Numerical Analysis of Seepage Field Response Characteristics of Weathered Granite Landslides under Fluctuating Rainfall Conditions
Abstract
:1. Introduction
2. Summary of the Research Area
2.1. Landslide Characteristics
2.2. Analysis of Fluctuating Rainfall Characteristics
3. Numerical Modeling
3.1. Theoretical Model
3.1.1. Soil Constitutive Model
3.1.2. Rainfall Seepage Theory of Unsaturated Soil
3.2. Model Settings
4. Results
4.1. Analysis of the Seepage Field
4.1.1. Different Rainfall Intensity Amplitudes
4.1.2. Different Rainfall Durations
4.1.3. Different Rainfall Intensity Amplitudes (Constant Rainfall)
4.2. Comprehensive Analysis and Comparison of Working Conditions
4.3. Model Reliability Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balsa-Barreiro, J.; Li, Y.; Morales, A.; Pentland, A.S. Globalization and the shifting centers of gravity of world’s human dynamics: Implications for sustainability. J. Clean. Prod. 2019, 239, 117923.1–117923.17. [Google Scholar] [CrossRef]
- Cai, W.; Lan, F.; Huang, X.; Hao, J.; Xia, W.; Tang, R.; Feng, P.; Li, H. Generative probabilistic prediction of precipitation induced landslide deformation with variational autoencoder and gated recurrent unit. Front. Earth Sci. 2024, 12, 1394129. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, W.; Wan, J.; Li, H. Granular risk assessment of earthquake induced landslide via latent representations of stacked autoencoder. Front. Environ. Sci. 2023, 11, 1308808. [Google Scholar] [CrossRef]
- Xiang, G.; Jiang, T.; Yang, Q.; Cui, S.; Zhu, L.; He, Y.; Li, H. The Influence of Vertical Seismic Acceleration on the Triggering of Landslides Constrained by Bedding Faults under an Inertial Frame Reference: The Case of the Daguangbao (DGB) Landslide. Appl. Sci. 2023, 13, 12911. [Google Scholar] [CrossRef]
- Marín-Rodríguez, N.J.; Vega, J.; Zanabria, O.B.; González-Ruiz, J.D.; Botero, S. Towards an understanding of landslide risk assessment and its economic losses: A scientometric analysis. Landslides 2024. [Google Scholar] [CrossRef]
- Niyokwiringirwa, P.; Lombardo, L.; Dewitte, O.; Deijns, A.A.J.; Wang, N.; Van Westen, C.J.; Tanyas, H. Event-based rainfall-induced landslide inventories and rainfall thresholds for Malawi. Landslides 2024, 21, 1403–1424. [Google Scholar] [CrossRef]
- Ministry of Emergency Management of the People’s Republic of China. Available online: https://www.gov.cn/lianbo/bumen/202401/content_6927328.htm (accessed on 21 January 2024).
- Fedato, E.; Fubelli, G.; Kurilla, L.; Tiranti, D. Predisposing Factors for Shallow Landslides in Alpine and Hilly/Apennines Environments: A Case Study from Piemonte, Italy. Geosciences 2023, 13, 252. [Google Scholar] [CrossRef]
- Borga, M.; Dalla Fontana, G.; Cazorzi, F. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J. Hydrol. 2002, 268, 56–71. [Google Scholar] [CrossRef]
- Urmi, Z.A.; Saeidi, A.; Chavali, R.V.P.; Yerro, A. Failure mechanism, existing constitutive models and numerical modeling of landslides in sensitive clay: A review. Geoenvironmental Disasters 2023, 10, 14. [Google Scholar] [CrossRef]
- Dikshit, A.; Satyam, D.N. Estimation of rainfall thresholds for landslide occurrences in Kalimpong, India. Innov. Infrastruct. Solut. 2018, 3, 1–10. [Google Scholar] [CrossRef]
- Jéssica, C.M.; Guilherme JC, G.; Raquel, Q.V.; Eurípedes AV, J.; Rafael, S.N.; Nelson, F.F. Exploring extreme rainfall-triggered landslides using 3D unsaturated flow, antecedent moisture and spatially distributed soil depth. CATENA 2023, 229, 107241. [Google Scholar] [CrossRef]
- Kim, S.W.; Chun, K.W.; Kim, M.; Catani, F.; Choi, B.; Seo, J.I. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 2020, 182, 569–582. [Google Scholar] [CrossRef]
- Lee, J.J.; Song, M.S.; Yun, H.S.; Yum, S.G. Dynamic landslide susceptibility analysis that combines rainfall period, accumulated rainfall, and geospatial information. Sci. Rep. 2022, 12, 18429. [Google Scholar] [CrossRef]
- La Porta, G.; Leonardi, A.; Pirulli, M.; Cafaro, F.; Castelli, F. Time-resolved triggering and runout analysis of rainfall-induced shallow landslides. Acta Geotech. 2024, 19, 1873–1889. [Google Scholar] [CrossRef]
- Islam, M.A.; Chattoraj, S.L. Modelling landslides in the Lesser Himalaya region using geospatial and numerical simulation techniques. Arab. J. Geosci. 2023, 16, 480. [Google Scholar] [CrossRef]
- Liu, S.H.; Du, J.; Yin, K.L.; Zhou, C.; Huang, C.C.; Jiang, J.; Yu, J. Regional early warning model for rainfall induced landslide based on slope unit in Chongqing, China. Eng. Geol. 2024, 333, 107464. [Google Scholar] [CrossRef]
- Soumik, S.; Biswajit, B. Rainfall threshold for prediction of shallow landslides in the Garhwal Himalaya, India. Geosystems Geoenvironment 2024, 11, 100285. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Wang, H.; Lu, D.G. Probabilistic thresholds for regional rainfall induced landslides. Comput. Geotech. 2024, 166, 106040. [Google Scholar] [CrossRef]
- Rashad, A.; Marwan, F.; Anis, Y.; Hossein, N.; Knut, J.M.; Renaud, T. Modeling rainfall-induced landslide using the concept of local factor of safety: Uncertainty propagation and sensitivity analysis. Comput. Geotech. 2024, 167, 106102. [Google Scholar] [CrossRef]
- Hugh, G.S.; Andrew, J.N.; Harley, B.; Raphael, S. The influence of spatial patterns in rainfall on shallow landslides. Geomorphology 2023, 437, 108795. [Google Scholar] [CrossRef]
- Ma, J.H.; Yao, Y.Q.; Wei, Z.R.; Meng, X.M.; Zhang, Z.L.; Yin, H.L.; Zeng, R.Q. Stability analysis of a loess landslide considering rainfall patterns and spatial variability of soil. Comput. Geotech. 2024, 167, 106059. [Google Scholar] [CrossRef]
- Yu, P.; Liu, H.H.; Yu, H.B.; Xie, Y.J.; Yu, Y.; Zhu, C.H.; Dong, J.; Guan, Y. Study on Fluid–Solid Coupling Numerical Simulation and Early Warning of Weathered Granite Landslides Induced by Extreme Rainfall. Sustainability 2023, 15, 11738. [Google Scholar] [CrossRef]
- Yu, P.; Dong, J.; Hao, H.; Xie, Y.; Zhang, H.; Wang, J.; Zhu, C.; Guan, Y.; Yu, H. Risk Assessment and Prevention Planning for Collapse Geological Hazards Considering Extreme Rainfall—A Case Study of Laoshan District in Eastern China. Land 2023, 12, 1558. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, J.K.; Jia, S.X.; Cao, L.; Zhao, L. Numerical simulation study on the embedding depth of anti slip piles in fully weathered granite landslides. J. Phys. Conf. Ser. 2024, 2732, 012008. [Google Scholar] [CrossRef]
- Liu, H.H.; Yu, P.; Lu Xie, Y.J.; Wang, Z.S.; Hao, S.Y.; Liu, H.J.; Fu, Y.X. Experimental study on disaster mechanism of completely weathered granite landslide induced by extreme rainfall. Geoenvironmental Disasters 2023, 10, 5. [Google Scholar] [CrossRef]
Group | Condition | Rainfall Intensity (mm/h) | Rainfall Duration (h) (+1) | ||
---|---|---|---|---|---|
Initial | End | Amplitude | |||
E1 | N1 | 10 | 30 | 200% | 24 |
N2 | 10 | 40 | 300% | 24 | |
N3 | 10 | 50 | 400% | 24 | |
N4 | 10 | 60 | 500% | 24 | |
E2 | N5 | 10 | 40 | 300% | 32 |
N6 | 10 | 40 | 300% | 24 | |
N7 | 10 | 40 | 300% | 16 | |
N8 | 10 | 40 | 300% | 8 | |
E3 | N9 | 25 | 25 | 0% | 24 |
N10 | 20 | 30 | 50% | 24 | |
N11 | 15 | 35 | 133% | 24 | |
N12 | 10 | 40 | 300% | 24 |
Method | Rainfall Intensity (mm/h) | Rainfall Duration (h) | Rainfall (mm) | |||
---|---|---|---|---|---|---|
R | S | R | S | R | S | |
Physical model test | 20 | 3.6 | 24 | 2.2 | 480 | 7.92 |
Numerical simulation | 20 | 20 | 24 | 24 | 480 | 480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Shi, W.; Cao, Z.; Cao, X.; Wang, R.; Wu, W.; Luan, P.; Wang, Q. Numerical Analysis of Seepage Field Response Characteristics of Weathered Granite Landslides under Fluctuating Rainfall Conditions. Water 2024, 16, 1996. https://doi.org/10.3390/w16141996
Yu P, Shi W, Cao Z, Cao X, Wang R, Wu W, Luan P, Wang Q. Numerical Analysis of Seepage Field Response Characteristics of Weathered Granite Landslides under Fluctuating Rainfall Conditions. Water. 2024; 16(14):1996. https://doi.org/10.3390/w16141996
Chicago/Turabian StyleYu, Peng, Wenqing Shi, Zhonghua Cao, Xichong Cao, Ran Wang, Wenyu Wu, Pengyu Luan, and Qigang Wang. 2024. "Numerical Analysis of Seepage Field Response Characteristics of Weathered Granite Landslides under Fluctuating Rainfall Conditions" Water 16, no. 14: 1996. https://doi.org/10.3390/w16141996
APA StyleYu, P., Shi, W., Cao, Z., Cao, X., Wang, R., Wu, W., Luan, P., & Wang, Q. (2024). Numerical Analysis of Seepage Field Response Characteristics of Weathered Granite Landslides under Fluctuating Rainfall Conditions. Water, 16(14), 1996. https://doi.org/10.3390/w16141996