Three-Dimensional Numerical Simulation of a Two-Phase Supercritical Open Channel Junction Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Scenario and Reference Experimental Setup
2.2. Computational Fluid Dynamics Governing Equations
2.3. Multiphase Flow Models (VOF and Mixture)
2.4. Numerical Grid, Boundary Conditions, and Wall Functions
2.5. Solution Methods Settings
2.6. Convergence Criterion
2.7. HPC Cluster
3. Results
3.1. Flow Development
3.2. Grid Independence Test
4. Discussion
4.1. Result Credibility Assessment
4.2. CFD and LIDAR Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scheres, B.; Schüttrumpf, H.; Felder, S. Flow Resistance and Energy Dissipation in Supercritical Air-Water Flows Down Vegetated Chutes. Water Resour. Res. 2020, 56, e2019WR026686. [Google Scholar] [CrossRef]
- Gualtieri, C.; Chanson, H. Physical and numerical modelling of air-water flows: An Introductory Overview. Environ. Model. Softw. 2021, 143, 105109. [Google Scholar] [CrossRef]
- Sabrina, S.; Lewis, Q.; Rhoads, B. Large-Scale Particle Image Velocimetry Reveals Pulsing of Incoming Flow at a Stream Confluence. Water Resour. Res. 2021, 57, e2021WR029662. [Google Scholar] [CrossRef]
- Tratnik, K.; Svenšek, A.; Kerin Kovač, A. Najobsežnejše Poplave v Zgodovini Slovenije. MMC RTV SLO, STA, Radio Slovenija, Televizija Slovenija. 2023. Available online: https://www.rtvslo.si/okolje/najobseznejse-poplave-v-zgodovini-slovenije/677033 (accessed on 15 April 2024).
- Hager, W.H.; Boes, R.M. Hydraulic structures: A positive outlook into the future. J. Hydraul. Eng. 2014, 52, 299–310. [Google Scholar] [CrossRef]
- Chanson, H.; Leng, X.; Wang, H. Challenging hydraulic structures of the twenty-first century—From bubbles, transient turbulence to fish passage. J. Hydraul. Res. 2021, 59, 21–35. [Google Scholar] [CrossRef]
- Chanson, H. Measuring air-water interface area in supercritical open channel flow. Water Res. 1997, 31, 1414–1420. [Google Scholar] [CrossRef]
- Pfister, M.; Chanson, H. Two-phase air-water flows: Scale effects in physical modeling. J. Fluid Mech. 2014, 26, 291–298. [Google Scholar] [CrossRef]
- Rak, G.; Hočevar, M.; Steinman, F. Water surface topology of supercritical junction flow. J. Hydrol. Hydromech. 2019, 67, 163–170. [Google Scholar] [CrossRef]
- Rak, G.; Hočevar, M.; Steinman, F. Measuring water surface topography using laser scanning. Flow Meas. Instrum. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Teng, P.; Yang, J. Modeling and Prototype Testing of Flows over Flip-Bucket Aerators. J. Hydraul. Eng. 2018, 144, 04018069. [Google Scholar] [CrossRef]
- Brossard, J.; Hémon, A.; Rivoalen, E. Improved analysis of regular gravity waves and coefficient of reflection using one or two moving probes. Coast. Eng. 2000, 39, 193–212. [Google Scholar] [CrossRef]
- Wang, K.; Tang, R.; Bai, R.; Wang, H. Evaluating phase-detection-based approaches for interfacial velocity and turbulence intensity estimation in a highly-aerated hydraulic jump. Flow Meas. Instrum. 2021, 81, 102045. [Google Scholar] [CrossRef]
- Felder, S.; Chanson, H. Air–Water Flow Patterns of Hydraulic Jumps on Uniform Beds Macroroughness. J. Hydraul. Eng. 2018, 144, 04017068. [Google Scholar] [CrossRef]
- Bung, D.B. Non-intrusive detection of air–water surface roughness in self-aerated chute flows. J. Hydraul. Res. 2013, 51, 322–329. [Google Scholar] [CrossRef]
- Zhang, G.; Valero, D.; Bung, D.B.; Chanson, H. On the estimation of free-surface turbulence using ultrasonic sensors. Flow Meas. Instrum. 2018, 60, 171–184. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Mole, M.A.; Turner, I.L.; Peirson, W.L. Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR. Coast. Eng. 2010, 57, 1059–1065. [Google Scholar] [CrossRef]
- Montano, L.; Li, R.; Felder, S. Continuous measurements of time-varying free-surface profiles in aerated hydraulic jumps with a LIDAR. Exp. Therm. Fluid. Sci. 2018, 93, 379–397. [Google Scholar] [CrossRef]
- Hofland, B.; Diamantidou, E.; van Steeg, P.; Meys, P. Wave runup and wave overtopping measurements using a laser scanner. Coast. Eng. 2015, 106, 20–29. [Google Scholar] [CrossRef]
- Pleterski, Ž.; Hočevar, M.; Bizjan, B.; Kolbl Repinc, S.; Rak, G. Measurements of Complex Free Water Surface Topography Using a Photogrammetric Method. Remote Sens. 2023, 15, 4774. [Google Scholar] [CrossRef]
- Rak, G.; Hočevar, M.; Kolbl Repinc, S.; Novak, L.; Bizjan, B. A Review on Methods for Measurement of Free Water Surface. Sensors 2023, 23, 1842. [Google Scholar] [CrossRef]
- Li, R.; Splinter, K.D.; Felder, S. Aligning free surface properties in time-varying hydraulic jumps. Exp. Therm. Fluid. Sci. 2021, 126, 110392. [Google Scholar] [CrossRef]
- Pavlovčič, U.; Rak, G.; Hočevar, M.; Jezeršek, M. Ranging of Turbulent Water Surfaces Using a Laser Triangulation Principle in a Laboratory Environment. J. Hydraul. Eng. 2020, 146, 04020052. [Google Scholar] [CrossRef]
- Feurich, R.; Olsen, N.R.B. Finding Free Surface of Supercritical Flows—Numerical Investigation. Eng. Appl. Comput. Fluid Mech. 2012, 6, 307–315. [Google Scholar] [CrossRef]
- Azma, A.; Zhang, Y. The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence. Processes 2020, 8, 614. [Google Scholar] [CrossRef]
- Shakibainia, A.; Tabatabai, M.R.M.; Zarrati, A.R. Three-dimensional numerical study of flow structure in channel confluences. Can. J. Civ. Eng. 2010, 37, 772–781. [Google Scholar] [CrossRef]
- Sharifipour, M.; Bonakdari, H.; Zaji, A.H.; Shamshirband, S. Numerical investigation of flow field and flowmeter accuracy in open-channel junctions. Eng. Appl. Comput. Fluid Mech. 2015, 9, 280–290. [Google Scholar] [CrossRef]
- Zaji, A.H.; Bonakdari, H. Efficient methods for prediction of velocity fields in open channel junctions based on the artifical neural network. Eng. Appl. Comput. Fluid Mech. 2015, 9, 220–232. [Google Scholar] [CrossRef]
- Luo, M.; Khayyer, A.; Lin, P. Particle methods in ocean and coastal engineering. Appl. Ocean Res. 2021, 114, 102734. [Google Scholar] [CrossRef]
- Chang, K.-H.; Chang, T.-J.; Chiang, Y.-M. A novel SPH-SWEs approach for modeling subcritical and supercritical flows at open channel junctions. J. Hydro-Environ. Res. 2016, 13, 76–88. [Google Scholar] [CrossRef]
- Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res. 2015, 51, 5464–5486. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Liu, T.H.; Lu, W.Z.; Wang, X.K. Numerical Simulation of Confluence Flow in Open Channel with Dynamic Meshes Techniques. Adv. Mech. Eng. 2013, 5, 860431. [Google Scholar] [CrossRef]
- Bor, A.; Szabo-Meszaros, M.; Vereide, K.; Lia, L. Application of Three-Dimensional CFD Model to Determination of the Capacity of Existing Tyrolean Intake. Water 2024, 16, 737. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, Y.; Wang, X.; Lu, W.; Wang, X.; Lu, J.W.Z.; Leung, A.Y.T.; Iu, V.P.; Mok, K.M. 3D Numerical Simulation of Flow Structure in Confluence River. In Proceedings of the 2nd International Symposium on Computational Mechanics and the 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science, Hong Kong, Macau, China, 30 November–3 December 2009 2010; pp. 1297–1302. [Google Scholar] [CrossRef]
- Rakib, Z.; Zeng, J. Application of CFD to Improve Hydrodynamic Modeling to Estimate Local Head Loss Induced by Canal Confluence. In Proceedings of the World Environmental and Water Resources Congress, Pittsburgh, PA, USA, 19–23 May 2019; pp. 178–191. [Google Scholar] [CrossRef]
- Sivakumar, M.; Dissanayake, K.; Godbole, A. Numerical modeling of flow at an open-channel confluence. In Environmental Sustainability Through Multidisciplinary Integration; Mowlei, M., Rose, A., Lamborn, J., Eds.; University of Wollongong: Wollongong, Australia, 2004; pp. 97–106. [Google Scholar]
- Penna, N.; De Marchis, M.; Canelas, O.B.; Napoli, E.; Cardoso, A.H.; Gaudio, R. Effect of the Junction Angle on Turbulent Flow at a Hydraulic Confluence. Water 2018, 10, 469. [Google Scholar] [CrossRef]
- Khanam, N.; Biswal, S.K. Prediction of Flow around a Vertical Circular Pier in a Discordant Bed Channel Confluence. Water Resour. 2021, 48, 947–959. [Google Scholar] [CrossRef]
- Cho, Y.-H.; Dao, M.H.; Nichols, A. Computational fluid dynamics simulation of rough bed open channels using openFOAM. Front. Environ. Sci. 2022, 10, 981680. [Google Scholar] [CrossRef]
- Nasif, G.; Balachandar, R.; Barron, R.M. Supercritical flow characteristics in smooth open channels with different aspect ratios. Phys. Fluids 2020, 32, 105102. [Google Scholar] [CrossRef]
- Einstein, H.A.; Huon, L. Secondary currents in straight channels. Eos. Trans. AGU 1958, 39, 1085–1088. [Google Scholar] [CrossRef]
- Brown, K.; Crookston Schnabel, B. Investigating Supercritical Flows in Curved Open Channels with Three Dimensional Numerical Modeling. In Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, USA, 27–30 June 2016; ISHS: Leuven, Belgium, 2022; pp. 230–239. [Google Scholar] [CrossRef]
- Jia, Y.-Y.; Yao, Z.-D.; Duan, H.-F.; Wang, X.-K.; Yan, X.-F. Numerical assessment of canopy blocking effect on partly-obstructed channel flows: From perturbations to vortices. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1761–1780. [Google Scholar] [CrossRef]
- Song, X.; Chen, Y.; Huang, H.; Xu, H.; Bai, Y.; Zhang, J. (Turbulent flow simulations in a simplified channel bend model of Dragon style rivers with constant curvature and different single-short-branch characteristics. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2234019. [Google Scholar] [CrossRef]
- Rak, G.; Hočevar, M.; Steinman, F. Non-intrusive measurements of free-water-surface profiles and fluctuations of turbulent, two-phase flow using 2-D laser scanner. Meas. Sci. Technol. 2020, 31, 064001. [Google Scholar] [CrossRef]
- Rak, G.; Steinman, F.; Hočevar, M.; Dular, M.; Jezeršek, M.; Pavlovčič, U. Laser ranging measurements of turbulent water surfaces. Eur. J. Mech. B Fluids 2020, 81, 165–172. [Google Scholar] [CrossRef]
- Ansys®. Ansys Fluent Theory Guide (2021/R2); ANSYS, Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Menter, F.R.; Egorov, Y. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. FTaC 2010, 85, 113–138. [Google Scholar] [CrossRef]
- Abidi, A.; Ahmadi, A.; Enayati, M.; Sajadi, S.M.; Yarmand, H.; Ahmed, A.; Cheraghian, G. A Review of the Methods of Modeling Multi-Phase Flows within Different Microchannels Shapes and Their Applications. Micromachines 2021, 12, 1113. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.M.A.; Jasak, H.; Skuric, V. Three dimensional modeling of free surface flow and sediment transport with bed deformation using automatic mesh motion. Environ. Model. Softw. 2017, 97, 303–317. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the Partial Difference Equations of Mathematical Physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
- Ahmadpanah, S.; Li, S.S. Simulations of bubbly two-phase flow in hydraulic jumps of relatively high Reynolds number. Can. J. Civ. Eng. 2019, 46, 48–60. [Google Scholar] [CrossRef]
- Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Main channel water velocity | m/s | 3.45 |
Main channel opening | mm | 15 |
Side channel water velocity | m/s | 2.24 |
Side channel opening | mm | 15 |
Main channel Reynolds number | - | 51,516 |
Side channel Reynolds number | - | 33,532 |
Main channel Froude number | - | 9 |
Side channel Froude number | - | 6 |
Operating pressure | Pa | 101,325 |
Temperature | °C | 15 |
Model | Point 1 (1000, 0, 30) | Point 2 (2000, 100, 20) | ||||||
---|---|---|---|---|---|---|---|---|
k-ω SST VOF | No. of Cells (-) | Max Cell Length (mm) | Time Step (ms) | Calculation Time (Core Hours) | Velocity Magnitude (m/s) | RMSE (m/s) | Velocity Magnitude (m/s) | RMSE (m/s) |
Coarse mesh | 1.42 × 105 | 35.3 | 0.505 | 1478 | 2.00 | 0.12 | 1.87 | 0.05 |
Medium mesh | 2.130 × 106 | 7.35 | 0.250 | 14,224 | 2.53 | 0.08 | 1.85 | 0.16 |
Fine mesh | 3.923 × 106 | 5.7 | 0.220 | 29,690 | 2.52 | 0.18 | 1.94 | 0.24 |
Ultra fine | 8.004 × 106 | 4.7 | 0.183 | 89,368 | 2.55 | 0.20 | 1.92 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagojevič, M.; Hočevar, M.; Bizjan, B.; Drešar, P.; Kolbl Repinc, S.; Rak, G. Three-Dimensional Numerical Simulation of a Two-Phase Supercritical Open Channel Junction Flow. Water 2024, 16, 1757. https://doi.org/10.3390/w16121757
Blagojevič M, Hočevar M, Bizjan B, Drešar P, Kolbl Repinc S, Rak G. Three-Dimensional Numerical Simulation of a Two-Phase Supercritical Open Channel Junction Flow. Water. 2024; 16(12):1757. https://doi.org/10.3390/w16121757
Chicago/Turabian StyleBlagojevič, Marko, Marko Hočevar, Benjamin Bizjan, Primož Drešar, Sabina Kolbl Repinc, and Gašper Rak. 2024. "Three-Dimensional Numerical Simulation of a Two-Phase Supercritical Open Channel Junction Flow" Water 16, no. 12: 1757. https://doi.org/10.3390/w16121757
APA StyleBlagojevič, M., Hočevar, M., Bizjan, B., Drešar, P., Kolbl Repinc, S., & Rak, G. (2024). Three-Dimensional Numerical Simulation of a Two-Phase Supercritical Open Channel Junction Flow. Water, 16(12), 1757. https://doi.org/10.3390/w16121757