Numerical Modelling of Wave–Vegetation Interaction: Embracing a Cross-Disciplinary Approach for Bridging Ecology and Engineering for Nature-Inclusive Coastal Defence Systems
Abstract
:1. Introduction
1.1. Building with Nature: Execution Pathway
1.2. Objectives and Structure
- For the hydrodynamic modelling and engineering designs, the objective of this study is to identify the numerical models and techniques employed by engineers to address wave propagation and interactions with vegetation within the context of fundamental research on NBS.
- For the ecological assessment, the objective is to develop a conceptual framework to categorize the engineering tools (numerical models identified in the first objective) based on the extent to which they account for the ecological and biological nature of aquatic vegetation.
2. Methods
2.1. Study Design
Keyword Identification
2.2. Systematic Literature Review
2.3. Ecological Categorization Framework
2.4. Categorization of Numerical Models
2.5. Conclusions and Recommendations
3. Numerical Modelling
3.1. Wave Propagation Models
3.1.1. Phase-Averaging Models
3.1.2. Phase-Resolving Models
- (i)
- Mild-slope models:Mild-slope models are based on mild-slope equations that describe linear waves within domains where the variation in bathymetry is gradual over a horizontal distance comparable to the wavelength [45]. These equations are expressed as:
- (ii)
- Boussinesq equation models:Boussinesq equation models can address non-linear interactions and wave breaking phenomena that are typically beyond the scope of mild-slope models. The Boussinesq equations are based on a set of partial differential equations describing the propagation of surface gravity waves in shallow water [50]. The basic formulation consists of two coupled equations, one describing the evolution of the surface elevation and the other the depth-averaged horizontal velocity, as shown below, respectively:
- (iii)
- Non-hydrostatic models:Non-hydrostatic models address the limitations of the previously presented models (mild-slope and Boussinesq) by solving the Navier–Stokes equations under two basic assumptions: a free surface and a constant density. Under these conditions, the equations are integrated across layers, yielding depth-averaged quantities for single-layer scenarios and layer-specific quantities for multiple-layer cases [52,53]. The governing shallow water equations in a two-dimensional medium are:These models have a reasonable computational cost while effectively capturing wave transformation processes, including wave breaking, and have fewer constraints on bathymetry and domain features such as water depth. The combination of capturing wave non-linearities, computational efficiency, and numerical stability, positions non-hydrostatic models as a favoured tool among engineers in both industrial applications and fundamental research (e.g., SWASH (Simulating Waves till Shore) [54,55]).
- (iv)
- Navier–Stokes models:Navier–Stokes models are the most complex, solving the full Navier–Stokes equations with high resolution both horizontally and vertically. Assuming an incompressible fluid and a simplified mathematical description for the Navier–Stokes equations, the fluid dynamics can be described by the continuity (Equation (10)) and momentum (Equation (11)) equations, written as:Solving these equations allows detailed representation of wave transformation processes, turbulence, and wave breaking. However, their complexity and accuracy comes with a higher computational cost, which restricts their applicability to limited temporal and spatial domains. Common examples of NS models include the mesh-based volume of fluid (VOF) method [56,57] and the meshless smoothed-particle hydrodynamics (SPH) method [58,59]. These models offer advanced capabilities and have no limitations in terms of water depth or bathymetric features, but require careful consideration of expensive computational resources.
3.2. Wave–Vegetation Interaction Models
3.2.1. Friction Approach
3.2.2. Cylinder Approach
3.2.3. Coupled Approach
4. Coastal and Marine Vegetation
4.1. Mangroves: Emergent Rigid Vegetation
4.2. Salt Marshes and Seagrasses: Flexible Vegetation
5. Ecological Framework
5.1. Plant Morphology
5.2. Biomechanics
5.3. Buoyancy
5.4. Variability
6. Results: Categorization of Numerical Models
7. Discussion and Future Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BE | Boussinesq equation |
CD | Drag coefficient |
CERG | Coastal Engineering Research Group |
CFD | Computational fluid dynamics |
cm | Centimetre |
E | Modulus of elasticity |
FEA | Finite element analysis |
I | Cross-sectional area moment of inertia |
GPa | Gigapascal |
m | Metre |
MSE | Mild-slope equation |
NH | Non-hydrostatic |
NS | Navier–Stokes |
Re | Reynolds number |
SPH | Smoothed-particle hydrodynamics |
STL | Stereolithography file |
SWAN | Simulating Waves Nearshore |
SWASH | Simulating Waves till Shore |
VOF | Volume of fluid |
References
- Paris Agreement (2015)—United Nations Framework Convention on Climate Change, Paris, France. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 11 May 2024).
- Roelfsema, M.; van Soest, H.L.; Harmsen, M.; van Vuuren, D.P.; Bertram, C.; den Elzen, M.; Höhne, N.; Iacobuta, G.; Krey, V.; Kriegler, E.; et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 2020, 11, 2096. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Bevacqua, E.; Vousdoukas, M.I.; Zappa, G.; Hodges, K.; Shepherd, T.G.; Maraun, D.; Mentaschi, L.; Feyen, L. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 2020, 1, 47. [Google Scholar] [CrossRef]
- Rozsa, L.; Hennessy-Fiske, M.; Paquette, D.; Gowen, A. Hurricane Idalia slams Florida with flooding, tornadoes, dangerous winds. The Washington Post, 30 August 2023. [Google Scholar]
- Marcos, M.; Rohmer, J.; Vousdoukas, M.I.; Mentaschi, L.; Le Cozannet, G.; Amores, A. Increased Extreme Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves. Geophys. Res. Lett. 2019, 46, 4356–4364. [Google Scholar] [CrossRef]
- Olschewski, P.; Kunstmann, H. Future projections of hurricane intensity in the southeastern U.S.: Sensitivity to different Pseudo-Global Warming methods. Front. Clim. 2024, 6, 1353396. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed]
- MacManus, K.; Balk, D.; Engin, H.; McGranahan, G.; Inman, R. Estimating population and urban areas at risk of coastal hazards, 1990–2015: How data choices matter. Earth Syst. Sci. Data 2021, 13, 5747–5801. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Williams, A.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Siegel, F.R. Structures That Protect Coastal Populations, Assets, and GDPs: Sea Dikes, Breakwaters, Seawalls. In Adaptations of Coastal Cities to Global Warming, Sea Level Rise, Climate Change and Endemic Hazards; Springer International Publishing: Cham, Switzerland, 2020; pp. 11–25. [Google Scholar] [CrossRef]
- Wardekker, J.A.; de Jong, A.; Knoop, J.M.; van der Sluijs, J.P. Operationalising a resilience approach to adapting an urban delta to uncertain climate changes. Technol. Forecast. Soc. Change 2010, 77, 987–998. [Google Scholar] [CrossRef]
- Mel, R.A.; Viero, D.P.; Carniello, L.; Defina, A.; D’Alpaos, L. The first operations of Mo.S.E. system to prevent the flooding of Venice: Insights on the hydrodynamics of a regulated lagoon. Estuar. Coast. Shelf Sci. 2021, 261, 107547. [Google Scholar] [CrossRef]
- Morris, R.L.; Deavin, G.; Hemelryk Donald, S.; Coleman, R.A. Eco-engineering in urbanised coastal systems: Consideration of social values. Ecol. Manag. Restor. 2016, 17, 33–39. [Google Scholar] [CrossRef]
- Miloshis, M.; Fairfield, C. Coastal wetland management: A rating system for potential engineering interventions. Ecol. Eng. 2015, 75, 195–198. [Google Scholar] [CrossRef]
- de Vriend, H.; van Koningsveld, M. Building with Nature—Thinking, Acting and Interacting Differently; Ecoshape: Amersfoort, The Netherlands, 2012. [Google Scholar]
- Cheong, S.M.; Silliman, B.; Wong, P.P.; van Wesenbeeck, B.; Kim, C.K.; Guannel, G. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 2013, 3, 787–791. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Research and Innovation. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities—Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’—(Full Version); Technical Report; EU Publications Office: Brussels, Brussels, 2015. [Google Scholar]
- Slinger, J.; Stive, M.; Luijendijk, A. Nature-Based Solutions for Coastal Engineering and Management. Water 2021, 13, 976. [Google Scholar] [CrossRef]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. In Proceedings of the Institution of Civil Engineers—Maritime Engineering; Thomas Telford Ltd.: London, UK, 2016; Volume 169, pp. 29–36. [Google Scholar] [CrossRef]
- Moraes, R.P.L.; Reguero, B.G.; Mazarrasa, I.; Ricker, M.; Juanes, J.A. Nature-Based Solutions in Coastal and Estuarine Areas of Europe. Front. Environ. Sci. 2022, 10, 829526. [Google Scholar] [CrossRef]
- European Commission. Nature-Based Solutions. Website of the European Commission, Research and Innovation. Available online: https://research-and-innovation.ec.europa.eu/research-area/environment/nature-based-solutions_en (accessed on 4 June 2024).
- Nature-Based Solutions to Address Global Societal Challenges; IUCN International Union for Conservation of Nature: Gland, Switzerland, 2016. [CrossRef]
- Zamboni, N.S.; Prudêncio, M.d.C.; Amaro, V.E.; Matos, M.d.F.A.d.; Verutes, G.M.; Carvalho, A.R. The protective role of mangroves in safeguarding coastal populations through hazard risk reduction: A case study in northeast Brazil. Ocean Coast. Manag. 2022, 229, 106353. [Google Scholar] [CrossRef]
- Temmerman, S.; Horstman, E.M.; Krauss, K.W.; Mullarney, J.C.; Pelckmans, I.; Schoutens, K. Marshes and Mangroves as Nature-Based Coastal Storm Buffers. Annu. Rev. Mar. Sci. 2023, 15, 95–118. [Google Scholar] [CrossRef]
- Asari, N.; Suratman, M.; Mohd Ayob, N.; Abdul Hamid, N. Mangrove as a Natural Barrier to Environmental Risks and Coastal Protection. In Mangroves: Ecology, Biodiversity and Management; Rastogi, R., Phulwaria, M., Gupta, D., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Gagarin, W.; Eslava, D.F.; Ancog, R.; Tiburan, C.L., Jr.; Ramos, N. Willingness to Pay for Mangroves’ Coastal Protection: A Case Study in Santo Angel, Calauag, Quezon, Philippines. For. Soc. 2022, 6, 436–449. [Google Scholar] [CrossRef]
- Treviño, M. “The Mangrove is Like a Friend”: Local Perspectives of Mangrove Cultural Ecosystem Services among Mangrove Users in Northern Ecuador. Hum. Ecol. 2022, 50, 863–878. [Google Scholar] [CrossRef]
- de Silva, W.; Amarasinghe, M. Coastal protection function of mangrove ecosystems: A case study from Sri Lanka. J. Coast. Conserv. 2023, 27, 59. [Google Scholar] [CrossRef]
- Marois, D.E.; Mitsch, W.J. Coastal protection from tsunamis and cyclones provided by mangrove wetlands—A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Forysinski, K. Nature-Based, Flood Protection: The Contribution of Tidal Marsh Vegetation to Wave Attenuation at Sturgeon Bank. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2019. [Google Scholar] [CrossRef]
- Keimer, K.; Schürenkamp, D.; Miescke, F.; Kosmalla, V.; Lojek, O.; Goseberg, N. Ecohydraulics of Surrogate Salt Marshes for Coastal Protection: Wave–Vegetation Interaction and Related Hydrodynamics on Vegetated Foreshores at Sea Dikes. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 04021035. [Google Scholar] [CrossRef]
- Ralph, P.; Durako, M.; Enríquez, S.; Collier, C.; Doblin, M. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 2007, 350, 176–193. [Google Scholar] [CrossRef]
- Hemminga, M.A.; Duarte, C.M. Seagrass Ecology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bertelli, C.M.; Unsworth, R.K. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 2014, 83, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, P.; Baird, M.; Trevathan-Tackett, S.; Larkum, A.; Ralph, P. Quantifying and modelling the carbon sequestration capacity of seagrass meadows—A critical assessment. Mar. Pollut. Bull. 2014, 83, 430–439. [Google Scholar] [CrossRef]
- Potouroglou, M.; Bull, J.C.; Krauss, K.W.; Kennedy, H.A.; Fusi, M.; Daffonchio, D.; Mangora, M.M.; Githaiga, M.N.; Diele, K.; Huxham, M. Measuring the role of seagrasses in regulating sediment surface elevation. Sci. Rep. 2017, 7, 11917. [Google Scholar] [CrossRef] [PubMed]
- Airy, G. On Tides and Waves. In Encyclopedia Metropolitan; 1845; pp. 241–396. [Google Scholar]
- Stokes, G. On the Theory of Oscillatory Waves. Trans. Camb. Philos. Soc. 1847, 8, 441–455. [Google Scholar]
- Sverdrup, H.U.; Munk, W.H. Wind, Sea and Swell: Theory of Relations for Forecasting; Technical Report Publ. No. 601; U.S. Navy Hydrographic Office: Washington, DC, USA, 1947.
- Navier, C. On the Laws of Motion of Fluids Taking into Consideration the Adhesion of the Molecules. Ann. Chim. Phys. 1822, 19, 234–245. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Berkhoff, J.C.W. Computation of Combined Refraction-Diffraction. In Proceedings of the 13th International Conference on Coastal Engineering, Vancouver, BC, Canada, 10–14 July 1972; pp. 471–490. [Google Scholar]
- Troch, P. MILDwave—A Numerical Model for Propagation and Transformation of Linear Water Waves; Internal Report; Department of Civil Engineering, Ghent University: Zwijnaarde, Belgium, 1998. [Google Scholar]
- Vasarmidis, P.; Stratigaki, V.; Troch, P. Accurate and Fast Generation of Irregular Short Crested Waves by Using Periodic Boundaries in a Mild-Slope Wave Model. Energies 2019, 12, 785. [Google Scholar] [CrossRef]
- Stratigaki, V.; Troch, P.; Forehand, D. A fundamental coupling methodology for modeling near-field and far-field wave effects of floating structures and wave energy devices. Renew. Energy 2019, 143, 1608–1627. [Google Scholar] [CrossRef]
- Verao Fernández, G.; Stratigaki, V.; Troch, P. Irregular Wave Validation of a Coupling Methodology for Numerical Modelling of Near and Far Field Effects of Wave Energy Converter Arrays. Energies 2019, 12, 538. [Google Scholar] [CrossRef]
- Peregrine, D.H. Long waves on a beach. J. Fluid Mech. 1967, 27, 815–827. [Google Scholar] [CrossRef]
- Klonaris, G.T.; Memos, C.D.; Drønen, N.K. High-Order Boussinesq-Type Model for Integrated Nearshore Dynamics. J. Waterw. Port Coast. Ocean Eng. 2016, 142. [Google Scholar] [CrossRef]
- Stelling, G.; Zijlema, M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids 2003, 43, 1–23. [Google Scholar] [CrossRef]
- Zijlema, M.; Stelling, G.S. Further experiences with computing nonhydrostatic free-surface flows involving water waves. Int. J. Numer. Methods Fluids 2005, 48, 169–197. [Google Scholar] [CrossRef]
- Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 2011, 58, 992–1012. [Google Scholar] [CrossRef]
- Vasarmidis, P.; Klonaris, G.; Zijlema, M.; Stratigaki, V.; Troch, P. A study of the non-linear properties and wave generation of the multi-layer non-hydrostatic wave model SWASH. Ocean Eng. 2024, 302, 117633. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Realistic wave generation and active wave absorption for Navier-Stokes models. Coast. Eng. 2013, 71, 102–118. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Simulating coastal engineering processes with OpenFOAM®. Coast. Eng. 2013, 71, 119–134. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [Google Scholar] [CrossRef]
- Domínguez, J.M.; Fourtakas, G.; Altomare, C.; Canelas, R.B.; Tafuni, A.; García-Feal, O.; Martínez-Estévez, I.; Mokos, A.; Vacondio, R.; Crespo, A.J.C.; et al. DualSPHysics: From fluid dynamics to multiphysics problems. Comput. Part. Mech. 2021, 9, 867–895. [Google Scholar] [CrossRef]
- van Westen, B.; Luijendijk, A.P.; de Vries, S.; Cohn, N.; Leijnse, T.W.; de Schipper, M.A. Predicting marine and aeolian contributions to the Sand Engine’s evolution using coupled modelling. Coast. Eng. 2024, 188, 104444. [Google Scholar] [CrossRef]
- Kurnia, R.; Ducrozet, G. NEMOH: Open-source boundary element solver for computation of first- and second-order hydrodynamic loads in the frequency domain. Comput. Phys. Commun. 2023, 292, 108885. [Google Scholar] [CrossRef]
- Martínez-Estévez, I.; Tagliafierro, B.; El Rahi, J.; Domínguez, J.; Crespo, A.; Troch, P.; Gómez-Gesteira, M. Coupling an SPH-based solver with an FEA structural solver to simulate free surface flows interacting with flexible structures. Comput. Methods Appl. Mech. Eng. 2023, 410, 115989. [Google Scholar] [CrossRef]
- Zeller, R.B.; Weitzman, J.S.; Abbett, M.E.; Zarama, F.J.; Fringer, O.B.; Koseff, J.R. Improved parameterization of seagrass blade dynamics and wave attenuation based on numerical and laboratory experiments. Limnol. Oceanogr. 2014, 59, 251–266. [Google Scholar] [CrossRef]
- Huntley, D.A. LE MÉHAUTÉ, B. 1976. An introduction to hydrodynamics and water waves. Springer-Verlag, New York, viii + 323 p. $24.80. Limnol. Oceanogr. 1977, 22, 974–975. [Google Scholar] [CrossRef]
- Yuichi Iwagaki, Y.T.; Sakai, M. Basic Studies on the Wave Damping Due to Bottom Friction. Coast. Eng. Jpn. 1965, 8, 37–49. [Google Scholar] [CrossRef]
- Hasselmann, K.; Collins, J.I. Spectral dissipation of finite-depth gravity waves due to turbulent bottom friction. J. Mar. Res. 1968, 26. [Google Scholar]
- Chen, S.N.; Sanford, L.P.; Koch, E.W.; Shi, F.; North, E.W. A nearshore model to investigate the effects of seagrass bed geometry on wave attenuation and suspended sediment transport. Estuaries Coasts 2007, 30, 296–310. [Google Scholar] [CrossRef]
- Augustin, L.N.; Irish, J.L.; Lynett, P. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Eng. 2009, 56, 332–340. [Google Scholar] [CrossRef]
- Collins, J.I. Prediction of shallow-water spectra. J. Geophys. Res. (1896–1977) 1972, 77, 2693–2707. [Google Scholar] [CrossRef]
- Madsen, O.S.; Poon, Y.K.; Graber, H.C. Spectral wave attenuation by bottom friction: Theory. Coast. Eng. Proc. 1988, 1, 34. [Google Scholar] [CrossRef]
- Nowacki, D.J.; Beudin, A.; Ganju, N.K. Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary. Limnol. Oceanogr. 2017, 62, 736–753. [Google Scholar] [CrossRef]
- Hadadpour, S.; Paul, M.; Oumeraci, H. Numerical Investigation of Wave Attenuation by Rigid Vegetation Based on a Porous Media Approach. J. Coast. Res. 2019, 92, 92–100. [Google Scholar] [CrossRef]
- Zinke, P. Category: Academic chapter/article/Conference paper. In Proceedings of the River Flow 2012—Proceedings of the International Conference on Fluvial Hydraulics, San Jose, Costa Rica, 5–7 September 2012; Number 193818. pp. 301–308. [Google Scholar]
- Lane, S.N.; Hardy, R.J.; Elliott, L.; Ingham, D.B. Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; Kirby, J.T.; Hwang, P.A. Wave Diffraction Due to Areas of Energy Dissipation. J. Waterw. Port Coast. Ocean Eng. 1984, 110, 67–79. [Google Scholar] [CrossRef]
- Morison, J.; Johnson, J.; Schaaf, S. The Force Exerted by Surface Waves on Piles. J. Pet. Technol. 1950, 2, 149–154. [Google Scholar] [CrossRef]
- Kobayashi, N.; Raichle, A.W.; Asano, T. Wave Attenuation by Vegetation. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 30–48. [Google Scholar] [CrossRef]
- Dubi, A.; Torum, A. Wave energy dissipation in kelp vegetation. In Proceedings of the 25th Coastal Engineering Conference, Orlando, FL, USA, 2–6 September 1996; Volume 3, pp. 2626–2639. [Google Scholar]
- Asano, T.; Deguchi, H.; Kobayashi, N. Interaction between water waves and vegetation. Coast. Eng. Proc. 1992, 1, 2709–2723. [Google Scholar]
- Méndez, F.J.; Losada, I.J.; Losada, M.A. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res. Ocean 1999, 10, 18383–18396. [Google Scholar] [CrossRef]
- Mendez, F.J.; Losada, I.J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 2004, 51, 103–118. [Google Scholar] [CrossRef]
- Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, F.; Zhou, G.; Zhu, F.; Wu, H.; Li, R.; Zhang, C. Hydrodynamic modeling study of nature-based hybrid coastal defense strategy applied in salt marsh restoration. Estuar. Coast. Shelf Sci. 2024, 298, 108666. [Google Scholar] [CrossRef]
- Jacob, B.; Dolch, T.; Wurpts, A.; Staneva, J. Evaluation of seagrass as a nature-based solution for coastal protection in the German Wadden Sea. Ocean Dyn. 2023, 73, 699–727. [Google Scholar] [CrossRef]
- Suzuki, T.; Hu, Z.; Kumada, K.; Phan, L.; Zijlema, M. Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields. Coast. Eng. 2019, 149, 49–64. [Google Scholar] [CrossRef]
- Cao, H.; Feng, W.; Hu, Z.; Suzuki, T.; Stive, M.J. Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation. Ocean Eng. 2015, 110, 258–269. [Google Scholar] [CrossRef]
- Reis, R.A.; Fortes, C.J.; Rodrigues, J.A.; Hu, Z.; Suzuki, T. Experimental study on drag coefficient of flexible vegetation under non-breaking waves. Ocean Eng. 2024, 296, 117002. [Google Scholar] [CrossRef]
- Stratigaki, V.; Manca, E.; Prinos, P.; Losada, I.J.; Lara, J.L.; Sclavo, M.; Amos, C.L.; Cáceres, I.; Sánchez-Arcilla, A. Large-scale experiments on wave propagation over Posidonia oceanica. J. Hydraul. Res. 2011, 49, 31–43. [Google Scholar] [CrossRef]
- Vargas-Luna, A.; Crosato, A.; Calvani, G.; Uijttewaal, W.S. Representing plants as rigid cylinders in experiments and models. Adv. Water Resour. 2016, 93, 205–222. [Google Scholar] [CrossRef]
- van Veelen, T.J.; Fairchild, T.P.; Reeve, D.E.; Karunarathna, H. Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure. Coast. Eng. 2020, 157, 103648. [Google Scholar] [CrossRef]
- El Rahi, J.; Martínez-Estévez, I.; Tagliafierro, B.; Domínguez, J.M.; Crespo, A.J.; Stratigaki, V.; Suzuki, T.; Troch, P. Numerical investigation of wave-induced flexible vegetation dynamics in 3D using a coupling between DualSPHysics and the FEA module of Project Chrono. Ocean Eng. 2023, 285, 115227. [Google Scholar] [CrossRef]
- Familkhalili, R.; Tahvildari, N. Computational modeling of coupled waves and vegetation stem dynamics in highly flexible submerged meadows. Adv. Water Resour. 2022, 165, 104222. [Google Scholar] [CrossRef]
- van Veelen, T.J.; Karunarathna, H.; Reeve, D.E. Modelling wave attenuation by quasi-flexible coastal vegetation. Coast. Eng. 2021, 164, 103820. [Google Scholar] [CrossRef]
- Mullarney, J.C.; Henderson, S.M. Wave-forced motion of submerged single-stem vegetation. J. Geophys. Res. Ocean 2010, 115. [Google Scholar] [CrossRef]
- Luhar, M.; Nepf, H. Wave-induced dynamics of flexible blades. J. Fluids Struct. 2016, 61, 20–41. [Google Scholar] [CrossRef]
- Zhu, L.; Zou, Q.P.; Huguenard, K.; Fredriksson, D.W. Mechanisms for the Asymmetric Motion of Submerged Aquatic Vegetation in Waves: A Consistent-Mass Cable Model. J. Geophys. Res. Ocean 2020, 125, e2019JC015517. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W.; Liu, S.; Li, M. Numerical investigation of wave attenuation by coupled flexible vegetation dynamic model and XBeach wave model. Ocean Eng. 2021, 235, 109357. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Brzenski, J.; Davis, K. Flexible Vegetation and Its Implementation in the Swash Ocean Model. In Proceedings of the OCEANS 2021, San Diego, CA, USA, 20–23 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations. Coast. Eng. 2013, 80, 16–34. [Google Scholar] [CrossRef]
- Paquier, A.E.; Oudart, T.; Le Bouteiller, C.; Meulé, S.; Larroudé, P.; Dalrymple, R.A. 3D numerical simulation of seagrass movement under waves and currents with GPUSPH. Int. J. Sediment Res. 2021, 36, 711–722. [Google Scholar] [CrossRef]
- Tschisgale, S.; Fröhlich, J. An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid. J. Comput. Phys. 2020, 423, 109801. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. Fluid-structure interaction simulations with a LES filtering approach in solids4Foam. arXiv 2021, arXiv:2102.08011. [Google Scholar] [CrossRef]
- El Rahi, J.; Martínez-Estévez, I.; Almeida Reis, R.; Tagliafierro, B.; Domínguez, J.M.; Crespo, A.J.C.; Stratigaki, V.; Suzuki, T.; Troch, P. Exploring Wave–Vegetation Interaction at Stem Scale: Analysis of the Coupled Flow–Structure Interactions Using the SPH-Based DualSPHysics Code and the FEA Module of Chrono. J. Mar. Sci. Eng. 2024, 12, 1120. [Google Scholar] [CrossRef]
- Nash, G.V. The Story of the Mangrove. Torreya 1908, 8, 73–78. [Google Scholar]
- Delf, E.M. Transpiration in Succulent Plants. Ann. Bot. 1912, 26, 409–442. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Z.; You, S.; Zhang, Y.; Chen, L.; Lin, G. Mangroves: Obligate or facultative halophytes? A review. Trees 2011, 25, 953–963. [Google Scholar] [CrossRef]
- Boto, K.G.; Wellington, J.T. Soil Characteristics and Nutrient Status in a Northern Australian Mangrove Forest. Estuaries 1984, 7, 61. [Google Scholar] [CrossRef]
- Wakushima, S.; Kuraishi, S.; Sakurai, N. Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. J. Plant Res. 1994, 107, 39–46. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B. Biology of mangroves and mangrove Ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar] [CrossRef]
- Sasekumar, A.; Chong, V.C.; Leh, M.U.; D’Cruz, R. Mangroves as a habitat for fish and prawns. In Ecology of Mangrove and Related Ecosystems; Jaccarini, V., Martens, E., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 195–207. [Google Scholar]
- Noske, R. Abundance, Zonation and Foraging Ecology of Birds in Mangroves of Darwin Harbour, Northern Territory. Wildl. Res. 1996, 23, 443. [Google Scholar] [CrossRef]
- Santiapillai, C.; de Silva, M. Status, distribution and conservation of crocodiles in Sri Lanka. Biol. Conserv. 2001, 97, 305–318. [Google Scholar] [CrossRef]
- Zvonareva, S.; Kantor, Y.; Li, X.; Britayev, T. Long-term monitoring of Gastropoda (Mollusca) fauna in planted mangroves in central Vietnam. Zool. Stud. 2015, 54, 39. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Mangrove macrobenthos: Assemblages, services, and linkages. J. Sea Res. 2008, 59, 16–29. [Google Scholar] [CrossRef]
- Walters, B.B. Patterns of Local Wood use and Cutting of Philippine Mangrove Forests. Econ. Bot. 2005, 59, 66–76. [Google Scholar] [CrossRef]
- Surjanti, J.; Soejoto, A.; Seno, D.N.; Waspodo. Mangrove forest ecotourism: Participatory ecological learning and sustainability of students’ behavior through self-efficacy and self-concept. Soc. Sci. Humanit. Open 2020, 2, 100009. [Google Scholar] [CrossRef]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef] [PubMed]
- Mazda, Y.; Magi, M.; Kogo, M.; Hong, P.N. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1997, 1, 127–135. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Botany of Mangroves, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Lugo, A.E.; Snedaker, S.C. The Ecology of Mangroves. Annu. Rev. Ecol. Evol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- DeYoe, H.; Lonard, R.I.; Judd, F.W.; Stalter, R.; Feller, I. Biological Flora of the Tropical and Subtropical Intertidal Zone: Literature Review for Rhizophora mangle L. J. Coast. Res. 2020, 36, 857–884. [Google Scholar] [CrossRef]
- Golley, F.; Odum, H.T.; Wilson, R.F. The Structure and Metabolism of a Puerto Rican Red Mangrove Forest in May. Ecology 1962, 43, 9–19. [Google Scholar] [CrossRef]
- Lonard, R.I.; Judd, F.W.; Summy, K.; DeYoe, H.; Stalter, R. The Biological Flora of Coastal Dunes and Wetlands: Avicennia germinans L. J. Coast. Res. 2016, 33, 191–207. [Google Scholar] [CrossRef]
- Hao, S.; Su, W.; Li, Q.Q. Adaptive roots of mangrove Avicennia marina: Structure and gene expressions analyses of pneumatophores. Sci. Total Environ. 2021, 757, 143994. [Google Scholar] [CrossRef] [PubMed]
- Wiegert, R.G.; Pomeroy, L.R.; Wiebe, W.J. Ecology of Salt Marshes: An Introduction. In The Ecology of a Salt Marsh; Pomeroy, L.R., Wiegert, R.G., Eds.; Springer: New York, NY, USA, 1981; pp. 3–19. [Google Scholar] [CrossRef]
- Luternauer, J.L.; Atkins, R.J.; Moody, A.I.; Williams, H.E.; Gibson, J.W. Chapter 11 Salt Marshes. In Geomorphology and Sedimentology of Estuaries; Perillo, G., Ed.; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1995; Volume 53, pp. 307–332. [Google Scholar] [CrossRef]
- Roman, C. Salt Marsh Vegetation. In Encyclopedia of Ocean Sciences; Steele, J.H., Ed.; Academic Press: Oxford, UK, 2001; pp. 2487–2490. [Google Scholar] [CrossRef]
- Mcowen, C.J.; Weatherdon, L.V.; Bochove, J.V.; Sullivan, E.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.S.; Spalding, M.; et al. A global map of saltmarshes. Biodivers. Data J. 2017, 5, e11764. [Google Scholar] [CrossRef] [PubMed]
- Balke, T.; Stock, M.; Jensen, K.; Bouma, T.J.; Kleyer, M. A global analysis of the seaward salt marsh extent: The importance of tidal range. Water Resour. Res. 2016, 52, 3775–3786. [Google Scholar] [CrossRef]
- Simas, T.; Nunes, J.; Ferreira, J. Effects of global climate change on coastal salt marshes. Ecol. Model. 2001, 139, 1–15. [Google Scholar] [CrossRef]
- Sheaves, M.; Baker, R.; Nagelkerken, I.; Connolly, R.M. True Value of Estuarine and Coastal Nurseries for Fish: Incorporating Complexity and Dynamics. Estuaries Coasts 2014, 38, 401–414. [Google Scholar] [CrossRef]
- Rogers, S.G.; Targett, T.E.; Van Sant, S.B. Fish-Nursery Use in Georgia Salt-Marsh Estuaries: The Influence of Springtime Freshwater Conditions. Trans. Am. Fish. Soc. 1984, 113, 595–606. [Google Scholar] [CrossRef]
- Joyeux, E.; Carpentier, A.; Corre, F.; Haie, S.; Pétillon, J. Impact of salt-marsh management on fish nursery function in the bay of Aiguillon (French Atlantic coast), with a focus on European sea bass diet. J. Coast. Conserv. 2017, 21, 435–444. [Google Scholar] [CrossRef]
- Teuchies, J.; Vandenbruwaene, W.; Carpentier, R.; Bervoets, L.; Temmerman, S.; Wang, C.; Maris, T.; Cox, T.J.S.; Van Braeckel, A.; Meire, P. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal. PLoS ONE 2013, 8, e0070381. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, F.; Möller, I.; Paul, M.; Kudella, M.; Spencer, T.; van Wesenbeeck, B.; Wolters, G.; Jensen, K.; Bouma, T.; Miranda-Lange, M.; et al. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecol. Eng. 2017, 100, 301–315. [Google Scholar] [CrossRef]
- Möller, I.; Kudella, M.; Rupprecht, F.; Spencer, T.; Paul, M.; van Wesenbeeck, B.K.; Wolters, G.; Jensen, K.; Bouma, T.J.; Miranda-Lange, M.; et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 2014, 7, 727–731. [Google Scholar] [CrossRef]
- Telesca, L.; Belluscio, A.; Criscoli, A.; Ardizzone, G.; Apostolaki, E.T.; Fraschetti, S.; Gristina, M.; Knittweis, L.; Martin, C.S.; Pergent, G.; et al. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 2015, 5, 12505. [Google Scholar] [CrossRef] [PubMed]
- Boström, C.; Baden, S.; Bockelmann, A.C.; Dromph, K.; Fredriksen, S.; Gustafsson, C.; Krause-Jensen, D.; Möller, T.; Nielsen, S.L.; Olesen, B.; et al. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: Implications for coastal management and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 410–434. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Kayanne, H. Relationship of species composition of tropical seagrass meadows to multiple physical environmental factors. Ecol. Res. 2006, 22, 87–96. [Google Scholar] [CrossRef]
- Mwikamba, E.M.; Githaiga, M.N.; Briers, R.A.; Huxham, M. A Review of Seagrass Cover, Status and Trends in Africa. Estuaries Coasts 2024, 47, 917–934. [Google Scholar] [CrossRef]
- Duarte, C.M. Seagrass depth limits. Aquat. Bot. 1991, 40, 363–377. [Google Scholar] [CrossRef]
- Short, F.; Carruthers, T.; Dennison, W.; Waycott, M. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 2007, 350, 3–20. [Google Scholar] [CrossRef]
- Nordlund, L.M.; Jackson, E.L.; Nakaoka, M.; Samper-Villarreal, J.; Beca-Carretero, P.; Creed, J.C. Seagrass ecosystem services—What’s next? Mar. Pollut. Bull. 2018, 134, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.L. Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Mar. Biol. 1988, 98, 447–455. [Google Scholar] [CrossRef]
- Heck, K.L.; Wetstone, G.S. Habitat Complexity and Invertebrate Species Richness and Abundance in Tropical Seagrass Meadows. J. Biogeogr. 1977, 4, 135–142. [Google Scholar] [CrossRef]
- de Boer, W.F. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: A review. Hydrobiologia 2007, 591, 5–24. [Google Scholar] [CrossRef]
- Kaplan, D.R. The science of plant morphology: Definition, history, and role in modern biology. Am. J. Bot. 2001, 88, 1711–1741. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.S.; Cahalan, J.A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 1992, 35, 565–576. [Google Scholar] [CrossRef]
- Mutlu, E.; Olguner, C.; Gökoğlu, M.; Özvarol, Y. Seasonal Growth Dynamics of Posidonia oceanica in a Pristine Mediterranean Gulf. Ocean Sci. J. 2022, 57, 381–397. [Google Scholar] [CrossRef]
- Bandeira, S.O.; Macamo, C.C.F.; Kairo, J.G.; Amade, F.; Jiddawi, N.; Paula, J. Evaluation of mangrove structure and condition in two trans-boundary areas in the Western Indian Ocean. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, S46–S55. [Google Scholar] [CrossRef]
- Aslan, A.; Aljahdali, M.O. Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data. Forests 2022, 13, 1545. [Google Scholar] [CrossRef]
- Rahman; Yulianda, F.; Rusmana, I.; Wardiatno, Y. Production Ratio of Seedlings and Density Status of Mangrove Ecosystem in Coastal Areas of Indonesia. Adv. Environ. Biol. 2019, 13, 13. [Google Scholar]
- Marbà, N.; Duarte, C.M.; Díaz-Almela, E.; Terrados, J.; Álvarez, E.; Martínez, R.; Santiago, R.; Gacia, E.; Grau, A.M. Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. Estuaries 2005, 28, 53–62. [Google Scholar] [CrossRef]
- Wong, M.C.; Bravo, M.A.; Dowd, M. Ecological dynamics of Zostera marina (eelgrass) in three adjacent bays in Atlantic Canada. Bot. Mar. 2013, 56, 413–424. [Google Scholar] [CrossRef]
- Lima, S.F.; Neves, C.F.; Rosauro, N.M.L.E. Damping of gravity waves by fields of flexible vegetation. In Proceedings of the 30th International Coastal Engineering Conference, San Diego, CA, USA, 3–8 September 2006; Volume 1, pp. 491–503. [Google Scholar]
- Reidenbach, M.A.; Thomas, E.L. Influence of the Seagrass, Zostera marina, on Wave Attenuation and Bed Shear Stress Within a Shallow Coastal Bay. Front. Mar. Sci. 2018, 5, 397. [Google Scholar] [CrossRef]
- Kalloe, S.A.; Hofland, B.; Antolínez, J.A.A.; van Wesenbeeck, B.K. Quantifying Frontal-Surface Area of Woody Vegetation: A Crucial Parameter for Wave Attenuation. Front. Mar. Sci. 2022, 9, 820846. [Google Scholar] [CrossRef]
- Koehl, M.A.R. Ecological biomechanics of marine macrophytes. J. Exp. Bot. 2022, 73, 1104–1121. [Google Scholar] [CrossRef] [PubMed]
- Kutija, V.; Hong, H.T.M. A numerical model for assessing the additional resistance to flow introduced by flexible vegetation. J. Hydraul. Res. 1996, 34, 99–114. [Google Scholar] [CrossRef]
- Noisette, F.; Depetris, A.; Kühl, M.; Brodersen, K.E. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (Zostera marina). J. R. Soc. Interface 2020, 17, 20200485. [Google Scholar] [CrossRef] [PubMed]
- Folkard, A.M. Hydrodynamics of model Posidonia oceanica patches in shallow water. Limnol. Oceanogr. 2005, 50, 1592–1600. [Google Scholar] [CrossRef]
- Stafford-Bell, R.; Chariton, A.; Robinson, R. Prolonged buoyancy and viability of Zostera muelleri Irmisch ex Asch. vegetative fragments indicate a strong dispersal potential. J. Exp. Mar. Biol. Ecol. 2015, 464, 52–57. [Google Scholar] [CrossRef]
- Abdelrhman, M. Modeling coupling between eelgrass Zostera marina and water flow. Mar. Ecol. Prog. Ser. 2007, 338, 81–96. [Google Scholar] [CrossRef]
- Paul, M. Vegetation Traits. In Hydrodynamics of Wave-Vegetation Interactions; Advances in Coastal and Ocean Engineering; World Scientific: Singapore, 2023; Volume 14, pp. 7–28. [Google Scholar] [CrossRef]
- Vermaat, J.E.; Verhagen, F.C. Seasonal variation in the intertidal seagrass Zostera noltii Hornem: Coupling demographic and physiological patterns. Aquat. Bot. 1996, 52, 259–281. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Willsie, A.; Rose, C.D.; Rutten, L.M. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar. Biol. 2001, 138, 341–354. [Google Scholar] [CrossRef]
- Day, J.; Coronado-Molina, C.; Vera-Herrera, F.; Twilley, R.; Rivera-Monroy, V.; Alvarez-Guillen, H.; Day, R.; Conner, W. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat. Bot. 1996, 55, 39–60. [Google Scholar] [CrossRef]
- Sherman, R.E.; Fahey, T.J.; Martinez, P. Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems 2003, 6, 384–398. [Google Scholar] [CrossRef]
- Paul, M.; Bischoff, C.; Koop-Jakobsen, K. Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios. Sci. Rep. 2022, 12, 21272. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D.; Hadibarata, T. Seagrass meadows under the changing climate: A review of the impacts of climate stressors. Res. Ecol. 2022, 4, 27–36. [Google Scholar] [CrossRef]
- Blackmar, P.J.; Cox, D.T.; Wu, W.C. Laboratory Observations and Numerical Simulations of Wave Height Attenuation in Heterogeneous Vegetation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 56–65. [Google Scholar] [CrossRef]
- Miesse, T.; de Souza de Lima, A.; Khalid, A.; Cassalho, F.; Coleman, D.J.; Ferreira, C.M.; Sutton-Grier, A.E. Numerical modeling of wave attenuation: Implications of representing vegetation found in coastal saltmarshes in the Chesapeake Bay. Environ. Monit. Assess. 2023, 195, 982. [Google Scholar] [CrossRef]
- Li, C.W.; Yan, K. Numerical Investigation of Wave–Current–Vegetation Interaction. J. Hydraul. Eng. 2007, 133, 794–803. [Google Scholar] [CrossRef]
- Marsooli, R.; Wu, W. Numerical investigation of wave attenuation by vegetation using a 3D RANS model. Adv. Water Resour. 2014, 74, 245–257. [Google Scholar] [CrossRef]
- Tang, J.; Shen, S.; Wang, H. Numerical model for coastal wave propagation through mild slope zone in the presence of rigid vegetation. Coast. Eng. 2015, 97, 53–59. [Google Scholar] [CrossRef]
- Marjoribanks, T.I.; Hardy, R.J.; Lane, S.N.; Parsons, D.R. Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling. Environ. Fluid Mech. 2016, 17, 277–301. [Google Scholar] [CrossRef] [PubMed]
- Luhar, M.; Nepf, H.M. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 2011, 56, 2003–2017. [Google Scholar] [CrossRef]
- Beudin, A.; Kalra, T.S.; Ganju, N.K.; Warner, J.C. Development of a coupled wave-flow-vegetation interaction model. Comput. Geosci. 2017, 100, 76–86. [Google Scholar] [CrossRef]
- Marjoribanks, T.I.; Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 2022, 60, 46–61. [Google Scholar] [CrossRef]
- Wu, W.C.; Ma, G.; Cox, D.T. Modeling wave attenuation induced by the vertical density variations of vegetation. Coast. Eng. 2016, 112, 17–27. [Google Scholar] [CrossRef]
- Bouma, T.; De Vries, M.; Low, E.; Peralta, G.; Tánczos, I.; van de Koppel, J.; Herman, P. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 2005, 86, 2187–2199. [Google Scholar] [CrossRef]
- Paul, M.; de los Santos, C.B. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar. Biol. 2019, 166, 127. [Google Scholar] [CrossRef]
- Möller, I.; Spencer, T.; French, J.; Leggett, D.; Dixon, M. Wave Transformation Over Salt Marshes: A Field and Numerical Modelling Study from North Norfolk, England. Estuar. Coast. Shelf Sci. 1999, 49, 411–426. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. Tsunami wave interaction with mangrove forests: A 3-D numerical approach. Coast. Eng. 2015, 98, 33–54. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Chen, Q.; Smith, H.D.; Liu, D. Large Eddy Simulation of Unidirectional and Wave Flows through Vegetation. J. Eng. Mech. 2016, 142. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, J. Numerical investigation of the wave interaction with flexible vegetation: Model setup and validation for a single stem study case. Anthr. Coasts 2022, 5, 3. [Google Scholar] [CrossRef]
- Dally, W.J.; Keckler, S.W.; Kirk, D.B. Evolution of the Graphics Processing Unit (GPU). IEEE Micro 2021, 41, 42–51. [Google Scholar] [CrossRef]
- Crespo, A.C.; Dominguez, J.M.; Barreiro, A.; Gómez-Gesteira, M.; Rogers, B.D. GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods. PLoS ONE 2011, 6, e0020685. [Google Scholar] [CrossRef]
Morphology | Biomechanics | Buoyancy | Variability | |
---|---|---|---|---|
Category A | No | No | No | No |
Category B | Yes | No | No | No |
Category C | Yes | Yes | No | No |
Category D | Yes | Yes | Yes | No |
Category E | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Rahi, J.; Stratigaki, V.; De Troch, M.; Troch, P. Numerical Modelling of Wave–Vegetation Interaction: Embracing a Cross-Disciplinary Approach for Bridging Ecology and Engineering for Nature-Inclusive Coastal Defence Systems. Water 2024, 16, 1977. https://doi.org/10.3390/w16141977
El Rahi J, Stratigaki V, De Troch M, Troch P. Numerical Modelling of Wave–Vegetation Interaction: Embracing a Cross-Disciplinary Approach for Bridging Ecology and Engineering for Nature-Inclusive Coastal Defence Systems. Water. 2024; 16(14):1977. https://doi.org/10.3390/w16141977
Chicago/Turabian StyleEl Rahi, Joe, Vasiliki Stratigaki, Marleen De Troch, and Peter Troch. 2024. "Numerical Modelling of Wave–Vegetation Interaction: Embracing a Cross-Disciplinary Approach for Bridging Ecology and Engineering for Nature-Inclusive Coastal Defence Systems" Water 16, no. 14: 1977. https://doi.org/10.3390/w16141977
APA StyleEl Rahi, J., Stratigaki, V., De Troch, M., & Troch, P. (2024). Numerical Modelling of Wave–Vegetation Interaction: Embracing a Cross-Disciplinary Approach for Bridging Ecology and Engineering for Nature-Inclusive Coastal Defence Systems. Water, 16(14), 1977. https://doi.org/10.3390/w16141977