Katsoyiannis, I.A.; Tolkou, A.K.; Airoldi, M. Novel and conventional technologies for landfill leachates treatment: A review. Sustainability 2016, 9, 9. [Google Scholar] [CrossRef]
- Christensen, T. (Ed.) Solid Waste Technology and Management; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Song, N.; Zhang, Q.; Wang, Y.; Gao, L.; Liu, S.; Yao, H.; Liu, R.; Xu, H. Investigation on molecular characteristics of organic compounds during a full-scale landfill leachate treatment process based on non-targeted analysis. Environ. Res. 2023, 238 Pt 2, 117258. [Google Scholar] [CrossRef] [PubMed]
- Orescanin, V.; Ruk, D.; Kollar, R.; Mikelic, I.L.; Nad, K.; Mikulic, N. A combined treatment of landfill leachate using calcium oxide, ferric chloride and clinoptilolite. J. Environ. Sci. Health 2011, 46, 323–328. [Google Scholar] [CrossRef]
- Top, S.; Sekman, E.; Hoşver, S.; Bilgili, M.S. Characterization and electrocaogulative treatment of nanofiltration concentrate of a full-scale landfill leachate treatment plant. Desalination 2011, 268, 158–162. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Aziz, H.A.; Yusoff, M.S.; Bashir, M.J. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. J. Hazard. Mater. 2011, 189, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, S.; Ye, X.; Chen, D.; Zheng, K.; Qin, F. Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology. Process Saf. Environ. Prot. 2011, 89, 112–120. [Google Scholar] [CrossRef]
- Orkun, M.O.; Kuleyin, A. Treatment performance evaluation of chemical oxygen demand from landfill leachate by electro-coagulation and electro-fenton technique. Environ. Prog. Sustain. Energy 2012, 31, 59–67. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, L.; Zhang, D.; Qing, H. Treatment of landfill leachate by internal microelectrolysis and sequent Fenton process. Desalin. Water Treat. 2012, 47, 243–248. [Google Scholar] [CrossRef]
- Amr, S.S.A.; Aziz, H.A.; Adlan, M.N.; Bashir, M.J. Pretreatment of stabilized leachate using ozone/persulfate oxidation process. Chem. Eng. J. 2013, 221, 492–499. [Google Scholar] [CrossRef]
- Moravia, W.G.; Amaral, M.C.; Lange, L.C. Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system. Waste Manag. 2013, 33, 89–101. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Matar, F.; Hashisho, J. Combined coagulation–flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: Experimental kinetics and chemical oxygen demand fractionation. J. Air Waste Manag. Assoc. 2013, 63, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Campagna, M.; Çakmakcı, M.; Yaman, F.B.; Özkaya, B. Molecular weight distribution of a full-scale landfill leachate treatment by membrane bioreactor and nanofiltration membrane. Waste Manag. 2013, 33, 866–870. [Google Scholar] [CrossRef]
- Abood, A.R.; Bao, J.; Du, J.; Zheng, D.; Luo, Y. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration. Waste Manag. 2014, 34, 439–447. [Google Scholar] [CrossRef]
- Güneş, E. Seasonal Characterization of Landfill Leachate and Effect of Seasonal Variations on Treatment Processes of Coagulation/Flocculation and Adsorption. Pol. J. Environ. Stud. 2014, 23, 1155–1163. [Google Scholar]
- Moradi, M.; Ghanbari, F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: Biodegradability improvement. J. Water Process Eng. 2014, 4, 67–73. [Google Scholar] [CrossRef]
- Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Mater. 2015, 286, 261–268. [Google Scholar] [CrossRef]
- Košutić, K.; Dolar, D.; Strmecky, T. Treatment of landfill leachate by membrane processes of nanofiltration and reverse osmosis. Desalin. Water Treat. 2015, 55, 2680–2689. [Google Scholar] [CrossRef]
- Bakraouy, H.; Souabi, S.; Digua, K.; Dkhissi, O.; Sabar, M.; Fadil, M. Optimization of the treatment of an anaerobic pretreated landfill leachate by a coagulation–flocculation process using experimental design methodology. Process Saf. Environ. Prot. 2017, 109, 621–630. [Google Scholar] [CrossRef]
- Rasool, M.A.; Tavakoli, B.; Chaibakhsh, N.; Pendashteh, A.R.; Mirroshandel, A.S. Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecol. Eng. 2016, 90, 431–437. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Jardak, K.; Drogui, P.; Brar, S.K.; Buelna, G.; Dubé, R. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. J. Environ. Manag. 2016, 184, 318–326. [Google Scholar] [CrossRef]
- Azari, M.; Walter, U.; Rekers, V.; Gu, J.D.; Denecke, M. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm. Chemosphere 2017, 174, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Klauck, C.R.; Giacobbo, A.; de Oliveira, E.D.L.; da Silva, L.B.; Rodrigues, M.A.S. Evaluation of acute toxicity, cytotoxicity and genotoxicity of landfill leachate treated by biological lagoon and advanced oxidation processes. J. Environ. Chem. Eng. 2017, 5, 6188–6193. [Google Scholar] [CrossRef]
- Klein, K.; Kivi, A.; Dulova, N.; Zekker, I.; Mölder, E.; Tenno, T.; Trapido, M.; Tenno, T. A pilot study of three-stage biological–chemical treatment of landfill leachate applying continuous ferric sludge reuse in Fenton-like process. Clean Technol. Environ. Policy 2017, 19, 541–551. [Google Scholar] [CrossRef]
- Hassan, M.; Pous, N.; Xie, B.; Colprim, J.; Balaguer, M.D.; Puig, S. Influence of iron species on integrated microbial fuel cell and electro-Fenton process treating landfill leachate. Chem. Eng. J. 2017, 328, 57–65. [Google Scholar] [CrossRef]
- Ye, Z.L.; Hong, Y.; Pan, S.; Huang, Z.; Chen, S.; Wang, W. Full-scale treatment of landfill leachate by using the mechanical vapor recompression combined with coagulation pretreatment. Waste Manag. 2017, 66, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.; Argun, M.E. Removal of PAHs from leachate using a combination of chemical precipitation and Fenton and ozone oxidation. Water Sci. Technol. 2018, 78, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Donneys-Victoria, D.; Marriaga-Cabrales, N.; Camargo-Amado, R.J.; Machuca-Martinez, F.; Peralta-Hernandez, J.M.; Martinez-Huitle, C.A. Treatment of landfill leachate by a combined process: Iron electrodissolution, iron oxidation by H2O2 and chemical flocculation. Sustain. Environ. Res. 2018, 28, 12–19. [Google Scholar] [CrossRef]
- Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, R.; Moraes Costa, A.; de Almeida Oroski, F.; Carbonelli Campos, J. Evaluation of coagulation–flocculation and nanofiltration processes in landfill leachate treatment. J. Environ. Sci. Health 2019, 54, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.; Niveditha, S.V.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V. Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process. Waste Manag. 2020, 106, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhuo, X.; He, C.; Shi, Q.; Li, Q. Molecular investigation into the transformation of dissolved organic matter in mature landfill leachate during treatment in a combined membrane bioreactor-reverse osmosis process. J. Hazard. Mater. 2020, 397, 122759. [Google Scholar] [CrossRef] [PubMed]
- Kwarciak-Kozłowska, A.; Fijałkowski, K.L. Efficiency assessment of municipal landfill leachate treatment during advanced oxidation process (AOP) with biochar adsorption (BC). J. Environ. Manag. 2021, 287, 112309. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhang, C.; Yang, X.; Zhou, T.; Yang, S. Combining chemical coagulation with activated coke adsorption to remove organic matters and retain nitrogen compounds in mature landfill leachate. Environ. Technol. 2021, 42, 3487–3495. [Google Scholar] [CrossRef]
- Viegas, C.; Nobre, C.; Mota, A.; Vilarinho, C.; Gouveia, L.; Gonçalves, M. A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae. J. Environ. Chem. Eng. 2021, 9, 105187. [Google Scholar] [CrossRef]
- Chaouki, Z.; Hadri, M.; Nawdali, M.; Benzina, M.; Zaitan, H. Treatment of a landfill leachate from Casablanca city by a coagulation-flocculation and adsorption process using a palm bark powder (PBP). Sci. Afr. 2021, 12, e00721. [Google Scholar] [CrossRef]
- Shadi, A.M.H.; Kamaruddin, M.A.; Niza, N.M.; Emmanuel, M.I.; Ismail, N.; Hossain, S. Effective removal of organic and inorganic pollutants from stabilized sanitary landfill leachate using a combined Fe2O3 nanoparticles/electroflotation process. J. Water Process Eng. 2021, 40, 101988. [Google Scholar] [CrossRef]
- Le, T.S.; Dang, N.M.; Tran, D.T. Performance of coupling electrocoagulation and biofiltration processes for the treatment of leachate from the largest landfill in Hanoi, Vietnam: Impact of operating conditions. Sep. Purif. Technol. 2021, 255, 117677. [Google Scholar] [CrossRef]
- Brasil, Y.L.; Silva, A.F.; Gomes, R.F.; Amaral, M.C. Technical and economic evaluation of the integration of membrane bioreactor and air-stripping/absorption processes in the treatment of landfill leachate. Waste Manag. 2021, 134, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.N.F.; Abdul Aziz, H.; Mohamad, M. Comparison performance of coagulation flocculation process and combination with ozonation process of stabilized landfill leachate treatment. Water Environ. Res. 2022, 94, e10770. [Google Scholar] [CrossRef] [PubMed]
- Elfilali, N.; Elazhar, F.; Dhiba, D.; Elmidaoui, A.; Taky, M. Performances of various hybrids systems coagulation–ultrafiltration/nanofiltration-reverse osmosis in the treatment of stabilized landfill leachate. Desalin. Water Treat. 2022, 257, 55–63. [Google Scholar] [CrossRef]
- De, S.; Hazra, T.; Dutta, A. Application of integrated sequence of air stripping, coagulation flocculation, electrocoagulation and adsorption for sustainable treatment of municipal landfill leachate. Clean. Waste Syst. 2022, 3, 100033. [Google Scholar] [CrossRef]
- Kumar, R.N.; Sadaf, S.; Verma, M.; Chakraborty, S.; Kumari, S.; Polisetti, V.; Kallem, P.; Iqbal, J.; Banat, F. Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant. Sustainability 2023, 15, 8205. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, H.; Zhang, X.; Zhou, D. Treatment of landfill leachate using electrochemically assisted UV/chlorine process: Effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis. Chem. Eng. J. 2016, 286, 508–516. [Google Scholar] [CrossRef]
- Majlesi, M.; Yazdanbakhsh, A.R.; Jabbari, V.; Sheikhmohammadi, A. Landfill leachate treatment using electro-coagulation-flotation process. Adv. Environ. Biol. 2015, 9, 167–173. [Google Scholar]
- Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation–flocculation/photo Fenton treatment. J. Hazard. Mater. 2012, 205, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Pedro-Cedillo, S.; Méndez-Novelo, R.I.; Rojas-Valencia, M.N.; Barceló-Quintal, M.; Castillo-Borges, E.R.; Sauri-Riancho, M.R.; Marrufo-Gómez, J.M. Evaluation of adsorption and Fenton-adsorption processes for landfill leachate treatment. Rev. Mex. Ing. Química 2015, 14, 745–755. [Google Scholar]
- Al-Wabel, M.I.; Al Yehya, W.S.; Al-Farraj, A.S.; El-Maghraby, S.E. Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. J. Saudi Soc. Agric. Sci. 2011, 10, 65–70. [Google Scholar] [CrossRef]
- Nivya, T.K.; Pieus, T.M. Comparison of Photo ElectroFenton Process (PEF) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate. Procedia Technol. 2016, 24, 224–231. [Google Scholar] [CrossRef]
- Bhagawan, D.; Poodari, S.; Chaitanya, N.; Ravi, S.; Rani, Y.M.; Himabindu, V.; Vidyavathi, S. Industrial solid waste landfill leachate treatment using electrocoagulation and biological methods. Desalin. Water Treat. 2017, 68, 137–142. [Google Scholar] [CrossRef]
- Silveira, J.E.; Zazo, J.A.; Pliego, G.; Casas, J.A. Landfill leachate treatment by sequential combination of activated persulfate and Fenton oxidation. Waste Manag. 2018, 81, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Poblete, R.; Pérez, N. Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate. J. Environ. Manag. 2020, 253, 109697. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Pang, Y.; Li, X.; Chen, F.; Liao, X.; Lei, M.; Song, Y. Landfill leachate treatment by coagulation/flocculation combined with microelectrolysis-Fenton processes. Environ. Technol. 2019, 40, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhu, Z.; Chang, H.; Fan, G.; Wang, Q.; Fu, X.; Qu, F.; Liang, H. Integrated membrane electrochemical reactor-membrane distillation process for enhanced landfill leachate treatment. Water Res. 2023, 230, 119559. [Google Scholar] [CrossRef]
- El Mrabet, I.; Nawdali, M.; Rafqah, S.; Valdés, H.; Benzina, M.; Zaitan, H. Low-cost biomass for the treatment of landfill leachate from Fez City: Application of a combined coagulation–adsorption process. Euro-Mediterr. J. Environ. Integr. 2020, 5, 63. [Google Scholar] [CrossRef]
- Tezcan Un, U.; Filik Iscen, C.; Oduncu, E.; Akcal Comoglu, B.; Ilhan, S. Treatment of landfill leachate using integrated continuous electrocoagulation and the anaerobic treatment technique. Environ. Prog. Sustain. Energy 2018, 37, 1668–1676. [Google Scholar] [CrossRef]
- Lu, W.; Lei, S.; Chen, N.; Feng, C. Research on two-step advanced treatment of old landfill leachate by sequential electrochemical peroxidation-electro-Fenton process. Chem. Eng. J. 2023, 451, 138746. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Liu, Y.; Lian, Y.; Meng, L.; Su, Z. Removing refractory organic matter from nanofiltration concentrated landfill leachate by electrooxidation combined with electrocoagulation: Characteristics and implication for leachate management. J. Water Process Eng. 2022, 47, 102747. [Google Scholar] [CrossRef]
- Vilar, V.J.; Rocha, E.M.; Mota, F.S.; Fonseca, A.; Saraiva, I.; Boaventura, R.A. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Res. 2011, 45, 2647–2658. [Google Scholar] [CrossRef] [PubMed]
- Cheibub, A.F.; Campos, J.C.; Da Fonseca, F.V. Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process. J. Environ. Sci. Health 2014, 49, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Van Tuyen, T. Treatment of organic compounds of landfill leachate in Vietnam by combining coagulation and ozonation process. Am. J. Environ. Sci. 2013, 9, 518. [Google Scholar]
- Boumechhour, F.; Rabah, K.; Lamine, C.; Said, B.M. Treatment of landfill leachate using F enton process and coagulation/flocculation. Water Environ. J. 2013, 27, 114–119. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Q. Electrochemical treatment of solid waste Leachate using combined electrocoagulation and electrochemical oxidation treatment. Int. J. Electrochem. Sci. 2022, 17, 220820. [Google Scholar] [CrossRef]
- Mojiri, A.; Aziz, H.A.; Aziz, S.Q. Trends in physical-chemical methods for landfill leachate treatment. Int. J. Sci. Res. Environ. 2013, 1, 16–25. [Google Scholar] [CrossRef]
- Diamadopoulos, E.; Samaras, P.; Dabou, X.; Sakellaropoulos, G.P. Combined treatment of landfill leachate and domestic sewage in a sequencing batch reactor. Water Sci. Technol. 1997, 36, 61–68. [Google Scholar] [CrossRef]
- Abdulhussain, A.A.; Guo, J.; Liu, Z.P.; Pan, Y.Y.; Wisaam, S. Review on landfill leachate treatments. Am. J. Appl. Sci. 2009, 6, 672–684. [Google Scholar]
- Gao, J.; Oloibiri, V.; Chys, M.; Audenaert, W.; Decostere, B.; He, Y.; Van Langenhove, H.; Demeestere, K.; Van Hulle, S.W. The present status of landfill leachate treatment and its development trend from a technological point of view. Rev. Environ. Sci. Bio/Technol. 2015, 14, 93–122. [Google Scholar] [CrossRef]
- Mojiri, A.; Aziz, H.A.; Zaman, N.Q.; Aziz, S.Q.; Zahed, M.A. Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalin. Water Treat. 2016, 57, 2819–2833. [Google Scholar] [CrossRef]
- Mojiri, A.; Ziyang, L.; Hui, W.; Ahmad, Z.; Tajuddin, R.M.; Amr, S.S.A.; Kindaichi, T.; Aziz, H.A.; Farraji, H. Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Process Saf. Environ. Prot. 2017, 111, 253–262. [Google Scholar] [CrossRef]
- Lippi, M.; Ley, M.B.R.G.; Mendez, G.P.; Junior, R.A.F.C. State of art of landfill leachate treatment: Literature review and critical evaluation. Ciência Nat. 2018, 40, e78. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mohanty, P.K.; Iqbal, J.; Kumar, R.N. Can electrocoagulation be an effective post-treatment option for SBR treated landfill leachate and municipal wastewater mixture? J. Water Sanit. Hyg. Dev. 2020, 10, 86–95. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Abubakar, S.; Hassan, I.; Zubairu, I.; Umaru, I.; Abdurrasheed, A.S.; Adam, A.A.; Ghaleb, A.A.S.; et al. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Ibrahim, A.M.; Al-Sulaiman, A.M.; Okasha, R.A. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng. J. 2023, 15, 102293. [Google Scholar] [CrossRef]
- Verma, M.; Chakraborty, S.; Kumari, S.; Gupta, A.; Kumar, D.; Iqbal, J.; Banu, J.R.; Pugazhendi, A.; Kumar, R.N. Co-treatment of stabilized landfill leachate and municipal wastewater in a granular activated carbon-sequencing batch reactor (GAC-SBR). Process Saf. Environ. Prot. 2023, 174, 424–432. [Google Scholar] [CrossRef]
- Baun, D.L.; Christensen, T.H. Speciation of heavy metals in landfill leachate: A review. Waste Manag. Res. 2004, 22, 3–23. [Google Scholar] [CrossRef]
- Mojiri, A.; Ziyang, L.; Tajuddin, R.M.; Farraji, H.; Alifar, N. Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. J. Environ. Manag. 2016, 166, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Flórez, E.; Cardona-Gallo, S.A. Technologies applicable to the removal of heavy metals from landfill leachate. Environ. Sci. Pollut. Res. 2019, 26, 15725–15753. [Google Scholar] [CrossRef]
- Warith, M.; Li, X.; Jin, H. Bioreactor landfills: State-of-the-art review. Emir. J. Eng. Res. 2005, 10, 1–14. [Google Scholar]
- Zhang, G.; Liu, K.; Lv, L.; Gao, W.; Li, W.; Ren, Z.; Yan, W.; Wang, P.; Liu, X.; Sun, L. Enhanced landfill process based on leachate recirculation and micro-aeration: A comprehensive technical, environmental, and economic assessment. Sci. Total Environ. 2023, 857, 159535. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawajfeh, A.E. A Conjecture from Collatz Conjecture: Elevation by Folding. Gen. Lett. Math. (GLM) 2023, 13, 1–4. [Google Scholar] [CrossRef]
- Feng, S.; Fu, W.; Zhou, A.; Lyu, F. A coupled hydro-mechanical-biodegradation model for municipal solid waste in leachate recirculation. Waste Manag. 2019, 98, 81–91. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; Pérez, M.; Romero, L.I. Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis. Chem. Eng. J. 2013, 232, 59–64. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Lee, H.; Coulon, F.; Beriro, D.J.; Wagland, S.T. Recovering metal (loids) and rare earth elements from closed landfill sites without excavation: Leachate recirculation opportunities and challenges. Chemosphere 2022, 292, 133418. [Google Scholar] [CrossRef]
- Huang, T.; Tang, Y.; Sun, Y.; Zhang, C.; Ma, X. Life cycle environmental and economic comparison of thermal utilization of refuse derived fuel manufactured from landfilled waste or fresh waste. J. Environ. Manag. 2022, 304, 114156. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Influence of moisture content and leachate recirculation on oxygen consumption and waste stabilization in post aeration phase of landfill operation. Sci. Total Environ. 2021, 773, 145584. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. An overview of landfill leachate treatment via activated carbon adsorption process. J. Hazard. Mater. 2009, 171, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, T.; Wang, H.; Yang, K.; Fang, C.; Lv, B.; Yang, X. Study on treating old landfill leachate by Ultrasound–Fenton oxidation combined with MAP chemical precipitation. Chem. Speciat. Bioavailab. 2015, 27, 175–182. [Google Scholar] [CrossRef]
- Tejera, J.; Hermosilla, D.; Gascó, A.; Miranda, R.; Alonso, V.; Negro, C.; Blanco, Á. Treatment of mature landfill leachate by electrocoagulation followed by Fenton or UVA-LED photo-Fenton processes. J. Taiwan Inst. Chem. Eng. 2021, 119, 33–44. [Google Scholar] [CrossRef]
- Chen, L.; Li, F.; He, F.; Mao, Y.; Chen, Z.; Wang, Y.; Cai, Z. Membrane distillation combined with electrocoagulation and electrooxidation for the treatment of landfill leachate concentrate. Sep. Purif. Technol. 2022, 291, 120936. [Google Scholar] [CrossRef]
- de Almeida, R.; Campos, J.; de Oroski, F. Techno-economic evaluation of landfill leachate treatment by hybrid lime application and nanofiltration process. Multidiscip. J. Waste Resour. Residues 2020, 10, 170–181. [Google Scholar]
- Kulikowska, D.; Zielińska, M.; Konopka, K. Treatment of stabilized landfill leachate in an integrated adsorption–fine-ultrafiltration system. Int. J. Environ. Sci. Technol. 2019, 16, 423–430. [Google Scholar] [CrossRef]
- Amaral, M.C.S.; Pereira, H.V.; Nani, E.; Lange, L.C. Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process. Water Sci. Technol. 2015, 72, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, Y.; Bouzid, J.; Sayadi, S. Combination of air stripping and biological processes for landfill leachate treatment. Environ. Eng. Res. 2020, 25, 80–87. [Google Scholar] [CrossRef]
- Yu, T.; Huang, T.; Pan, Y.X.; Yang, L.H. The Experimental Study on Landfill Leachate Treatment by Coagulation-Sedimentation+ Electro-Oxidation Joint Reactor. Appl. Mech. Mater. 2013, 295, 1472–1477. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Singh, D.; Xue, W.; Avtar, R.; Othman, M.H.D.; Hwang, G.H.; Setiadi, T.; Albadarin, A.B.; Shirazian, S. Resource recovery toward sustainability through nutrient removal from landfill leachate. J. Environ. Manag. 2021, 287, 112265. [Google Scholar] [CrossRef] [PubMed]
- Aluko, O.O.; Sridhar, M.K. Evaluation of leachate treatment by trickling filter and sequencing batch reactor processes in Ibadan, Nigeria. Waste Manag. Res. 2013, 31, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.; Zhang, P.; Wu, Y.; Gou, X.; Song, Y.; Tian, Z.; Zeng, G. Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: Pollutant removal performances and microbial community. Bioresour. Technol. 2017, 243, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manag. 2011, 92, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Ishak, A.R.; Hamid, F.S.; Mohamad, S.; Tay, K.S. Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process. Waste Manag. 2018, 76, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo, L.P.; Arana, V.A.; Trilleras, J.; Barros, G.E.; González-Solano, A.J.; Maury-Ardila, H. Efficiency of combined processes coagulation/solar photo Fenton in the treatment of landfill leachate. Water 2019, 11, 1351. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Murshid, A.; Chanikya, P. Combination of electrochemically activated persulfate process and electro-coagulation for the treatment of municipal landfill leachate with low biodegradability. Chemosphere 2023, 338, 139449. [Google Scholar] [CrossRef] [PubMed]
- Gandhimathi, R.; Durai, N.J.; Nidheesh, P.V.; Ramesh, S.T.; Kanmani, S. Use of combined coagulation-adsorption process as pretreatment of landfill leachate. Iran. J. Environ. Health Sci. Eng. 2013, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, B.; Owete, O.; Dertien, J.; Lin, C.; Ahmad, H.; Chen, G. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration. Water Environ. Res. 2017, 89, 2015–2020. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, J.; Fang, F. Transformation and fluorescence spectroscopy of dissolved organic matter (dom) in landfill leachate treated by combined process. Environ. Eng. Manag. J. (EEMJ) 2011, 10, 913–918. [Google Scholar] [CrossRef]
- Djelal, H.; Lelievre, Y.; Ricordel, C. Combination of Electro-Coagulation and biological treatment by bioaugmentation for landfill leachate. Desalin. Water Treat. 2015, 54, 2986–2993. [Google Scholar] [CrossRef]
- Baiju, A.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate. J. Environ. Manag. 2018, 210, 328–337. [Google Scholar] [CrossRef]
- Colombo, A.; Módenes, A.N.; Trigueros, D.E.G.; da Costa, S.I.G.; Borba, F.H.; Espinoza-Quiñones, F.R. Treatment of sanitary landfill leachate by the combination of photo-Fenton and biological processes. J. Clean. Prod. 2019, 214, 145–153. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M.; Deng, Q.; Cai, T. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination 2017, 420, 99–105. [Google Scholar] [CrossRef]
- Zielińska, M.; Kulikowska, D.; Stańczak, M. Adsorption–Membrane process for treatment of stabilized municipal landfill leachate. Waste Manag. 2020, 114, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Nazia, S.; Sahu, N.; Jegatheesan, V.; Bhargava, S.K.; Sridhar, S. Integration of ultrafiltration membrane process with chemical coagulation for proficient treatment of old industrial landfill leachate. Chem. Eng. J. 2021, 412, 128598. [Google Scholar] [CrossRef]
- Zhang, D.B.; Wu, X.G.; Wang, Y.S.; Zhang, H. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process. Chem. Pap. 2014, 68, 782–787. [Google Scholar] [CrossRef]
- Oumar, D.; Patrick, D.; Gerardo, B.; Rino, D.; Ihsen, B.S. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate. J. Environ. Manag. 2016, 181, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.J.; Bashir, M.J.; Ng, C.A.; Sethupathi, S.; Lim, J.W. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. J. Environ. Manag. 2018, 205, 244–252. [Google Scholar] [CrossRef]
- Ai, J.; Wu, X.; Wang, Y.; Zhang, D.; Zhang, H. Treatment of landfill leachate with combined biological and chemical processes: Changes in the dissolved organic matter and functional groups. Environ. Technol. 2019, 40, 2225–2231. [Google Scholar] [CrossRef]
- Abd Hamid, M.A.; Aziz, H.A.; Yusoff, M.S.; Rezan, S.A. A continuous clinoptilolite augmented SBR-electrocoagulation process to remove concentrated ammonia and colour in landfill leachate. Environ. Technol. Innov. 2021, 23, 101575. [Google Scholar] [CrossRef]
- Lim, C.K.; Seow, T.W.; Neoh, C.H.; Md Nor, M.H.; Ibrahim, Z.; Ware, I.; Mat Sarip, S.H. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. 3 Biotech 2016, 6, 195. [Google Scholar] [CrossRef]
- Silva, N.C.M.; Moravia, W.G.; Amaral, M.C.S.; Figueiredo, K.C.S. Evaluation of fouling mechanisms in nanofiltration as a polishing step of yeast MBR-treated landfill leachate. Environ. Technol. 2018, 40, 3611–3621. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Englehardt, J.D. Treatment of landfill leachate by the Fenton process. Water Res. 2006, 40, 3683–3694. [Google Scholar] [CrossRef]
- Nabi, M.; Gao, D.; Liang, H.; Cheng, L.; Yang, W.; Li, Y. Landfill leachate treatment by graphite engineered anaerobic membrane bioreactor: Performance enhancement and membrane fouling mitigation. Environ. Res. 2022, 214, 114010. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Zghoul, T.; Baarimah, A.O.; Al-Karablieh, E. A Bibliometric Analysis of Olive Mill Wastewater Treatment Methods from 1988 to 2023. Case Stud. Chem. Environ. Eng. 2024, 9, 100736. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, K.; Peng, C.; Chen, W. Characterization and treatment of landfill leachate: A review. Water Res. 2021, 203, 117525. [Google Scholar] [CrossRef] [PubMed]
- Al-Qodah, Z.; Al-Bsoul, A.; Assirey, E.; Al-Shannag, M. Combined ultrasonic irradiation and aerobic biodegradation treatment for olive mills wastewaters. Environ. Eng. Manag. J. (EEMJ) 2014, 13, 2109–2118. [Google Scholar]
- Faraj, H.; Jamrah, A.; Al-Omari, S.; Al-Zghoul, T.M. Optimization of an electrocoagulation-assisted adsorption treatment system for dairy wastewater. Case Stud. Chem. Environ. Eng. 2024, 9, 100574. [Google Scholar] [CrossRef]
- Rana, R.; Ganguly, R.; Gupta, A.K. Indexing method for assessment of pollution potential of leachate from non-engineered landfill sites and its effect on ground water quality. Environ. Monit. Assess. 2018, 190, 46. [Google Scholar] [CrossRef]
- Sharma, A.; Ganguly, R.; Kumar Gupta, A. Impact assessment of leachate pollution potential on groundwater: An indexing method. J. Environ. Eng. 2020, 146, 05019007. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Zghoul, T.M.; Jamrah, A. The performance of pharmaceutical wastewater treatment system of electrocoagulation assisted adsorption using perforated electrodes to reduce passivation. Environ. Sci. Pollut. Res. 2024, 31, 20434–20448. [Google Scholar] [CrossRef] [PubMed]
- Bin Mokaizh, A.A.; Shariffuddin, J.H.; Baarimah, A.O.; Al-Fakih, A.; Mohamed, A.; Baarimah, S.O.; Al-Mekhlafi, A.B.A.; Alenezi, H.; Olalere, O.A.; Saeed, A.A.H. Elucidating the Effects of Reaction Time on the Physicochemical Characterization of Valorized Synthesized Alumina. Materials 2022, 15, 3046. [Google Scholar] [CrossRef] [PubMed]
- Al-Qodah, Z.; Dweiri, R.; Khader, M.; Al-Sabbagh, S.; Al-Shannag, M.; Qasrawi, S.; Al-Halawani, M. Processing and characterization of magnetic composites of activated carbon, fly ash, and beach sand as adsorbents for Cr (VI) removal. Case Stud. Chem. Environ. Eng. 2023, 7, 100333. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Shannag, M. Separation of yeast cells from aqueous solutions using magnetically stabilized fluidized beds. Lett. Appl. Microbiol. 2006, 43, 652–658. [Google Scholar] [CrossRef]
Type of Leachate | Young | Intermediate | Stabilized |
---|---|---|---|
Age (years) | <5 | 5–10 | >10 |
pH | <6.5 | 6.5–7.5 | >7.5 |
COD (mg/L) | >10,000 | 4000–10,000 | <4000 |
BOD5/COD | 0.5–1.0 | 0.1–0.5 | <0.1 |
Ammonia nitrogen (mg/L) | <400 | NA | >400 |
TOC/COD | <0.3 | 0.3–0.5 | >0.5 |
Heavy metals | Low to medium | Low | Low |
Biodegradability | High | Medium | Low |
Kjeldahl nitrogen (g/L) | 0.1–0.2 | NA | NA |
Organic compound | 80% VFA | (5–30%) HA + FA + VFA | HA + FA |
Country | Climate Conditions | Waste Generation (m3/d) | Amount of Waste Deposited in Landfill (tones/day) | Year of Waste Assessment | Ref. |
---|---|---|---|---|---|
Koprivnica, Croatia | Alluvial depression with a reductive aquifer, and high iron content | 320 | - | 2011 | [52] |
Istanbul, Turkey | Humid subtropical | - | 2000 | 2010 | [53] |
Kulim, Kedah, Malaysia | Humid tropical | - | 240 | 2009–2010 | [54] |
Jiangmen, Guangdong Province, PR China | Humid subtropical | 150–200 | 750 | 2011 | [55] |
Samsun, Turkey | Humid subtropical | - | 400 | 2012 | [56] |
Wuhan, China | Humid subtropical | - | 800 | 2012 | [57] |
Penang, Malaysia | Hot and humid | - | 2200 | 2011 | [58] |
Belo Horizonte/MG, Brazil | Tropical Savanna | - | 4200 | 2009 | [59] |
Beirut, Lebanon | Mediterranean | - | 200 | 2013 | [60] |
Odayeri, Istanbul, Turkey | Moderate | 2000 | - | 2013 | [61] |
Chang Shankou, China | Humid subtropical | 400–500 | 2800 | 2014 | [62] |
Çorlu, Tekirdağ, Turkey | Between Mediterranean and humid subtropical | - | 110 | 2014 | [63] |
Tehran, Iran | Semi-arid | - | 3500 | 2014 | [64] |
Vila Real, Portugal | Mediterranean | - | 205.48 | 2015 | [65] |
Zagreb, Croatia | Continental | 1000–21,000 | 800 | 2015 | [66] |
Rebat, Morocco | Mediterranean with influences from the Atlantic Ocean | - | 700 | 2017 | [67] |
Guilan Province, Iran | Humid subtropical | - | 500 | 2016 | [68] |
Quebéc, Canada | Humid continental | 100 | 180 | 2016 | [69] |
Herten, Germany | Temperate Maritime | - | 746.73 | 2017 | [70] |
Vale dos Sinos, Brazil | Humid subtropical | - | 220 | 2017 | [71] |
Tallinn, Estonia | Humid continental | 16.67–83.33 | - | 2014–2015 | [72] |
Shanghai, China | Humid subtropical | 3000 | 10,000 | 2017 | [73] |
Dongguan, China | Humid subtropical | 315–400 | 1000 | 2017 | [74] |
Konya province, Turkey | Semi-arid | 150 | - | 2018 | [75] |
Bucaramanga, Colombia | Tropical monsoon with relatively consistent temperatures throughout the year | - | 734.3 | 2017 | [76] |
Wuhan, China | Humid subtropical | 400 | 2000 | 2019 | [77] |
Rio de Janeiro, Brazil | Tropical Savanna | 1000 | 10,000 | 2019 | [78] |
Ariyamangalam, India | Tropical Savanna | - | 400–600 | 2020 | [79] |
Southwest China | Humid subtropical | 2000 | 3527.4 | 2020 | [80] |
Silesia, Poland | Humid continental | 60 | 355 | 2021 | [81] |
Nantong Jiangsu Province, China | Humid subtropical | - | 800–1000 | 2021 | [82] |
Setúbal, Portugal | Mediterranean | 81.6 | 273.97 | 2021 | [83] |
Mediouna, Casablanca (Morocco) | Mediterranean with influences from the Atlantic Ocean | - | 3500 | 2021 | [84] |
Penang, Malaysia | Tropical rainforest with consistently high temperatures and abundant rainfall throughout the year | 200 | - | 2021 | [85] |
Hanoi, Vietnam | Humid subtropical | - | 6499.46 | 2021 | [86] |
Sabar’a/Minas Gerais, Brazil | Humid subtropical | 600 | 3400 | 2021 | [87] |
North-west Poland | Humid continental | 50–90 | - | 2021 | [34] |
Pongsu, Perak, Malaysia | Tropical rainforest | - | 198.416–220.46 | 2022 | [88] |
Rabat-Salé-Kénitra, Morocco | Mediterranean with influences from the Atlantic Ocean | 480 | - | 2022 | [89] |
Vellakal, Avaniyapuram, India | Tropical Savanna | - | 450 | 2022 | [33] |
Dhapa, Kolkata, India | Tropical Savanna | - | 3000 | 2022 | [90] |
Ranchi, Jharkhand, India | Tropical Savanna | - | 700 | 2023 | [91] |
Country | COD (mg/L) | TOC (mg/L) | BOD5 (mg/L) | BOD5/COD | pH | TSS (mg/L) | TN (mg/L) | NH4+-N (g/m3) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Young Landfills | |||||||||
China | 14,768 | 7.9 | [92] | ||||||
Iran | 11,280 ± 300 | 3750 ± 100 | 1300 ± 100 | 0.1152 | 6.21 ± 0.05 | 3940 ± 350 | [64] | ||
68,250 | 8500 | 0.1245 | 6 | 8300 | [93] | ||||
Turkey | 11,000 | 6400 | 0.582 | 7.95 | 2853 | 1247 | [56] | ||
Morocco | 22,000 | 8500 | 0.39 | 7.61 | 33,940 | [84] | |||
Mexico | 14,680 ± 3225 | 1500 ± 500 | 0.102 | 8.04 ± 0.17 | [94] | ||||
10,193 | 4950 | 861 | 0.0845 | 8.13 | 360 | 2113 | [95] | ||
Saudi Arabia | 16,874 | 6.21 | 5604 | [96] | |||||
India | 19,800–24,000 | 4250–5100 | 0.215 | 6–8.1 | 110–498 | 1530–4000 | [97] | ||
14,420 | 5.1 | [98] | |||||||
Spain | 14,200 | 5600 | 8.56 | [99] | |||||
Chile | 11,950 | 8.9 | [100] |
Country | COD (mg/L) | BOD5 (mg/L) | BOD5/COD | pH | TSS (mg/L) | TN (mg/L) | NH4+-N (g/m3) | Ref. |
---|---|---|---|---|---|---|---|---|
India | 5120 | 200–150 | 0.04–0.06 | 8–9.5 | [33] | |||
China | 6880 ± 180 | 572 ± 56 | 0.083 | 8.5 ± 0.5 | 2402 ± 48 | [101] | ||
4500 ± 113 | 8.6 ± 0.06 | [102] | ||||||
Morocco | 6730 | 600 | 0.089 | 8 | 19,128 | [103] | ||
Turkey | 6400 | 1418 | 0.22 | 9 | 1836.6 | [104] |
Country | COD (mg/L) | TOC (mg/L) | BOD5 (mg/L) | BOD5/COD | pH | TSS (mg/L) | TN (mg/L) | NH4+-N (g/m3) | Ref. |
---|---|---|---|---|---|---|---|---|---|
China | 1763.8 ± 33.6 | 294.3 ± 11.7 | 7.9 ± 0.1 | 1496.3 ± 11.5 | 884.3 ± 6.8 | [105] | |||
3200.35 | 1200 | 75 | 0.0234 | 7.6 | 55 | [106] | |||
3424–3680 | 8.5–8.6 | 2713–2796 | [57] | ||||||
2290 ± 57.83 | 431 ± 10.21 | 7–9 | 2760 ± 25 | [82] | |||||
Malaysia | 2025 | 860 | 93 | 0.043 | 8.5 | [58] | |||
Portugal | 4505 | 300 | 0.07 | 7.6 | 337 | 1780 | [107] | ||
Brazil | 3332 | 141 | 0.042 | 8.3 | 53 | [108] | |||
Vietnam | 2100–4500 | 7.5–8.3 | [109] | ||||||
Algeria | 3847.7 | 388 | 0.11 | 8.1 | 10.4 | [110] | |||
Poland | 3135 ± 14.5 | 614 ± 3.15 | 165 ± 2.5 | 0.053 | 8.4 ± 0.2 | 824.5 ± 11.8 | [81] |
Merits |
| [41,91,115,116,117,118,119,120,121,122] |
Demerits |
| [41,116,118,120,122,123,124,125] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Adsorption + SBR | Stabilized | Aeration rate = 2.87 L/min, time = 11.7 h. |
| ______ | [116] |
Constructed wetland + adsorption | Stabilized | Reaction time was 50.2 h for color, Cd, NH4+-N, and COD removal, while the reaction time was 49 h for Ni removal. |
| ______ | [124] |
SBR + EC | Intermediate | The SBR process has a 16 h oxic phase and a 7 h anoxic phase. For the EC process, reaction time = 30 min and current density = 257 A/m2, with Al as the anode and stainless steel as the cathode with electrode spacing of 5 cm. |
|
| [119] |
Adsorption + SBR | Stabilized | Contact time = 22 h, HRT = 10 d, SRT = 30 d. |
| ______ | [122] |
SBR + C/F | Stabilized | For the SBR process, the HRT is 6 days, and the SRT is 30 days. For the C/F process, the ferric chloride dosage is 470 mg/L, and the alum dosage is 2800 mg/L. |
|
| [91] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Fenton + ozone-based advanced oxidation processes (AOPs) | Stabilized | Reaction time = 40 min, Fe2+ dosage = 4 mmol/L, H2O2/Fe2+ molar ratio = 3, and pH = 3. |
|
| [147] |
EC + EF | Young | For EC: Fe sacrificial anode, initial pH = 6.54, conductivity = 16.4 mS/cm, EC time = 180 min, and current density = 30 mA/cm2. For EF: operating time = 60 min, and H2O2 = 5000 ppm. |
|
| [56] |
Ozone + per sulfate oxidation | Stabilized | pH = 10, COD/S2O82− ratio = (1/7), and ozonation time = 210 min. |
|
| [58] |
Coagulation + Fenton | Young | pH = 7, FeCl3 dosage = 1500 mg/L. |
|
| [64] |
C/F + (Fenton or PF) | Stabilized | For C/F: FeCl3 dosage = 1400 mg/L, and pH = 4. For (C/F + Fenton): H2O2 dosage = 1330 mg/L, Fe2+ dosage = 266 mg/L. For single PF: H2O2 dosage = 2720 mg/L, Fe2+ dosage = 544 mg/L. |
| - | [108] |
C/F + (Fenton or PF) | Stabilized | pH = 5, FeCl3 as coagulant with dosage = 2 g/L, settlement time = 1 h, slow mixing of 20 rpm for 20 min, and rapidly mixing of 120 rpm for 3 min. |
|
| [65] |
C/F + microelectrolysis Fenton | Intermediate | Initial pH of 3.2, 400 mL of LL, Fe-C dosage of 104.52 g/L, H2O2 dosage of 3.57 g/L, and polyaluminum chloride (PAC) as a flocculant. |
| - | [101] |
C/F + UV oxidation | Stabilized | For C/F, FeCl3 was used as the coagulant. Reaction time = 1 h, oxidant dosage = 12 Mm, settlement time = 1 h, slow mixing of 50 rpm for 30 min, fast mixing of 150 rpm for 2 min, Potassium peroxy-mono-sulfate (PMS) and potassium persulfate (PS) dosages are 12 mM. |
|
| [148] |
Coagulation/sedimentation + SPF | Intermediate | pH = 8, slow mixing of 40 rpm for 30 min, fast mixing of 300 rpm for 2 min, PAC as coagulant with a dosage of 1.5 g/L, and pH = 8. |
|
| [149] |
C/F + ozonation | Stabilized | 500 mL of leachate volume, SnCl4 as coagulant with a dosage of 15.408 g/L, pH = 8, (COD/SnCl4) ratio = 1:4, O3 dosage = 31 g/m3, and mixing of 5, 15, and 30 for rapid, slow, and settlement mixing, respectively. |
|
| [88] |
EC + SPF | Intermediate | For EC: NaCl dosage = 2 g/L, voltage = 4 V, pH = 7, distance between electrodes = 3 cm, Fe and Al electrodes, monopolar arranged, and EC time = 60 min. For SPF: H2O2 dosage = 10 g/L, Fe2+ dosage = 1 g/L, pH = 3, and SPF time = 30 min. |
|
| [33] |
EC + electro-oxidation (EO) | Stabilized | As bipolar electrodes, stainless steel as a cathode, aluminum as anode, and BDD as an anode. pH = 6.5, current intensity = 0.7 A, and EC-EO treatment time = 24 h. |
|
| [111] |
EO + EC | Stabilized | Current density = 25 mA/cm2, magnetic stirrer conditions = 150 rpm, distance between electrodes = 1 cm, and treatment times of EO and EC were 180 and 60, respectively. |
|
| [106] |
Sulfate radical electrochemical AOPs + EC (SR-EAOP + EC) | Stabilized | Applied voltage = 3 V, pH = 3, Fe2+ dosage = 100 mg/L, and persulfate (PS) dosage = 500 mg/L. |
|
| [150] |
Electrochemical peroxidation (ECP) + EF | Stabilized | Current density = 30 mA/cm2, initial pH = 9, and 3.5 for ECP and EF, respectively. |
|
| [105] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Coagulation + Adsorption | Young | 0.6 g/L and 0.8 g/L for alum and FeCl3, respectively. |
|
| [151] |
Stabilized | 0.6 g/L and 0.7 g/L for alum and FeCl3, respectively; fly ash adsorbent dosage = 6 g/L; and equilibrium time = 210 min. |
| |||
Fenton + Adsorption | Young | GAC used as adsorbent, pH = 4, H2O2 30% (w/w), COD/H2O2 = 9, and Fe2+/H2O2 = 0.6. |
|
| [95] |
EC + Fiber Filtration | Intermediate | Fe and Al are used as electrodes with a dosage of 100 mg/L, a pH of 7, and a current density of 0.05 A/m2, with an operating time of 30 min. |
|
| [152] |
C/F + Adsorption | Intermediate | For the C/F process, the optimum conditions were contact time = 8 h, a temperature of 25 °C, a pH of 8, and FeCl3 used as a coagulant with a dosage of 20 g/L. For the adsorption process, the optimum conditions were contact time = 8 h, pH = 7, and Cupressus sempervirens cones (CupSem) used as a natural bioadsorbent with a dosage of 1 g/L. |
| ______ | [103] |
C/F + Adsorption | Young | For the C/F process, the optimum condition was contact time = 3 h, and FeCl3 was used as a coagulant with a dosage of 12 g Fe3+/L. For the adsorption process, the optimum condition was contact time = 3 hr, and palm bark powder (PBP) was used as a bioadsorbent with a dosage of 9 g/L. |
|
| [84] |
C/F + Adsorption | Stabilized | For the C/F process, the optimum condition was pH = 5, polyacrylamide (PAM) dosage = 2 mg/L, and ferric trichloride (FTC) = 750 mg/L. For the adsorption process, the optimum condition was activated coke used as an adsorbent with a dosage of 5 g/100 L. |
| ______ | [82] |
Fenton + Adsorption | Stabilized | Adsorbent time = 24 h, sodium percarbonate (SPC) H2O2 dosage = 2.5:1, and biochar = 2 g/L. |
| _____ | [81] |
Electro-chemical + Membrane Distillation | Intermediate | Operating time = 8 h, pH < 2, and Na2SO4 = 15 mmol/L. |
|
| [102] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Fenton + SBR | Stabilized | For the Fenton process, pH = 4, Fe2+ dosage = 0.08 mol/L, H2O2/Fe2+ ratio = 10, and mixing time = 20 min. For the SBR process, water drainage and supply, settlement, and aeration times were 0.5 h, 0.5 h, and 11 h, respectively; HRT = 4 d; and SRT = 15.2 d. |
| _____ | [153] |
SPF + Biological Oxidation | Stabilized | Fe2+ dosage = 60 mg/L and 3 h of sedimentation. |
|
| [107] |
C/F + SBR | Young | For the C/F process, FeCl3 is used as a coagulant with a dosage = 1000 mg/L and a pH of 6.2 and 12. For the SBR process, HRT = 6 days, SRT = 21.8 days, and cycle = 8 h. |
|
| [60] |
EC + Bioaugmentation | Stabilized | For the EC process, Al electrodes with a spacing of 2 cm, an EC time of 150 min, and a current density of 95 A/m2. For the biological treatment process, the biological time is 166 h. |
|
| [154] |
PEF + MBR | Young | For the PEF process, the pH is 2.9, the reaction time is 45 min, the current density is 140.5 A/m2, and the UV light capacity = 8 W. For the MBR process, the HRT is 6 days and the reactor aeration rate is 5 l/min. |
|
| [97] |
Electro-Ozonation + SBR | Stabilized | The reaction time is 97 min, and the optimum COD removal is 120 mg/L of O3. The reaction time is 117.4 min, and optimum color removal is 120 mg/L of O3. The reaction time is 96.7 min, and the optimum Ni removal is 120 mg/L of O3. The optimum of the combined process is 96.9 min of time, 7.3 pH, 4A of current, and 9 V of voltage. |
|
| [117] |
EC + Biological | Young | The pH is 7, the applied voltage is 7 V, the Fe–Fe electrode has a spacing of 1 cm, and the electrode surface area is 40 cm2. |
|
| [98] |
EC + Anaerobic Batch Reactor | Intermediate | Initial pH of 5, retention time of 54 min, spiral Fe electrodes, and current density of 50 mA/cm2. |
|
| [104] |
EF + Biological | Stabilized | The pH is 2, the electrode area is 25 cm2, the distance between electrodes is 3 cm, the applied voltage is 5 V, and the catalyst dosage is 50 mg/L. |
| _____ | [155] |
PF + Biological | Young | In the PF process, the optimum parameters were pH (2.4), reaction time (120 min), 3400 mg of H2O2/L, and 80 mg of Fe2+/L. For the biological process, the optimum parameters were reaction time = 40 h, 0.571 ± 0.04 vvm (L/L.min), and 2.36 ± 0.1 mg/mg (BOD5/MLSS). For PF and biological processes, the optimum parameters were 150 h of reaction time, 1.571 ± 0.06 vvm (L/L.min), and 4.41 ± 0.3 mg/mg (BOD5/MLSS). |
|
| [156] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Forward osmosis + membrane distillation (FO-MD) | Intermediate | For the FO process, the optimal flow rate was 0.87 L/min and 0.31 L/min for FS and DS, respectively, and the DS concentration was 4.82 M. For the MD process, the optimal concentration was 60,000 mg/L and 25,000 mg/L for NaCl and FS, respectively. Also, the optimal temperature was 62.5 ± 0.5 °C and 72.5 ± 0.5 °C for NaCl and FS, respectively. |
| - | [157] |
Adsorption + UF | Stabilized | PAC dosage = 1 g/L. |
|
| [140] |
Adsorption + membrane (MF, UF, fine UF) | Stabilized | For the adsorption process, the adsorption time is 30 min, and the PAC dosage is 3 g/L. For PAC adsorption and the MF process, the permeate flux is 167.6 L/(m2.h). |
|
| [158] |
Nanoparticle adsorption + electro-flotation | Stabilized | For the Fe2O3 process, contact time is 40 min, pH is 4, and Fe2O3 dosage is 20 g/L. For the electro-flotation process, contact time is 40 min, pH is 4, and current density is 40 A/m2. For the Fe2O3 NPs/electro-flotation process, contact time is 2 h, and pH is 4. |
|
| [85] |
Study | Leachate Age | Parameters | Advantages | Ref. |
---|---|---|---|---|
Activated Persulfate + Fenton | Young | UV-LED radiation, pH = 3, PS dosage = 234 mM, FeTiO3 dosage = 1 g/L, current density = 200 mA/cm2, time = 480 min. |
| [99] |
Adsorption + PF | Young | pH of 3; FeSO4 and H2O2 dosage = 0.3 g/L and 0.67 g/L, respectively; and O3 generation = 3 g/h with power =100 W. |
| [100] |
UF + C/F | Stabilized | Sedimentation time = 30 min; FeCl3–0 dosage = 0.4 g/L. |
| [159] |
Study | Leachate Age | Parameters | Advantages | Ref. |
---|---|---|---|---|
Air Stripping + Anaerobic Digestion/Aerobic AS | Stabilized | For air stripping, temperature = 25 ± 2 °C, reaction time = 18 h, pH = 11, and aeration rate = 7 L/min. For aerobic treatment, temperature = 30 °C, and aeration flow = 7 l/min. |
| [142] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Trickling filter + SBR | Stabilized | The dissolved oxygen in SBR and TF was 6.1 and 4.7 mg/L, respectively. |
|
| [145] |
Anoxic/oxic (A/O) + MBR | Young | Operation period = 113 d. |
| - | [146] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Sequencing batch biofilm reactor (SBBR) + EF | Stabilized | Reaction time = 60 min, H2O2 dosage = 5.05 mol/L, and FeSO4 dosage = 0.42 mol/L with a rate of 0.5 mL/min. |
| - | [160] |
Biofiltration + EC | Stabilized | Hydraulic load = 0.17 m3/m2/j, flow rate = 5 L/min, initial pH = 8.4, NaHCO3 dosage = 1 g/L, stainless steel as cathode, magnesium as anode, treatment time = 30 min, and current density = 10 mA/cm2. |
|
| [161] |
SBR + coagulation | For the SBR process, the pH is 7, and the aeration rate is 3 L/min. For the coagulation process, we used alum as a coagulant with a dosage of 5 g/L. |
| - | [162] | |
SBR + electro-Fenton oxidation | Stabilized | Time = 5 days, <10 kDa MW |
| - | [163] |
SBR + EC | Intermediate | For the EC process, pH = 8.2, electrical content = 2.1 A, Al used as electrode with spacing = 3 cm, settling time = 35 min, reaction time = 60 min, and clinoptilolite dosage = 110 g/750 mL as the regeneration solvent. For the SBR process, fill time is 5 min, mixing homogeneously lasts for 1 min, draw time is 5 min, and idle time is 1 min. |
| - | [164] |
Study | Leachate Age | Parameters | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
Aerobic SBR (ASBR) + Adsorption | Stabilized | Treatment time = 7 days, and zeolite as an adsorbent with 24 h of adsorption time. |
| - | [165] |
MBR + RO | Stabilized | - |
|
| [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamrah, A.; AL-Zghoul, T.M.; Al-Qodah, Z. An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water 2024, 16, 1640. https://doi.org/10.3390/w16121640
Jamrah A, AL-Zghoul TM, Al-Qodah Z. An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water. 2024; 16(12):1640. https://doi.org/10.3390/w16121640
Chicago/Turabian StyleJamrah, Ahmad, Tharaa M. AL-Zghoul, and Zakaria Al-Qodah. 2024. "An Extensive Analysis of Combined Processes for Landfill Leachate Treatment" Water 16, no. 12: 1640. https://doi.org/10.3390/w16121640
APA StyleJamrah, A., AL-Zghoul, T. M., & Al-Qodah, Z. (2024). An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water, 16(12), 1640. https://doi.org/10.3390/w16121640