Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas
Abstract
:1. Introduction
2. Strategies to Improve WUE
2.1. By Agronomic Methods
2.1.1. Maximizing the Utilization of Green Water
2.1.2. Cover Crops
2.1.3. Canopy Management
3. Irrigation Strategies and WUE
3.1. Deficit Irrigation (DI)
- I.
- Regulated deficit irrigation.
- II.
- Partial root zone drying.
3.1.1. Regulated Deficit Irrigation
3.1.2. Partial Root Zone Drying
4. Irrigation Modernization
4.1. Water Distribution System
4.2. Irrigation Scheduling
4.3. Real-Time Control
5. Recent Potential Opportunities for WUE
5.1. Remote Sensing
5.2. Communication Networking
5.3. Irrigation Water Productivity
6. Water Consumption at the Basin Scale
6.1. WUE and Water Consumption at the Basin Scale
6.2. Factors Affecting Trends in WUE
7. Water Recycling Strategies in Arid Regions
AI-Based Industrial Waste Water Recycling
8. Use an Automatic Water Supply Facility
9. IoT-Based Accurate Irrigation
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.F.; Karim, Z. World’s demand for food and water: The consequences of climate change. In Desalination-Challenges and Opportunities; BoD–Books on Demand: Norderstedt Germany, 2019; pp. 1–27. [Google Scholar]
- Kunzig, R. Population 7 billion. Natl. Geogr. 2011, 219, 32–63. [Google Scholar]
- Lal, R. World water resources and achieving water security. Agron. J. 2015, 107, 1526–1532. [Google Scholar] [CrossRef]
- Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Du, C.; Li, L.; Effah, Z. Effects of straw mulching and reduced tillage on crop production and environment: A review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- Yang, W.U.; Bian, S.-F.; Liu, Z.-M.; Wang, L.-C.; Wang, Y.-J.; Xu, W.-H.; Yu, Z. Drip irrigation incorporating water conservation measures: Effects on soil water–nitrogen utilization, root traits and grain production of spring maize in semi-arid areas. J. Integr. Agric. 2021, 20, 3127–3142. [Google Scholar]
- Alsamin, B.; El-Hendawy, S.; Refay, Y.; Tola, E.; Mattar, M.A.; Marey, S. Integrating Tillage and Mulching Practices as an Avenue to Promote Soil Water Storage, Growth, Production, and Water Productivity of Wheat under Deficit Irrigation in Arid Countries. Agronomy 2022, 12, 2235. [Google Scholar] [CrossRef]
- Kumar, N.; Sow, S.; Rana, L.; Kumar, V.; Kumar, J.; Pramanick, B.; Singh, A.K.; Alkeridis, L.A.; Sayed, S.; Gaber, A. Productivity, water use efficiency and soil properties of sugarcane as influenced by trash mulching and irrigation regimes under different planting systems in sandy loam soils. Front. Sustain. Food Syst. 2024, 8, 1340551. [Google Scholar] [CrossRef]
- Jabeen, M.; Ahmed, S.R.; Ahmed, M. Enhancing water use efficiency and grain yield of wheat by optimizing irrigation supply in arid and semi-arid regions of Pakistan. Saudi J. Biol. Sci. 2022, 29, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Mahato, A.; Upadhyay, S.; Sharma, D. Global water scarcity due to climate change and its conservation strategies with special reference to India: A review. Plant Arch. 2022, 22, 64–69. [Google Scholar] [CrossRef]
- Begna, T. Major challenging constraints to crop production farming system and possible breeding to overcome the constraints. Int. J. Res. Stud. Agric. Sci. (IJRSAS) 2020, 6, 27–46. [Google Scholar]
- Gonzalez-Dugo, V.; Durand, J.-L.; Gastal, F. Water deficit and nitrogen nutrition of crops. A review. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Chand, S.; Indu; Singhal, R.K.; Govindasamy, P. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass Forage Sci. 2022, 77, 11–32. [Google Scholar] [CrossRef]
- Pérez-Méndez, N.; Miguel-Rojas, C.; Jimenez-Berni, J.A.; Gomez-Candon, D.; Pérez-de-Luque, A.; Fereres, E.; Catala-Forner, M.; Villegas, D.; Sillero, J.C. Plant breeding and management strategies to minimize the impact of water scarcity and biotic stress in cereal crops under Mediterranean conditions. Agronomy 2021, 12, 75. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Prakash, O. Chapter 5—The impact of chemical fertilizers on our environment and ecosystem. In Research Trends in Environmental Sciences, 2nd ed.; AkiNik Publications: New Delhi, India, 2019. [Google Scholar]
- Bisht, N.; Chauhan, P.S. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In Soil Contamination-Threats and Sustainable Solutions; BoD–Books on Demand: Norderstedt, Germany, 2020; Volume 2020, pp. 1–10. [Google Scholar]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Raza, A.; Friedel, J.K.; Bodner, G. Improving water use efficiency for sustainable agriculture. In Agroecology and Strategies for Climate Change; Springer: Berlin/Heidelberg, Germany, 2012; pp. 167–211. [Google Scholar]
- Ahmed, N.; Hornbuckle, J.; Turchini, G.M. Blue–green water utilization in rice–fish cultivation towards sustainable food production. Ambio 2022, 51, 1933–1948. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Eldin, S.M.; Ali, B.; Bawazeer, S.; Usman, M.; Iqbal, R.; Neupane, D.; Ullah, A.; Khan, A. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Front. Environ. Sci. 2023, 11, 1059449. [Google Scholar] [CrossRef]
- Ejaz, M.K.; Aurangzaib, M.; Iqbal, R.; Shahzaman, M.; Habib-ur-Rahman, M.; El-Sharnouby, M.; Datta, R.; Alzuaibr, F.M.; Sakran, M.I.; Ogbaga, C.C. The use of soil conditioners to ensure a sustainable wheat yield under water deficit conditions by enhancing the physiological and antioxidant potentials. Land 2022, 11, 368. [Google Scholar] [CrossRef]
- Irin, I.J.; Hasanuzzaman, M. Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity. Stresses 2024, 4, 185–209. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Toureiro, C.; Serralheiro, R.; Shahidian, S.; Sousa, A. Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition. Agric. Water Manag. 2017, 184, 211–220. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Sahadeva Singh, S.S.; Bhan, V. Response of wheat (Triticum aestivum) and associated weeds to irrigation regime, nitrogen and 2, 4-D. Indian J. Agron. 1998, 43, 662–667. [Google Scholar]
- Singh, D.; Agrawal, R.; Ahuja, K. Response of wheat varieties to different seeding dates for agro-climatic conditions of Agra region. Ann. Agric. Res. 1998, 19, 496–498. [Google Scholar]
- Awasthi, U.; Singh, R.; Dubey, S. Effect of sowing date and moisture-conservation practice on growth and yield of Indian mustard (Brassica juncea) varieties. Indian J. Agron. 2007, 52, 151–153. [Google Scholar] [CrossRef]
- Patel, I.; Patel, B.; Patel, M.; Patel, A.; Tikka, S. Effect of irrigation schedule, dates of sowing and genotypes on yield, water use efficiency, water expense efficiency and water extraction pattern of cowpea. J. Food Legumes 2008, 21, 175–177. [Google Scholar]
- Behera, U.; Ruwali, K.; Verma, P.; Pandey, H. Productivity and water-use efficiency of macaroni (Triticum durum) and bread wheats (T. aestivum) under varying irrigation levels and schedules in the Vertisols of central India. Indian J. Agron. 2002, 47, 518–525. [Google Scholar]
- Panda, B.; Bandyopadhyay, S.; Shivay, Y. Effect of irrigation level, sowing dates and varieties on yield attributes, yield, consumptive water use and water-use efficiency of Indian mustard (Brassica juncea). Indian J. Agric. Sci. 2004, 74, 339–342. [Google Scholar]
- Hira, G. Status of water resources in Punjab and management strategies. In Proceedings of the Workshop Papers of Groundwater Use in NW India, New Delhi, India, 13 April 2004; p. 65. [Google Scholar]
- Patil, S.; Sheelavantar, M. Yield and yield components of rabi sorghum (Sorghum bicolor) as influenced by in situ moisture conservation practices and integrated nutrient management in vertisols of semi-arid tropics of India. Indian J. Agron. 2000, 45, 132–137. [Google Scholar]
- Singh, A.; Aggarwal, N.; Aulakh, G.S.; Hundal, R. Ways to maximize the water use efficiency in field crops—A review. Greener J. Agric. Sci. 2012, 2, 108–129. [Google Scholar]
- Goswami, V.; Kaushik, S.; Gautam, R. Effect of intercropping and weed control on nutrient uptake and water-use efficiency of pearlmillet (Pennisetum glaucum) under rainfed conditons. Indian J. Agron. 2002, 47, 504–508. [Google Scholar]
- Bharati, V.; Nandan, R.; Kumar, V.; Pandey, I. Effect of irrigation levels on yield, water-use efficiency and economics of winter maize (Zea mays)-based intercropping systems. Indian J. Agron. 2007, 52, 27–30. [Google Scholar] [CrossRef]
- Tetarwal, J.; Rana, K. Impact of cropping system, fertility level and moisture-conservation practice on productivity, nutrient uptake, water use and profitability of pearlmillet (Pennisetum glaucum) under rainfed conditions. Indian J. Agron. 2006, 51, 263–266. [Google Scholar]
- Kumar, A.; Rana, K. Performance of pigeonpea (Cajanus cajan)+ greengram (Phaseolus radiatus) intercropping system as influenced by moisture-conservation practice and fertility level under rainfed conditions. Indian J. Agron. 2007, 52, 31–35. [Google Scholar] [CrossRef]
- Singh, G.; Mehta, R.; Kumar, T.; Singh, R.; Singh, O.; Kumar, V. Economics of rice (Oryza sativa)-based cropping system in semi-deep water and flood-prone situation in eastern Uttar Pradesh. Indian J. Agron. 2004, 49, 10–14. [Google Scholar] [CrossRef]
- Parihar, S.; Pandey, D.; Shukla, R.; Verma, V.; Chaure, N.; Choudhary, K.; Pandya, K. Energetics, yield, water use and economics of rice-based cropping system. Indian J. Agron. 1999, 44, 205–209. [Google Scholar] [CrossRef]
- Jones, B.P. Effects of Twin-Row Spacing on Corn Silage Growth Development and Yield in the Shenandoah Valley; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2010. [Google Scholar]
- Karrou, M. Observations on effect of seeding pattern on water-use efficiency of durum wheat in semi-arid areas of Morocco. Field Crops Res. 1998, 59, 175–179. [Google Scholar] [CrossRef]
- Rathore, B.; Rana, V.; Nanwal, R. Effect of plant density and fertility levels on growth and yield of pearl millet (Pennisetum glaucum) hybrids under limited irrigation conditions in semi-arid environment. Indian J. Agric. Sci. 2008, 78, 667–670. [Google Scholar]
- Singh, S.; Saini, S.; Singh, B. Effect of irrigation, sulphur and seed inoculation on growth, yield and sulphur uptake of chickpea (Cicer arietinum) under late-sown conditions. Indian J. Agron. 2004, 49, 57–59. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.; Singh, R. Influence of crop geometry, cultivar and weed-management practice on crop-weed competition in chickpea (Cicer arietinum). Indian J. Agron. 2004, 49, 258–261. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Tanveer, A.; Ali, A.; Ayub, M.; Tahir, M. Effect of weed-control practice and irrigation levels on weeds and yield of wheat (Triticum aestivum). Indian J. Agron. 2007, 52, 60–63. [Google Scholar] [CrossRef]
- Reddy, M.M.; Padmaja, B.; Rao, L.J. Response of rabi pigeonpea to irrigation scheduling and weed management in Alfisols. J. Food Legumes 2008, 21, 237–239. [Google Scholar]
- Kumar, V.; Ghosh, B.; Bhat, R.; Karmakar, S. Effect of irrigation and fertilizer on yield, water-use efficiency and nutrient uptake of summer groundnut (Arachis hypogaea). Indian J. Agron. 2000, 45, 756–760. [Google Scholar]
- Kumar, M.; Singh, H.; Hooda, R.; Khippal, A.; Singh, T. Grain yield, water use and water-use efficiency of pearlmillet (Pennisetum glaucum) hybrids under variable nitrogen application. Indian J. Agron. 2003, 48, 53–55. [Google Scholar]
- Ghosh, P.; Bandyopadhyay, K.; Tripathi, A.; Hati, K.; Mandal, K.; Misra, A. Effect of integrated management of farmyard manure, phosphocompost, poultry manure and inorganic fertilizers for rainfed sorghum (Sorghum bicolor) in vertisols of central India. Indian J. Agron. 2003, 48, 48–52. [Google Scholar]
- Abhijit Sarma, A.S.; Harbir Singh, H.S.; Nanwal, R. Growth, yield and water-use efficiency of wheat (Triticum aestivum) as influenced by integrated nutrient management under adequate and limited irrigation. Haryana J. Agron. 2005, 21, 96–100. [Google Scholar]
- Parihar, S. Effect of crop-establishment method, tillage, irrigation and nitrogen on production potential of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 2004, 49, 1–5. [Google Scholar] [CrossRef]
- Fangmeier, D.; Mezainis, V.; Tucker, T.; Husman, S. Response of Trickle Irrigated Cotton to Water and Nitrogen; ASAE: Washington, DC, USA, 2005. [Google Scholar]
- Nguyen, T.-T.; Fuentes, S.; Marschner, P. Effect of incorporated or mulched compost on leaf nutrient concentrations and performance of Vitis vinifera cv. Merlot. J. Soil Sci. Plant Nutr. 2013, 13, 485–497. [Google Scholar] [CrossRef]
- Ross, O.C. Reflective Mulch Effects on the Grapevine Environment, Pinot Noir Vine Performance, and Juice and Wine Characteristics. Master’s Thesis, Lincoln University, Christchurch, New Zealand, 2010. [Google Scholar]
- Agnew, R.; Mundy, D.C.; Spiers, M. Mulch for Sustainable Production; HortResearch: Auckland, New Zealand, 2002. [Google Scholar]
- Agnew, R.; Mundy, D.; Spiers, T.; Greven, M. Waste stream utilisation for sustainable viticulture. Water Sci. Technol. 2005, 51, 1–8. [Google Scholar] [CrossRef]
- Fredrikson, L.; Skinkis, P.A.; Peachey, E. Cover crop and floor management affect weed coverage and density in an establishing Oregon vineyard. HortTechnology 2011, 21, 208–216. [Google Scholar] [CrossRef]
- Steinmaus, S.; Elmore, C.; Smith, R.; Donaldson, D.; Weber, E.; Roncoroni, J.; Miller, P. Mulched cover crops as an alternative to conventional weed management systems in vineyards. Weed Res. 2008, 48, 273–281. [Google Scholar] [CrossRef]
- Göblyös, J.; Zanathy, G.; Donkó, Á.; Varga, T.; Bisztray, G. Comparison of three soil management methods in the Tokaj wine region. Mitteilungen Klosterneubg. 2011, 61, 187–195. [Google Scholar]
- Némethy, L. Alternative soil management for study vineyards. In Proceedings of the XXVI International Horticultural Congress: Viticulture-Living with Limitations 640, Toronto, ON, Canada, 11–17 August 2002; pp. 119–125. [Google Scholar]
- Huber, L.; Porten, M.; Eisenbeis, G.; Rühl, E. The influence of organically managed vineyard-soils on the phylloxera-populations and the vigour of grapevines. In Proceedings of the Workshop on Rootstocks Performance in Phylloxera Infested Vineyards 617, Geisenheim, Germany, 26–28 August 2001; pp. 55–59. [Google Scholar]
- Thomson, L.J.; Hoffmann, A.A. Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agric. For. Entomol. 2007, 9, 173–179. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Gregory, P.J. Agronomic approaches to increasing water use efficiency. In Water Use Efficiency in Plant Biology; Wiley: Hoboken, NJ, USA, 2004; pp. 142–170. [Google Scholar]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 429990. [Google Scholar] [CrossRef]
- Davies, W.; Zhang, J.; Yang, J.; Dodd, I. Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J. Agric. Sci. 2011, 149, 123–131. [Google Scholar] [CrossRef]
- Buckerfield, J.; Webster, K. Responses to mulch continue: Results from five years of field trials. In Australian and New Zealand Grapegrower and Winemaker; Winetitles Media: Broadview, SA, USA, 2001; pp. 71–78. [Google Scholar]
- Jalota, S.; Khera, R.; Chahal, S. Straw management and tillage effects on soil water storage under field conditions. Soil Use Manag. 2001, 17, 282–287. [Google Scholar] [CrossRef]
- McMaster, M. Water Retention and Evaporative Properties of Landscape Mulches. In Proceedings of the 26th Annl. Irrigation Show, Phoenix, AZ, USA, 6–8 November 2005. [Google Scholar]
- Sarrantonio, M.; Gallandt, E. The role of cover crops in North American cropping systems. J. Crop Prod. 2003, 8, 53–74. [Google Scholar] [CrossRef]
- Facelli, J.M.; Pickett, S.T. Plant litter: Light interception and effects on an old-field plant community. Ecology 2010, 72, 1024–1031. [Google Scholar] [CrossRef]
- Shanks, L.W.; Moore, D.E.; Sanders, C.E. Soil erosion. In Cover Cropping in Vineyards. A Grower’s Handbook; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2008; Volume 3338, pp. 80–85. [Google Scholar]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2012, 50, 688–699. [Google Scholar] [CrossRef]
- Pou, A.; Gulías, J.; Moreno, M.; Tomàs, M.; Medrano, H.; Cifre, J. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. OENO One 2011, 45, 223–234. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.; Machado, J.; Fernandes, N.; Araújo, A. Cover cropping in a sloping, non-irrigated vineyard: 1-Effects on weed composition and dynamics. Ciência Técnica Vitivinic. 2008, 23, 29–36. [Google Scholar]
- Monteiro, A.; Lopes, C.M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.L.; Costa, J.M.; Chaves, M.M. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef]
- Lopes, C.; Monteiro, A.; Ruckert, F.; Gruber, B.; Steinberg, B.; Schultz, H. Transpiration of grapevines and co-habitating cover crop and weed species in a vineyard. A “snapshot” at diurnal trends. Vitis-Geilweilerhof. 2004, 43, 111–118. [Google Scholar]
- Ingels, C.A.; Scow, K.M.; Whisson, D.A.; Drenovsky, R.E. Effects of cover crops on grapevines, yield, juice composition, soil microbial ecology, and gopher activity. Am. J. Enol. Vitic. 2015, 56, 19–29. [Google Scholar] [CrossRef]
- Wheeler, S.J.; Black, A.; Pickering, G. Vineyard floor management improves wine quality in highly vigorous Vitis vinifera’Cabernet Sauvignon’in New Zealand. N. Z. J. Crop Hortic. Sci. 2020, 33, 317–328. [Google Scholar] [CrossRef]
- Celette, F.; Gaudin, R.; Gary, C. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur. J. Agron. 2008, 29, 153–162. [Google Scholar] [CrossRef]
- Carbonneau, A. Recherche sur les Systèmes de Conduite de la Vigne: Essai de Maîtrise du Microclimat et de la Plante Entière pour Produire Économiquement du Raisin de Qualité; Institut National de la Recherche Agricole: Paris, France, 2021. [Google Scholar]
- Prieto, J. Simulation of Photosynthesis and Transpiration within Grapevine (Vitis vinifera L.) Canopies on a 3D Architectural Model Application to Training System Evaluation. Ph.D. Thesis, Université Montpellier, Montpellier, France, 2011. [Google Scholar]
- Intrigliolo, D.S.; Lakso, A. Effects of light interception and canopy orientation on grapevine water status and canopy gas exchange. In Proceedings of the VI International Symposium on Irrigation of Horticultural Crops 889, Vía del Mar, Chile, 2–6 November 2009; pp. 99–104. [Google Scholar]
- Medrano, H.; Pou, A.; Tomás, M.; Martorell, S.; Gulias, J.; Flexas, J.; Escalona, J.M. Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine. Agric. Water Manag. 2012, 114, 4–10. [Google Scholar] [CrossRef]
- Williams, L.; Ayars, J. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Michelon, N.; Pennisi, G.; Ohn Myint, N.; Orsini, F.; Gianquinto, G. Strategies for improved Water Use Efficiency (WUE) of field-grown lettuce (Lactuca sativa L.) under a semi-arid climate. Agronomy 2020, 10, 668. [Google Scholar] [CrossRef]
- Xi, Z. Regulating mechanisms for improving farmland water use efficiency. Chin. J. Eco-Agric. 2013, 21, 80–87. [Google Scholar]
- Villalobos, F.; Fereres, E. Evaporation measurements beneath corn, cotton, and sunflower canopies. Agron. J. 1990, 82, 1153–1159. [Google Scholar] [CrossRef]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Sau, F.; Boote, K.J.; McNair Bostick, W.; Jones, J.W.; Inés Mínguez, M. Testing and improving evapotranspiration and soil water balance of the DSSAT crop models. Agron. J. 2004, 96, 1243–1257. [Google Scholar] [CrossRef]
- Escalona, J.J.F.; Bota, J.; Medrano, H. Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions. Vitis 2003, 42, 57–64. [Google Scholar]
- Buckley, T.N.; Martorell, S.; Diaz-Espejo, A.; Tomàs, M.; Medrano, H. Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera). Plant Cell Environ. 2014, 37, 2707–2721. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, C.; Nan, Z. Determining water use efficiency of wheat and cotton: A meta-regression analysis. Agric. Water Manag. 2018, 199, 48–60. [Google Scholar] [CrossRef]
- Yang, B.; Fu, P.; Lu, J.; Ma, F.; Sun, X.; Fang, Y. Regulated deficit irrigation: An effective way to solve the shortage of agricultural water for horticulture. Stress Biol. 2022, 2, 28. [Google Scholar] [CrossRef]
- Chalmers, D.; Mitchell, P.; Van Heek, L. Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning1. J. Am. Soc. Hortic. Sci. 2008, 106, 307–312. [Google Scholar] [CrossRef]
- McCarthy, M.; Loveys, B.; Dry, P.; Stoll, M. Regulated deficit irrigation and partial rootzone drying as irrigation management techniques for grapevines. Deficit Irrig. Pract. FAO Water Rep. 2008, 22, 79–87. [Google Scholar]
- Dry, P.R.; Loveys, B.; McCarthy, M.; Stoll, M. Strategic irrigation management in Australian vineyards. J. Int. Sci. Vigne Vin 2001, 35, 129–139. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef]
- Zhang, J.; Schurr, U.; Davies, W. Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J. Exp. Bot. 2008, 38, 1174–1181. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Farid, H.U.; Zubair, M.; Khan, Z.M.; Shakoor, A.; Mustafa, B.; Khan, A.A.; Anjum, M.N.; Ahmad, I.; Mubeen, M. Identification of influencing factors for optimal adoptability of High Efficiency Irrigation System (HEIS) in Punjab, Pakistan. Sarhad J. Agric. 2019, 35, 539–549. [Google Scholar] [CrossRef]
- Gill, Z.A.; Sampath, R.K. Inequality in irrigation distribution in Pakistan. Pak. Dev. Rev. 1992, 31, 75–100. [Google Scholar] [CrossRef]
- Randhawa, H.A. Water Development for Irrigated Agriculture in Pakistan: Past Trends Returns and Future Requirements; Food and Agricultural Organization (FAO): Rome, Italy, 2022; Available online: www.fao.org/DOCREP/005/AC623E/ac623e0i.htm (accessed on 10 April 2024).
- Rinaudo, J.-D.; Strosser, P.; Thoyer, S. Distributing water or rents? Examples from a public irrigation system in Pakistan. Can. J. Dev. Stud./Rev. Can. D’études Développement 2000, 21, 113–139. [Google Scholar] [CrossRef]
- Zakria, S.M. Determining operational efficiency and capacity building of vegetable growers installed drip irrigation systems. Pesqui. Agropecu. Bras. 2021, 10, 1312–1325. [Google Scholar] [CrossRef]
- Moghazi, H.; Ismail, E.-S. A study of losses from field channels under arid region conditions. Irrig. Sci. 1997, 17, 105–110. [Google Scholar] [CrossRef]
- Hornbuckle, J.; Car, N.; Christen, E.; Stein, T.; Williamson, B. IrriSatSMS Irrigation Water Management by Satellite and SMS—A Utilisation Framework; CRC for Irrigation Futures and CSIRO: Griffith, Australia, 2009. [Google Scholar]
- Keen, B.; Slavich, P. Comparison of irrigation scheduling strategies for achieving water use efficiency in highbush blueberry. N. Z. J. Crop Hortic. Sci. 2012, 40, 3–20. [Google Scholar] [CrossRef]
- Gillies, M.H.; Smith, R. Infiltration parameters from surface irrigation advance and run-off data. Irrig. Sci. 2005, 24, 25–35. [Google Scholar] [CrossRef]
- Car, N.J.; Christen, E.W.; Hornbuckle, J.W.; Moore, G.A. Using a mobile phone Short Messaging Service (SMS) for irrigation scheduling in Australia–Farmers’ participation and utility evaluation. Comput. Electron. Agric. 2012, 84, 132–143. [Google Scholar] [CrossRef]
- Ahadi, R.; Samani, Z.; Skaggs, R. Evaluating on-farm irrigation efficiency across the watershed: A case study of New Mexico’s Lower Rio Grande Basin. Agric. Water Manag. 2013, 124, 52–57. [Google Scholar] [CrossRef]
- McClymont, D. Development of a Decision Support System for Furrow and Border Irrigation. Ph.D. Thesis, University of Southern Queensland, Darling Heights, QLD, Australia, 2007. [Google Scholar]
- Camacho, E.; Pérez-Lucena, C.; Roldán-Cañas, J.; Alcaide, M. IPE: Model for management and control of furrow irrigation in real time. J. Irrig. Drain. Eng. 2007, 123, 264–269. [Google Scholar] [CrossRef]
- Khatri, K.L.; Smith, R. Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrig. Sci. 2006, 25, 33–43. [Google Scholar] [CrossRef]
- Mailhol, J.-C.; Gonzalez, J.-M. Furrow irrigation model for real-time applications on cracking soils. J. Irrig. Drain. Eng. 1993, 119, 768–783. [Google Scholar] [CrossRef]
- Koech, R.; Smith, R.; Gillies, M. A real-time optimisation system for automation of furrow irrigation. Irrig. Sci. 2014, 32, 319–327. [Google Scholar] [CrossRef]
- Uddin, J.; Smith, R.; Gillies, M.; Moller, P.; Robson, D. Smart automated furrow irrigation of cotton. J. Irrig. Drain. Eng. 2018, 144, 04018005. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens. 2013, 5, 3849–3871. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar] [CrossRef]
- Cozzolino, D. The role of near-infrared sensors to measure water relationships in crops and plants. Appl. Spectrosc. Rev. 2017, 52, 837–849. [Google Scholar] [CrossRef]
- Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Kumar, S.A.; Ilango, P. The impact of wireless sensor network in the field of precision agriculture: A review. Wirel. Pers. Commun. 2018, 98, 685–698. [Google Scholar] [CrossRef]
- Koech, R.; Gyasi-Agyei, Y.; Randall, T. The evolution of urban water metering and conservation in Australia. Flow Meas. Instrum. 2018, 62, 19–26. [Google Scholar] [CrossRef]
- Ruggiero, A.; Punzo, P.; Landi, S.; Costa, A.; Van Oosten, M.J.; Grillo, S. Improving plant water use efficiency through molecular genetics. Horticulturae 2017, 3, 31. [Google Scholar] [CrossRef]
- Roth, G.; Harris, G.; Gillies, M.; Montgomery, J.; Wigginton, D. Water-use efficiency and productivity trends in Australian irrigated cotton: A review. Crop Pasture Sci. 2013, 64, 1033–1048. [Google Scholar] [CrossRef]
- Rogers, M.; Lawson, A.; Kelly, K. Lucerne yield, water productivity and persistence under variable and restricted irrigation strategies. Crop Pasture Sci. 2016, 67, 563–573. [Google Scholar] [CrossRef]
- Tejero, I.G.; Zuazo, V.H.D.; Bocanegra, J.A.J.; Fernández, J.L.M. Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards. Sci. Hortic. 2011, 128, 274–282. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Grafton, R.Q.; Kirby, M.; Hanjra, M.A. Understanding irrigation water use efficiency at different scales for better policy reform: A case study of the Murray-Darling Basin, Australia. Water Policy 2011, 13, 1–17. [Google Scholar] [CrossRef]
- Schaible, G.; Aillery, M. Water conservation in irrigated agriculture: Trends and challenges in the face of emerging demands. USDA-ERS Econ. Inf. Bull. 2012. [Google Scholar] [CrossRef]
- Berbel, J.; Gutiérrez-Martín, C.; Expósito, A. Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agric. Water Manag. 2018, 203, 423–429. [Google Scholar] [CrossRef]
- Molle, F.; Tanouti, O. Squaring the circle: Agricultural intensification vs. water conservation in Morocco. Agric. Water Manag. 2017, 192, 170–179. [Google Scholar] [CrossRef]
- Plusquellec, H. Modernization of large-scale irrigation systems: Is it an achievable objective or a lost cause. Irrig. Drain. 2009, 58, S104–S120. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water. A Review of the Evidence; FAO: Rome, Italy, 2017; Volume 42. [Google Scholar]
- López-Gunn, E.; Mayor, B.; Dumont, A. Implications of the modernization of irrigation systems. In Water, Agriculture and the Environment in Spain: Can We Square the Circle; CRC Press: Boca Raton, FL, USA, 2012; pp. 241–255. [Google Scholar]
- Ahmad, A.; Khan, S. Water and energy scarcity for agriculture: Is irrigation modernization the answer? Irrig. Drain. 2017, 66, 34–44. [Google Scholar] [CrossRef]
- Expósito, A.; Berbel, J. Microeconomics of deficit irrigation and subjective water response function for intensive olive groves. Water 2016, 8, 254. [Google Scholar] [CrossRef]
- White, D.H.; Beynon, N.; Kingma, O. Identifying opportunities for achieving water savings throughout the Murray–Darling Basin. Environ. Model. Softw. 2006, 21, 1013–1024. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Expósito, A.; Berbel, J. Agricultural irrigation water use in a closed basin and the impacts on water productivity: The case of the Guadalquivir river basin (Southern Spain). Water 2017, 9, 136. [Google Scholar] [CrossRef]
- Richards, R.; López-Castañeda, C.; Gomez-Macpherson, H.; Condon, A. Improving the efficiency of water use by plant breeding and molecular biology. Irrig. Sci. 2013, 14, 93–104. [Google Scholar] [CrossRef]
- Zakar, M.Z.; Zakar, D.R.; Fischer, F. Climate change-induced water scarcity: A threat to human health. South Asian Stud. 2020, 27, 293–312. [Google Scholar]
- Ilahi, H.; Adnan, M.; ur Rehman, F.; Hidayat, K.; Amin, I.; Ullah, A.; Subhan, G.; Hussain, I.; Rehman, M.U.; Ullah, A. Waste Water Application: An Alternative Way to Reduce Water Scarcity Problem in Vegetables: A Review. Ind. J. Pure App. Biosci 2021, 9, 240–248. [Google Scholar] [CrossRef]
- Noor, R.; Maqsood, A.; Baig, A.; Pande, C.B.; Zahra, S.M.; Saad, A.; Anwar, M.; Singh, S.K. A comprehensive review on water pollution, South Asia Region: Pakistan. Urban Clim. 2023, 48, 101413. [Google Scholar] [CrossRef]
- Martínez, R.; Vela, N.; El Aatik, A.; Murray, E.; Roche, P.; Navarro, J.M. On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants. Water 2020, 12, 1096. [Google Scholar] [CrossRef]
- Sekaran, K.; Meqdad, M.N.; Kumar, P.; Rajan, S.; Kadry, S. Smart agriculture management system using internet of things. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2020, 18, 1275–1284. [Google Scholar] [CrossRef]
- Kadam, A.L.; Hwang, M. Design and Implementation of Remote Controlled Robotic Arm Using GSM-Based Cell Phone for the Developing Countries. In Information Science and Applications; Springer: Singapore, 2020; pp. 639–649. [Google Scholar]
- Adjardjah, W.; Arthur, D.B.K.; Ewuam, A.; Nunoo, K. The design of a mobile phone-based remote-control application to submersible motor for effective water supply. J. Sens. Technol. 2022, 12, 19–31. [Google Scholar] [CrossRef]
- Bukola, A. Development of an anti-theft vehicle security system using gps and gsm technology with biometric authentication. Int. J. Innov. Sci. Res. Technol. 2020, 5, 1250–1260. [Google Scholar]
- Ndunagu, J.N.; Ukhurebor, K.E.; Akaaza, M.; Onyancha, R.B. Development of a wireless sensor network and IoT-based smart irrigation system. Appl. Environ. Soil Sci. 2022, 2022, 7678570. [Google Scholar] [CrossRef]
- Ullah, R.; Abbas, A.W.; Ullah, M.; Khan, R.U.; Khan, I.U.; Aslam, N.; Aljameel, S.S. EEWMP: An IoT-based energy-efficient water management platform for smart irrigation. Sci. Program. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. Solar fertigation: A sustainable and smart IoT-based irrigation and fertilization system for efficient water and nutrient management. Agronomy 2022, 12, 1012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, S.; Felemban, A.; Abdelrahim, A.; Al-Dakhil, M. Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water 2024, 16, 1842. https://doi.org/10.3390/w16131842
Alharbi S, Felemban A, Abdelrahim A, Al-Dakhil M. Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water. 2024; 16(13):1842. https://doi.org/10.3390/w16131842
Chicago/Turabian StyleAlharbi, Saif, Abrar Felemban, Ahmed Abdelrahim, and Mohammed Al-Dakhil. 2024. "Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas" Water 16, no. 13: 1842. https://doi.org/10.3390/w16131842
APA StyleAlharbi, S., Felemban, A., Abdelrahim, A., & Al-Dakhil, M. (2024). Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water, 16(13), 1842. https://doi.org/10.3390/w16131842