Water Footprint and Water Sustainability of Agroindustrial Avocado Production in a Warm Tropical Climate Municipality: A Case Study in the Michoacan Avocado Belt in Central México
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Climatic Conditions of the Municipality of Ziracuaretiro
Group | Subgroup | MAT (°C) | Tmin (°C) | Tmax (°C) | MAP (mm) |
---|---|---|---|---|---|
Subtropical | Humid subtropical Semi-humid subtropical | >18 | 15 | 27 | 1000 |
Tropical | Semi-humid tropical | >22 | 15 | 30 | 1000 |
Temperate | Humid temperate | −18 | 12 | 24 | 1200 |
2.2. Water Consumption Analysis by the Water Footprint Method
2.2.1. Estimation of Crop Water Requirement (CWR)
2.2.2. Determination of Green and Blue Water Requirement
2.2.3. Green and Blue Water Footprint of the Avocado Crop
2.2.4. Irrigation Water Sustainability Estimation
2.3. Data Sources
3. Results
3.1. Meteorological Variables
3.2. Avocado Crop Production
3.3. Avocado Crop Water Requirement (CWR)
3.4. Green and Blue Water Footprint of the Avocado Crop
3.5. Annual Green and Blue Water Consumption of the Agroindustrial Cultivation of Avocado
3.6. Irrigation Water Sustainability Analysis
4. Discussion
4.1. Water Footprint of Agroindustrial Avocado Production
4.2. Meteorological Conditions and Phenology
4.3. Sustainability of the Water Resource
4.4. What to Expect under Climate Change?
4.5. Method Limitations, Drawbacks, and Final Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutierrez-Contreras, M.; Lara-Chávez, M.; Guillén-Andrade, H.; Chávez-Bárcenas, A.T. Agroecology of the avocado-producing belt area in Michoacan, Mexico. Interciencia 2010, 35, 647–653. [Google Scholar]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Rudo, J.L. Beyond the Guacamole: How Drug Organizations Became Involved in the Avocado Industry. Master’s Thesis, The University of West Florida, Pensacola, FL, USA, 2021. [Google Scholar]
- Anticoli, A. Exploring Power Dynamics in the Water Sector in Chile: A Focus on Avocado Plantations and Water Resources in Three Municipalities. Master’s Thesis, University, Disciplinary Domain of Science and Technology, Earth Sciences, Uppsala, Sweden, 2022. [Google Scholar]
- Wagner, C. Are Mexican Avocados the Next ‘Conflict Commodity’? Retrieved from Verisk Maplecroft. Available online: https://www.maplecroft.com/insights/analysis/are-mexican-avocados-the-next-conflict-commodity/ (accessed on 15 February 2024).
- De la Vega-Rivera, A.; Merino-Pérez, L. Socio-environmental impacts of the avocado boom in the Meseta Purepecha, Michoacan, Mexico. Sustainability 2021, 13, 7247. [Google Scholar] [CrossRef]
- Climate Rights International (CRI). US/Mexico: U.S. Senators Urge Action on Mexican Avocados. 8 February 2024. Available online: https://cri.org/us-senators-urge-action-on-mexican-avocados/ (accessed on 16 February 2024).
- Climate Rights International (CRI). Mexico: Avocados for Export Fueling Deforestation and Abuse. 28 November 2023. Available online: https://cri.org/mexico-avocados-export-fueling-deforstation-abuse/ (accessed on 17 February 2024).
- Romero, S.; Rodríguez, E. Americans Love Avocados. It’s Killing Mexico’s Forests. 2023. Available online: https://www.nytimes.com/2023/11/28/us/mexico-avocado-deforestation.html (accessed on 17 February 2024).
- Peter Welch U.S Senator for Vermont. Available online: https://www.welch.senate.gov/u-s-ambassador-to-mexico-salazar-says-mexican-avocados-grown-illegally-shouldnt-be-exported-to-u-s-comes-after-welch-led-letter-to-administration-urging-action-to-address-illegal-deforesta/ (accessed on 17 April 2024).
- Madslien, S. Are Avocado the Blood Diamonds of México? An Empirical Study on How Increasing Demand for Mexican Avocados Is Related to Cartel Violence. Master’s Thesis, Norwegian School of Economics, Bergen, Norway, 2020. [Google Scholar]
- Ornelas, R.G. Organized crime in Michoacán: Rent-seeking activities in the avocado export market. Politics Policy 2018, 46, 759–789. [Google Scholar] [CrossRef]
- Bocco, G.; Mendoza, M.; Masera, O.R. La dinámica del cambio del uso del suelo en Michoacán: Una propuesta metodológica para el estudio de los procesos de deforestación. Investig. Geográficas 2001, 44, 18–36. [Google Scholar] [CrossRef]
- Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Godínez-Gómez, O.; Arima, E.Y.; Young, K.R.; Denvir, A.; García-Oliva, F.; Ghilardi, A. Estimating Fragmentation and Connectivity Patterns of the Temperate Forest in an avocado-Dominated Landscape to Propose Conservation Strategies. Land 2023, 12, 631. [Google Scholar] [CrossRef]
- Gómez-Tagle, A.F.; Gómez-Tagle, A.; Fuerte-Velázquez, D.J.; Barajas-Alcalá, A.G.; Quiroz-Rivera, F.; Alarcón-Chaires, P.E.; Guerrero-García-Rojas, H. Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico. Sustainability 2022, 14, 9664. [Google Scholar] [CrossRef]
- AP. Available online: https://apnews.com/article/mexico-drought-avocados-dried-up-lakes-faaad63fdf0d3f3cba7b33fb0456c053 (accessed on 26 April 2024).
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hejazi, M.; Tang, Q.; Vernon, C.R.; Liu, Y.; Chen, M.; Calvin, K. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 2019, 574, 242–256. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.S.; Bunn, E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef]
- ISO 14046:2014; Environmental Management Water Footprint Principles, Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2014.
- Deepa, R.; Anandhi, A.; Alhashim, R. Volumetric and impact-oriented water footprint of agricultural crops: A review. Ecol. Indic. 2021, 130, 108093. [Google Scholar] [CrossRef]
- Sabli, N.S.M.; Noor, Z.Z.; Kamaruddin, S.N.; Rusli, N.M. Developing a methodology for water footprint of palm oil based on a methodological review. J. Clean. Prod. 2017, 146, 173–180. [Google Scholar] [CrossRef]
- Deurer, M.; Green, S.R.; Clothier, B.E.; Mowat, A. Can product water footprints indicate the hydrological impact of primary production? A case study of New Zealand kiwifruit. J. Hydrol. 2011, 408, 246–256. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011; ISBN 978-1-84971.279-8. [Google Scholar]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Munizaga, J.; Sáez, K.; Arumí, J.L. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecol. Indic. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M. The scarcity-weighted water footprint provides unreliable water sustainability scoring. Sci. Total Environ. 2021, 756, 143992. [Google Scholar] [CrossRef] [PubMed]
- Lala-Ayo, H.D.; Fernández-Quintana, M.D.C. Análisis de la sostenibilidad media huella hídrica de la microcuenca del Río Pita, Ecuador. Tecnol. Y Cienc. Del Agua 2020, 11, 169–234. [Google Scholar] [CrossRef]
- Cao, X.; Bao, Y.; Li, Y.; Li, J.; Wu, M. Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity. Agric. Water Manag. 2023, 278, 108165. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, M. Calculation of seasonal agricultural grey water footprint in monsoon region based on river reference conditions. Ecol. Indic. 2022, 145, 109638. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable water management in urban, agricultural, and natural systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef]
- De Miguel, Á.; Kallache, M.; García-Calvo, E. The water footprint of agriculture in Duero River Basin. Sustainability 2015, 7, 6759–6780. [Google Scholar] [CrossRef]
- Salmoral, G.; Dumont, A.; Aldaya, M.M.; Rodríguez-Casado, R.; Garrido, A.; Llamas, M.R. Análisis de la Huella Hídrica Extendida de la Cuenca del Guadalquivir; Fundación Marcelino Botín: Madrid, Spain, 2012. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI) Geography Information. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825293048 (accessed on 28 April 2023).
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 30 May 2023).
- Arima, E.Y.; Denvir, A.; Young, K.R.; González-Rodríguez, A.; García-Oliva, F. Modelling avocado-driven deforestation in Michoacán, Mexico. Environ. Res. Lett. 2022, 17, 034015. [Google Scholar] [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática Köppen; Instituto de Geografía de la Universidad Autónoma: Ciudad de México, Mexico, 2004. [Google Scholar]
- Olivares-Martinez, L.D.; Gomez-Tagle, A.; Pérez-Salicrup, D.R. Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico. Fire 2023, 6, 81. [Google Scholar] [CrossRef]
- Morales-Manilla, L.M.; Reyes González, A.; Cuevas García, G.; Ramuco, M.O. Inventario del Cultivo de Aguacate y Evaluación del Impacto Ambiental Forestal en el Estado de Michoacán; Centro de Investigaciones en Geografía Ambiental: Morelia, México, 2011. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI) Climatology Information. Available online: https://www.inegi.org.mx/temas/climatologia/ (accessed on 23 August 2023).
- Instituto Nacional de Estadística y Geografía. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/1329/702825231781/702825231781_1.pdf (accessed on 23 September 2023).
- Water Footprint Network (WFN). Simulating Impacts of Climate Change on Crop Production. Field Crops Research. Available online: https://www.waterfootprint.org/ (accessed on 14 May 2023).
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water footprint of wheat in Iraq. Water 2019, 11, 535. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Rezaei Kalvani, S.; Sharaai, A.; Manaf, L.; Hamidian, A. Assessing ground and surface water scarcity indices using ground and surface water footprints in the Tehran province of Iran. Appl. Ecol. Environ. Res. 2019, 17, 4985–4997. [Google Scholar] [CrossRef]
- Smith, M.; Muñoz, G.; Van, H.G. CROPWAT: A Computer Program for Irrigation Planning Management (No. 46) Version 8.0; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1992; Available online: https://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 20 August 2023).
- Registro Público de Derechos de Agua (REPDA). Available online: https://app.conagua.gob.mx/consultarepda.aspx (accessed on 28 June 2023).
- Asociación de Productores y Empacadores de Aguacate en México (APEAM). Available online: http://www.apeamclima.org/index.html?fbclid=IwAR3POX_hvYXrh3FuVdG0UEoDg7-CkUXA2kwhB0FFfWhbsk6quDhOgnR279E (accessed on 10 May 2023).
- Saxton, K.E.; Rawls, W.J. “Soil Water Properties Characteristics” Hydraulic Properties Calculator; Universidad Nacional de la Plata: Buenos Aires, Argentina, 2009. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI) Pedological Information. Available online: https://www.inegi.org.mx (accessed on 2 May 2023).
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Rocha-Arroyo, J.L.; Salazar-García, S.; Bárcenas-Ortega, A.E.; González-Durán, I.J.; Cossio-Vargas, L.E. Fenología del aguacate “Hass” en Michoacán. Rev. Mex. De Cienc. Agrícolas 2011, 2, 303–316. [Google Scholar]
- Rocha-Arroyo, J.L.; Salazar-García, S.; Bárcenas-Ortega, A.E. Determinación irreversible a la floración del aguacate “Hass” en Michoacán. Rev. Mex. De Cienc. Agrícolas 2010, 1, 469–478. [Google Scholar]
- Salazar-García, S.; Zamora-Cuevas, L.; Vega-López, R.J. Actualización sobre la industria del aguacate en Michoacán, México. Calif. Avocado Soc. Yearb. 2005, 87, 45–54. [Google Scholar]
- Vizcaíno Ríos, E. Prebiótico, Bacillus Subtilis y Fosfito de Potasio Para el Control de Antracnosis y Calidad Postcosecha del Aguacate “Méndez”. Ph.D. Thesis, Colegio de Posgraduados, Montecillo, Mexico, 2021. [Google Scholar]
- Hoekstra, A.Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 2016, 66, 564–573. [Google Scholar] [CrossRef]
- Pilevneli, T.; Capar, G.; Sánchez-Cerda, C. Investigation of climate change impacts on agricultural production in Turkey using volumetric water footprint approach. Sustain. Prod. Consum. 2023, 35, 605–623. [Google Scholar] [CrossRef]
- Burgos, A.L.; Anaya, C.; Solorio, I. Impacto Ecológico del Cultivo de Aguacate a Nivel Regional y de Parcela en el Estado de Michoacán: Definición de una Tipología de Productores; Centro de Investigaciones en Geografía Ambiental: Morelia, Mexico, 2011. [Google Scholar]
- Cossio-Vargas, L.E.; Salazar-García, S.; González-Durán, I.J.L.; Medina-Torres, R. Fenología del aguacate “Hass” en el clima semicálido de Nayarit, México. Rev. Chapingo Ser. Hortic. 2008, 14, 319–324. [Google Scholar] [CrossRef]
- Cruz-Pérez, N.; Santamarta, J.C.; Álvarez-Acosta, C. Water footprint of representative agricultural crops on volcanic islands: The case of the Canary Islands. Renew. Agric. Food Syst. 2023, 38, e36. [Google Scholar] [CrossRef]
- Orlove, B.; Caton, S.C. Water Sustainability: Anthropological Approaches and Prospects. Annu. Rev. Anthropol. 2010, 39, 401–415. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W. Water sustainability for China and beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wu, Y.; Wang, J.; Wang, Z.; Jiang, Q. Scenario simulation and comprehensive assessment of water footprint sustainability system in Heilongjiang Province, China: A model combining system dynamics with improved radar chart approach. Ecol. Indic. 2023, 154, 110527. [Google Scholar] [CrossRef]
- Budds, J. Contested H2O: Science, policy and politics in water resources management in Chile. Geoforum 2009, 40, 418–430. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef]
- Danwatch, Reportaje Palta y Agua Robada. Fundación Heinrich Böll. Available online: https://cl.boell.org/es/2017/05/11/palta-y-agua-robada-reportaje-de-danwatch/ (accessed on 31 May 2023).
- Sánchez, M.M.; Carvacho, B.L. Aproximación a la determinación del déficit hídrico en la Región del Libertador General Bernardo O′Higgins, Chile, a partir de imágenes MODIS y datos meteorológicos. Rev. De Geogr. Norte Gd. 2013, 55, 109–124. [Google Scholar] [CrossRef]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Budds, J. Securing the market: Water security and the internal contradictions of Chile’s Water Code. Geoforum 2020, 113, 165–175. [Google Scholar] [CrossRef]
- Caro, D.; Alessandrini, A.; Sporchia, F.; Borghesi, S. Global virtual water trade of avocado. J. Clean. Prod. 2021, 285, 124917. [Google Scholar] [CrossRef]
- Tetreault, D.; McCulligh, C.; Lucio, C. Distilling agro-extractivism: Agave and tequila production in Mexico. J. Agrar. Change 2021, 21, 219–241. [Google Scholar] [CrossRef]
- Papadopoulou, M.P.; Charchousi, D.; Tsoukala, V.K.; Giannakopoulos, C.; Petrakis, M. Water footprint assessment considering climate change effects on future agricultural production in Mediterranean region. Desalination Water Treat. 2016, 57, 2232–2242. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for simulating impacts of climate change on crop production. Field Crops Res. 2011, 124, 357–368. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. J. Life Sci. 2016, 77, 71–78. [Google Scholar] [CrossRef]
- Álvarez-Bravo, A.; Salazar-García, S.; Ruiz-Corral, J.A.; Medina-García, G. Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate “Hass” en Michoacán. Rev. Mex. De Cienc. Agrícolas 2017, 8, 4035–4048. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, S.; Li, Z.; Li, Q.; Lu, Y.; Li, C.; Wu, P. Vulnerability of crop water footprint in rain-fed and irrigation agricultural production system under future climate scenarios. Agric. For. Meteorol. 2022, 326, 109164. [Google Scholar] [CrossRef]
- Charre-Medellín, J.F.; Mas, J.F.; Chang-Martínez, L.A. Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop Pasture Sci. 2021, 72, 291–301. [Google Scholar] [CrossRef]
- Charre-Medellín, J.F.; Mas, J.F.; Chang-Martínez, L.A. Áreas potenciales actuales y futuras de los cultivos de aguacate Hass en México utilizando el modelo Maxent en escenarios de cambio climático. UD Y La Geomática 2019, 14, 26–33. [Google Scholar]
- Bravo, E.M.; de la Luz Sánchez, P.J.; Vidales, J.; Sáenz, J.; Chávez, J.; Madrigal, S.; Muñoz, H.; Tapia, L.; Orozco, G.; Alcantar, J.; et al. Impactos Ambientales y Socioeconómicos del Cambio de Uso de Suelo Forestal a Huertos de Aguacate; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) Centro de Investigación Regional Pacífico Centro: Uruapan, Mexico, 2009. [Google Scholar]
- Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääskeläinen, H.; Haque, N. Water footprinting and mining: Where are the limitations and opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548, 236–251. [Google Scholar] [CrossRef]
- Naranjo, J.F.; Reyes, H. Huella hídrica del cultivo de aguacate cv. Hass (Persea americana Mill), en el Distrito de Conservación de Suelos Barbas-Bremen, Quindío, Colombia. Entre Cienc. E Ing. 2021, 15, 63–70. [Google Scholar] [CrossRef]
Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Texture Class | Bulk Density (g/cm) | SOC (%) | SOM (%) |
---|---|---|---|---|---|---|---|
0–20 | 54.0 | 35.7 | 10.2 | sandy loam | 1.9 | 3.4 | 5.9 |
20–40 | 70.0 | 14.8 | 15.2 | sandy loam | 1.6 | 1.1 | 1.9 |
40–60 | 63.6 | 22.2 | 14.2 | sandy loam | 1.7 | 0.5 | 0.8 |
Depth (cm) | Field Capacity (vol/vol) | PWP (vol/vol) | Saturation (vol/vol) | Ks (mm/day) | Available Water (%) |
---|---|---|---|---|---|
0–20 | 0.217 | 0.091 | 0.420 | 633.5 | 12.6 |
20–40 | 0.202 | 0.109 | 0.431 | 315.9 | 9.3 |
40–60 | 0.209 | 0.105 | 0.433 | 366.9 | 10.4 |
Rainfed Production | Irrigated Production | |||||
---|---|---|---|---|---|---|
Year | Planted Surface (ha) | Production Volume (ton/Year) | Crop Yield (ton/ha) | Planted Surface (ha) | Production Volume (ton) | Crop Yield (ton/Year) |
2012 | 750.00 | 7312.50 | 9.75 | 1620.00 | 16,443.00 | 10.15 |
2013 | 1195.00 | 11,942.00 | 9.99 | 2395.00 | 23,969.16 | 10.01 |
2014 | 1255.00 | 11,546.00 | 9.20 | 2515.00 | 23,389.50 | 9.30 |
2015 | 1263.00 | 11,872.20 | 9.40 | 2517.00 | 25,894.15 | 10.29 |
2016 | 1160.00 | 9744.00 | 8.40 | 3165.00 | 31,818.00 | 10.05 |
2017 | 1250.00 | 10,625.00 | 8.50 | 3200.00 | 33,498.00 | 10.47 |
2019 | 1600.00 | 14,597.50 | 9.12 | 3350.00 | 36,871.50 | 11.01 |
2020 | 1825.00 | 16,758.15 | 9.18 | 3400.00 | 40,800.00 | 12.00 |
2021 | 1825.00 | 16,940.00 | 9.28 | 3400.00 | 41,140.00 | 12.10 |
Mean | 1347.00 (±346.48) | 12,370.82 (±3196.32) | 9.20 (±0.51) | 2840.22 (±614.29) | 30,424.81 (±8533.73) | 10.60 (±0.93) |
Year | Total Rainfall (mm/Year) | ETo (mm/Year) | ETc (mm/Year) | Effective Rainfall (mm/Year) | IR (mm/Year) |
---|---|---|---|---|---|
2012 | 1069.80 | 2017.28 | 2272.00 | 735.20 | 1591.30 |
2013 | 1686.00 | 1865.57 | 2108.80 | 887.90 | 1475.80 |
2014 | 1171.00 | 1980.71 | 2227.10 | 794.10 | 1544.50 |
2015 | 1192.60 | 1840.40 | 2008.00 | 842.40 | 1206.50 |
2016 | 1096.60 | 1979.58 | 2310.70 | 803.90 | 1511.10 |
2017 | 1182.80 | 2134.40 | 2472.40 | 706.60 | 1885.30 |
2019 | 1208.90 | 2387.56 | 2851.70 | 752.70 | 1977.20 |
2020 | 963.00 | 2487.33 | 2884.30 | 621.40 | 2221.80 |
2021 | 1708.20 | 2401.90 | 2825.30 | 796.80 | 2125.40 |
Mean | 1253.21 (±263.16) | 2121.63 (±244.63) | 2440.03 (±335.96) | 771.22 (±78.41) | 1726.54 (±339.77) |
Year | Rainfed Plantations | Irrigated Plantations | Mean WF for Rainfed and Irrigated Plantations (m3/ton) | ||
---|---|---|---|---|---|
Green WF (m3/ton) | Green WF (m3/ton) | Blue WF (m3/ton) | Total WF (m3/ton) | ||
2012 | 754.05 | 724.33 | 1567.78 | 2292.12 | 1523.08 |
2013 | 888.79 | 887.01 | 1474.33 | 2361.34 | 1625.06 |
2014 | 863.15 | 853.87 | 1660.75 | 2514.62 | 1688.89 |
2015 | 896.17 | 818.66 | 1172.50 | 1991.16 | 1443.66 |
2016 | 957.02 | 799.90 | 1503.58 | 2303.48 | 1630.25 |
2017 | 831.29 | 674.88 | 1800.67 | 2475.55 | 1653.42 |
2019 | 825.33 | 683.65 | 1795.82 | 2479.47 | 1652.40 |
2020 | 676.91 | 517.83 | 1851.50 | 2369.33 | 1523.12 |
2021 | 858.62 | 658.51 | 1756.53 | 2415.04 | 1636.83 |
Mean | 839.03 (±82.44) | 735.40 (±116.09) | 1620.40 (±216.56) | 2355.80 (±157.45) | 1597.41 (±81.09) |
Year | Rainfed Plantations | Irrigated Plantations | Total Rainfed and Irrigated Plantations (hm3) | ||
---|---|---|---|---|---|
Rainfall (hm3) | Rainfall (hm3) | Irrigation (hm3) | Total (hm3) | ||
2012 | 5.51 | 12.40 | 25.78 | 38.18 | 43.69 |
2013 | 10.61 | 21.30 | 35.34 | 56.64 | 67.26 |
2014 | 9.97 | 20.19 | 38.84 | 59.03 | 69.00 |
2015 | 10.64 | 23.21 | 30.36 | 53.57 | 64.21 |
2016 | 9.33 | 30.45 | 47.84 | 78.29 | 87.62 |
2017 | 8.83 | 27.85 | 60.32 | 88.17 | 97.00 |
2019 | 12.05 | 30.43 | 66.21 | 96.65 | 108.69 |
2020 | 11.34 | 27.62 | 75.54 | 103.16 | 114.50 |
2021 | 14.55 | 35.32 | 72.26 | 107.59 | 122.13 |
Mean | 10.31 (±2.46) | 25.42 (±6.87) | 50.27 (±18.81) | 75.69 (±24.77) | 86.01 (±26.60) |
Year | Total Blue WF (hm3) | Surface Water Concession for Agricultural Use (hm3) | Groundwater Concession for Agricultural Use (hm3) | Total Concession Water for Agricultural Use (hm3) | Appropriation of Concessioned Water for Irrigated Avocado Production (%) |
---|---|---|---|---|---|
2012 | 25.78 | 36.57 | 1.08 | 37.64 | 68.48 |
2013 | 35.34 | 36.88 | 1.12 | 38.00 | 92.99 |
2014 | 38.84 | 36.88 | 1.15 | 38.03 | 102.15 |
2015 | 30.36 | 36.88 | 1.16 | 38.04 | 79.82 |
2016 | 47.84 | 36.88 | 1.20 | 38.08 | 125.64 |
2017 | 60.32 | 36.88 | 1.32 | 38.20 | 157.92 |
2019 | 66.21 | 41.67 | 1.54 | 43.21 | 153.23 |
2020 | 75.54 | 41.87 | 1.81 | 43.68 | 172.95 |
2021 | 72.26 | 41.87 | 1.81 | 43.68 | 165.45 |
Mean | 50.27 (±18.81) | 38.49 (±2.49) | 1.35 (±0.29) | 39.84 (±2.76) | 124.29 (±39.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuerte-Velázquez, D.J.; Gómez-Tagle, A. Water Footprint and Water Sustainability of Agroindustrial Avocado Production in a Warm Tropical Climate Municipality: A Case Study in the Michoacan Avocado Belt in Central México. Water 2024, 16, 1719. https://doi.org/10.3390/w16121719
Fuerte-Velázquez DJ, Gómez-Tagle A. Water Footprint and Water Sustainability of Agroindustrial Avocado Production in a Warm Tropical Climate Municipality: A Case Study in the Michoacan Avocado Belt in Central México. Water. 2024; 16(12):1719. https://doi.org/10.3390/w16121719
Chicago/Turabian StyleFuerte-Velázquez, Diana J., and Alberto Gómez-Tagle. 2024. "Water Footprint and Water Sustainability of Agroindustrial Avocado Production in a Warm Tropical Climate Municipality: A Case Study in the Michoacan Avocado Belt in Central México" Water 16, no. 12: 1719. https://doi.org/10.3390/w16121719
APA StyleFuerte-Velázquez, D. J., & Gómez-Tagle, A. (2024). Water Footprint and Water Sustainability of Agroindustrial Avocado Production in a Warm Tropical Climate Municipality: A Case Study in the Michoacan Avocado Belt in Central México. Water, 16(12), 1719. https://doi.org/10.3390/w16121719