Attribution Analysis of Climate Change and Human Activities on Runoff and Vegetation Changes in the Min River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Research Methods
2.3.1. Mann–Kendall Trend Analysis with Mutation Test
2.3.2. Analysis of Pettitt Mutations
2.3.3. Linear Regression Analysis
2.3.4. Stability Analysis
2.3.5. Extended Budyko Equation
2.3.6. Elasticity Coefficient Method
3. Results
3.1. Trend Analysis of Factors
3.2. Analysis of Sudden Changes in Runoff and Influencing Factors
3.3. Trends in Vegetation Coverage Changes
3.4. MRB Land Use Change
3.5. NDVI with the Budyko Parameter n
3.6. Runoff Sensitivity Assessment and Quantitative Analysis
3.7. Runoff Change Attribution Analysis
4. Conclusions and Discussion
4.1. Discussion
4.1.1. Impacts of Climate Change and Human Activity on Runoff and Vegetation Coverage
4.1.2. Correlation of NDVI Changes with Runoff
4.1.3. Shortcomings and Future Work
4.2. Conclusions
- (1)
- While ET0 had a growing trend during the investigation, the MRB R and Pr showed a declining tendency. Furthermore, there was a 0.01 decrease in the slope of the fitted curve that shows the relationship between precipitation and runoff. In terms of spatial distribution, the downstream Pr declined significantly, while the overall ET0 had a significant increasing trend.
- (2)
- With a coefficient of variation of 0.072, the overall NDVI fluctuation remained generally consistent between S1 and S2, with an overall mean value of 0.46. The NDVI indicated an increasing trend throughout, with the exception of the Chengdu Plain.
- (3)
- From 1985 to 2020, the land use in the watershed was dominated by cropland, grassland, and forest land, accounting for more than 95%; urban construction land and the watershed increased by 344.49% and 57.35%.
- (4)
- The vegetation index and the Budyko model parameters showed a substantial link, as evidenced by the positive linear relationship between the NDVI and the parameter n (correlation coefficient of 0.41, p < 0.01). In terms of precipitation and potential evapotranspiration in the S1 period, the correlation was not significant, while in the S2 period, the correlation was significant.
- (5)
- The sensitivity of the MRB runoff to changes in precipitation, NDVI, human activities, and potential evapotranspiration decreased sequentially in the S2 period, with contributions of 32.41%, 30.65%, 27.51%, and 9.43%, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Masjud, Y.I. The correlation of human activities to climate change effect on hydrological cycle and water resource. Gend. Hum. Dev. Econ. 2024, 1, 10–19. [Google Scholar]
- Jin, T.; Zhang, X.; Wang, T.; Liang, J.; Ma, W.; Xie, J. Spatiotemporal impacts of climate change and human activities on blue and green water resources in northwest river basins of China. Ecol. Indic. 2024, 160, 111823. [Google Scholar] [CrossRef]
- Li, B.; Feng, Q.; Wang, Y. Historical and future runoff changes and their impacts on stormflow characteristics in the upper Yangtze River basin, China. Catena 2024, 235, 107684. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Robeson, S.M.; Knouft, J.H. Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophys. Res. Lett. 2016, 43, 5079–5088. [Google Scholar] [CrossRef]
- Zhang, K.; Parolari, A.J. Impact of stormwater infiltration on rainfall-derived inflow and infiltration: A physically based surface–subsurface urban hydrologic model. J. Hydrol. 2022, 610, 127938. [Google Scholar] [CrossRef]
- He, S.; Chen, K.; Liu, Z.; Deng, L. Exploring the impacts of climate change and human activities on future runoff variations at the seasonal scale. J. Hydrol. 2023, 619, 129382. [Google Scholar] [CrossRef]
- Quang, N.H.; Viet, T.Q.; Thang, H.N.; Hieu, N.T.D. Long-term water level dynamics in the Red River basin in response to anthropogenic activities and climate change. Sci. Total Environ. 2024, 912, 168985. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Li, Y.; Xu, Y.J.; Turner, R.E.; Ran, L.; Wang, X.; Fu, B. Long-term trends of streamflow, sediment load and nutrient fluxes from the Mississippi River Basin: Impacts of climate change and human activities. J. Hydrol. 2023, 616, 128822. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Yang, H.; Hong, F.; Yang, K.; Guo, W. The ecological–hydrological regime of the Han River basin under changing conditions: The coupled influence of human activities and climate change. Ecohydrology 2024. [Google Scholar] [CrossRef]
- Ren, D.; Liu, S.; Wu, Y.; Xiao, F.; Patil, S.D.; Dallison, R.J.; Feng, S.; Zhao, F.; Qiu, L.; Wang, S. Quantifying natural and anthropogenic impacts on streamflow and sediment load reduction in the upper to middle Yellow River Basin. J. Hydrol. Reg. Stud. 2024, 53, 101788. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, J.; Zhao, X.; Liu, C.; Wei, W.; Yang, X.; Li, Q.; Zhao, Y. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecol. Indic. 2021, 121, 107013. [Google Scholar] [CrossRef]
- Hu, J.; Ma, J.; Nie, C.; Xue, L.; Zhang, Y.; Ni, F.; Deng, Y.; Liu, J.; Zhou, D.; Li, L. Attribution Analysis of Runoff change in Min-tuo River Basin based on SWAT model simulations, china. Sci. Rep. 2020, 10, 2900. [Google Scholar] [CrossRef] [PubMed]
- Yi-nan, N.; Xiao-nan, Y.; Wen-yi, S.; Xing-min, M.; Peng, G.; Guang-ju, Z.; Xiao-yan, S. The trend of runoff change and its attribution in the middle reaches of the Yellow River. J. Nat. Resour. 2021, 36, 256–269. [Google Scholar]
- Wang, M.; Zhang, Y.; Lu, Y.; Gao, L.; Wang, L. Attribution analysis of streamflow changes based on large-scale hydrological modeling with uncertainties. Water Resour. Manag. 2023, 37, 713–730. [Google Scholar] [CrossRef]
- Chen, L.; Yang, M.; Liu, X.; Lu, X. Attribution and sensitivity analysis of runoff variation in the yellow river basin under climate change. Sustainability 2022, 14, 14981. [Google Scholar] [CrossRef]
- Wu, Z.; Mei, Y.; Chen, J.; Hu, T.; Xiao, W. Attribution analysis of dry season runoff in the Lhasa River using an extended hydrological sensitivity method and a hydrological model. Water 2019, 11, 1187. [Google Scholar] [CrossRef]
- Xu, R.; Qiu, D.; Wu, C.; Mu, X.; Zhao, G.; Sun, W.; Gao, P. Quantifying climate and anthropogenic impacts on runoff using the SWAT model, a Budyko-based approach and empirical methods. Hydrol. Sci. J. 2023, 68, 1358–1371. [Google Scholar] [CrossRef]
- Gao, X.; Yan, C.; Wang, Y.; Zhao, X.; Zhao, Y.; Sun, M.; Peng, S. Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau—A case-study of the Jing River Basin. Land Degrad. Dev. 2020, 31, 1622–1640. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Xue, B.; Zhang, X.; Wang, G. Attribution of runoff and hydrological drought changes in an ecologically vulnerable basin in semi-arid regions of China. Hydrol. Process. 2023, 37, e15003. [Google Scholar] [CrossRef]
- Osuch, M.; Wawrzyniak, T.; Nawrot, A. Diagnosis of the hydrology of a small Arctic permafrost catchment using HBV conceptual rainfall-runoff model. Hydrol. Res. 2019, 50, 459–478. [Google Scholar] [CrossRef]
- Herrera, P.A.; Marazuela, M.A.; Hofmann, T. Parameter estimation and uncertainty analysis in hydrological modeling. Wiley Interdiscip. Rev. Water 2022, 9, e1569. [Google Scholar] [CrossRef]
- Liu, W.; Shi, C.; Zhou, Y. Trends and attribution of runoff changes in the upper and middle reaches of the Yellow River in China. J. Hydro-Environ. Res. 2021, 37, 57–66. [Google Scholar] [CrossRef]
- Ni, Y.; Yu, Z.; Lv, X.; Qin, T.; Yan, D.; Zhang, Q.; Ma, L. Spatial difference analysis of the runoff evolution attribution in the Yellow River Basin. J. Hydrol. 2022, 612, 128149. [Google Scholar] [CrossRef]
- He, Y.; Hu, Y.; Song, J.; Jiang, X. Variation of runoff between southern and northern China and their attribution in the Qinling Mountains, China. Ecol. Eng. 2021, 171, 106374. [Google Scholar] [CrossRef]
- Ji, G.; Song, H.; Wei, H.; Wu, L. Attribution analysis of climate and anthropic factors on runoff and vegetation changes in the source area of the Yangtze River from 1982 to 2016. Land 2021, 10, 612. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Q.; Li, G.; Li, J. Data-driven runoff forecasting for Minjiang River: A case study. Water Supply 2020, 20, 2284–2295. [Google Scholar] [CrossRef]
- Zhang, H.-l.; Wang, Y.-j.; Wang, Y.-q.; Li, D.-x.; Wang, X.-k. Quantitative comparison of semi-and fully-distributed hydrologic models in simulating flood hydrographs on a mountain watershed in southwest China. J. Hydrodyn. 2013, 25, 877–885. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, H.; Jiao, X.; Huang, L.; Wang, H. Analysis of alterations of the hydrological situation and causes of river runoff in the Min River, China. Water 2022, 14, 1093. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Hu, J.; Sang, Y.; Guo, W. Characterization of the evolution of runoff-sediment relationship in Min River based on coupling coordination theory. River Res. Appl. 2023, 39, 1067–1083. [Google Scholar] [CrossRef]
- Zhai, H.; Wang, M.; Shen, D.; Hu, B.; Li, Y. Analysis of runoff variation and driving factors in the Minjiang River Basin over the last 60 years. J. Water Clim. Change 2022, 13, 3675–3691. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Paudel, K.P. Small-scale forest cooperative management of the grain for green program in Xinjiang, China: A SWOT-ANP analysis. Small-Scale For. 2021, 20, 221–233. [Google Scholar] [CrossRef]
- Liu, L.; Ao, T.; Zhou, L.; Takeuchi, K.; Gusyev, M.; Zhang, X.; Wang, W.; Ren, Y. Comprehensive evaluation of parameter importance and optimization based on the integrated sensitivity analysis system: A case study of the BTOP model in the upper Min River Basin, China. J. Hydrol. 2022, 610, 127819. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Qian, B.; He, Z.; Ji, G. Quantitatively computing the influence of vegetation changes on surface discharge in the middle-upper reaches of the huaihe river, China. Forests 2022, 13, 2000. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resour. Res. 2010, 466, W09503. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Zhong, G.; Lin, H.; Zhou, Z. Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrol. Sci. J. 2020, 65, 2419–2438. [Google Scholar] [CrossRef]
- Ashraf, M.S.; Ahmad, I.; Khan, N.M.; Zhang, F.; Bilal, A.; Guo, J. Streamflow variations in monthly, seasonal, annual and extreme values using Mann-Kendall, Spearmen’s Rho and innovative trend analysis. Water Resour. Manag. 2021, 35, 243–261. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, J.; Lei, X. Spatial-Temporal Variations of Extreme Precipitation Indices in the Xinjiang Cold Area over the Past 60 Years. J. Hydrol. Eng. 2023, 28, 04023005. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Shahid, S. Precipitation and runoff variation characteristics in typical regions of North China Plain: A case study of Hengshui City. Theor. Appl. Climatol. 2020, 142, 971–985. [Google Scholar] [CrossRef]
- Yue, S.; Huang, J.; Zhang, Y.; Chen, W.; Guo, Y.; Cheng, M.; Ji, G. Quantitative Evaluation of the Impact of Vegetation Restoration and Climate Variation on Runoff Attenuation in the Luan River Basin Based on the Extended Budyko Model. Land 2023, 12, 1626. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, S.; Luo, P.; Su, F.; Sun, B.; Guo, J.; Yang, R. Assessing ecohydrological factors variations and their relationships at different spatio-temporal scales in semiarid area, northwestern China. Adv. Space Res. 2021, 67, 2368–2381. [Google Scholar] [CrossRef]
- Sun, Y.-L.; Shan, M.; Pei, X.-R.; Zhang, X.-K.; Yang, Y.-L. Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Phys. Chem. Earth Parts A/B/C 2020, 115, 102834. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, Y.; He, K.; Wen, Y. Temporal and spatial variation characteristics of vegetation coverage and quantitative analysis of its potential driving forces in the Qilian Mountains, China, 2000–2020. Ecol. Indic. 2022, 143, 109429. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.; Yang, H.; Hong, F.; Guo, W. Quantitative evaluation of the impact of climate change and human activities on Jialing river runoff changes in the past 60 years, China. J. Water Clim. Change 2023, 14, 590–609. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Yang, L.; Zhao, G.; Tian, P.; Mu, X.; Tian, X.; Feng, J.; Bai, Y. Runoff changes in the major river basins of China and their responses to potential driving forces. J. Hydrol. 2022, 607, 127536. [Google Scholar] [CrossRef]
- Xu, R.; Gu, C.; Qiu, D.; Wu, C.; Mu, X.; Gao, P. Analysis of runoff changes in the Wei River Basin, China: Confronting climate change and human activities. Water 2023, 15, 2081. [Google Scholar] [CrossRef]
- Li, D.; Pan, M.; Cong, Z.; Zhang, L.; Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013, 49, 969–976. [Google Scholar] [CrossRef]
- Ji, G.; Yue, S.; Zhang, J.; Huang, J.; Guo, Y.; Chen, W. Assessing the impact of vegetation variation, climate and human factors on the streamflow variation of yarlung zangbo river with the corrected budyko equation. Forests 2023, 14, 1312. [Google Scholar] [CrossRef]
- Ji, G.; Huang, J.; Guo, Y.; Yan, D. Quantitatively calculating the contribution of vegetation variation to runoff in the middle reaches of Yellow River using an adjusted Budyko formula. Land 2022, 11, 535. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Y.; Yang, D.; Zhang, S. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. J. Hydrol. 2020, 590, 125389. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- He, Q.; Fok, H.S.; Ferreira, V.; Tenzer, R.; Ma, Z.; Zhou, H. Three-dimensional Budyko framework incorporating terrestrial water storage: Unraveling water-energy dynamics, vegetation, and ocean-atmosphere interactions. Sci. Total Environ. 2023, 904, 166380. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ao, T.; Zhang, X.; Li, X.; Yang, K. Climate change characteristics of extreme temperature in the Minjiang River Basin. Adv. Meteorol. 2019, 2019, 1935719. [Google Scholar] [CrossRef]
- Fang, Y.-H.; Zhang, X.; Niu, G.-Y.; Zeng, W.; Zhu, J.; Zhang, T. Study of the spatiotemporal characteristics of meltwater contribution to the total runoff in the upper Changjiang River basin. Water 2017, 9, 165. [Google Scholar] [CrossRef]
- Fang, Y.; Du, S.; Wen, J.; Zhang, M.; Fang, J.; Liu, M. Chinese built-up land in floodplains moving closer to freshwaters. Int. J. Disaster Risk Sci. 2021, 12, 355–366. [Google Scholar] [CrossRef]
- Zheng, Y.; Tang, J.; Huang, F. The impact of industrial structure adjustment on the spatial industrial linkage of carbon emission: From the perspective of climate change mitigation. J. Environ. Manag. 2023, 345, 118620. [Google Scholar] [CrossRef]
- Cheng, Y.; Jin, L.; Fu, H.; Fan, Y.; Bai, R.; Wei, Y. Investigating the impact of climate change and policy orientation on energy–carbon–water nexus under multi-criteria analysis. Renew. Sustain. Energy Rev. 2024, 189, 114032. [Google Scholar] [CrossRef]
- Dai, T.; Dai, X.; Lu, H.; He, T.; Li, W.; Li, C.; Huang, S.; Huang, Y.; Tong, C.; Qu, G. The impact of climate change and human activities on the change in the net primary productivity of vegetation—Taking Sichuan Province as an example. Environ. Sci. Pollut. Res. 2024, 31, 7514–7532. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sun, F.; Yu, J.; Liu, X.; Chen, Y. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrol. Earth Syst. Sci. 2016, 20, 393–409. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Yang, Y.; Zhang, L.; Zhang, Y.; Li, S.; Wei, Y. Spatial-temporal evolution characteristics and driving force analysis of NDVI in the Minjiang River Basin, China, from 2001 to 2020. Water 2022, 14, 2923. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled impacts of climate and land use changes on regional ecosystem services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
Variable | Z | Significance Level | |
---|---|---|---|
−0.311 | −0.569 | - | |
−0.452 | −0.375 | - | |
0.108 | 3.387 | 0.01 | |
0.001 | 3.266 | 0.01 |
Period | |||||||||
---|---|---|---|---|---|---|---|---|---|
S1 | 637.1 | 1018.8 | 602.2 | 0.51 | 0.98 | 1.38 | −0.37 | −0.39 | 0.48 |
S2 | 583.9 | 987.6 | 613.7 | 0.48 | 1.13 | 1.41 | −0.42 | −0.4 | 0.41 |
−53.2 | −31.2 | 11.5 | −0.03 | 0.15 | 0.03 | −0.05 | −0.01 | −0.07 |
−17.89 | −5.21 | −15.19 | −16.92 | 32.41% | 9.43% | 27.51% | 30.65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Gu, Y.; Wang, H.; Lin, J.; Zhuo, P.; Ao, T. Attribution Analysis of Climate Change and Human Activities on Runoff and Vegetation Changes in the Min River Basin. Water 2024, 16, 1804. https://doi.org/10.3390/w16131804
Liu S, Gu Y, Wang H, Lin J, Zhuo P, Ao T. Attribution Analysis of Climate Change and Human Activities on Runoff and Vegetation Changes in the Min River Basin. Water. 2024; 16(13):1804. https://doi.org/10.3390/w16131804
Chicago/Turabian StyleLiu, Shuyuan, Yicheng Gu, Huan Wang, Jin Lin, Peng Zhuo, and Tianqi Ao. 2024. "Attribution Analysis of Climate Change and Human Activities on Runoff and Vegetation Changes in the Min River Basin" Water 16, no. 13: 1804. https://doi.org/10.3390/w16131804
APA StyleLiu, S., Gu, Y., Wang, H., Lin, J., Zhuo, P., & Ao, T. (2024). Attribution Analysis of Climate Change and Human Activities on Runoff and Vegetation Changes in the Min River Basin. Water, 16(13), 1804. https://doi.org/10.3390/w16131804