Heterogeneity of Biochemical Parameters of Non-Native Pink Salmon Oncorhynchus gorbuscha Spawners at the Beginning of Up-River Movements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study
2.2. Blood Sampling
2.3. Biochemical Analysis
3. Results
3.1. Fish Length and Weight
3.2. Thyroid and Steroid Hormones
3.3. Parameters of Lipid Metabolism
3.4. Protein Exchange Parameters
3.5. Electrolyte Parameters
4. Discussion
4.1. Parameters Related to Maturation
4.2. Parameters Related to Osmoregulation
4.3. Correlations of Blood Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collins, J.J. Occurrence of pink salmon (Oncorhynchus gorbuscha) in Lake Huron. J. Fish. Res. Board Can. 1975, 32, 402–404. [Google Scholar] [CrossRef]
- Kennedy, A.J.; Greil, R.W.; Back, R.C.; Sutton, T.M. Population characteristics and spawning migration dynamics of pink salmon in US waters of the St. Marys River. J. Great Lakes Res. 2005, 31, 11–21. [Google Scholar] [CrossRef]
- Alekseev, M.Y.; Tkachenko, A.V.; Zubchenko, A.V.; Shkatelov, A.P.; Nikolaev, A.M. Distribution spawning and the possibility of fishery of introduced pink salmon (Oncorhynchus gorbuscha, Walbaum) in rivers of Murmansk Oblast. Russ. J. Biol. Invasions 2019, 10, 109–117. [Google Scholar] [CrossRef]
- Pavlov, E.D.; Ganzha, E.V.; Pavlov, D.S. Thyroid and sex steroid hormone level in the pink salmon Oncorhynchus gorbuscha during marine and freshwater periods of spawning migration. J. Ichthyol. 2022, 62, 487–494. [Google Scholar] [CrossRef]
- Ueda, H. Homing ability and migration success in Pacific salmon: Mechanistic insights from biotelemetry endocrinology and neurophysiology. Mar. Ecol. Prog. Ser. 2014, 496, 19–232. [Google Scholar] [CrossRef]
- Hesthagen, T.; Sandlund, O.T. Non-native freshwater fishes in Norway: History consequences and perspectives. J. Fish Biol. 2007, 71, 73–183. [Google Scholar] [CrossRef]
- Pettit, H. Britain’s Native Salmon Are Under Threat from a Pink Rival that Escaped into the Sea from Russian Farms. 2017.
- Sandlund, O.T.; Berntsen, H.H.; Fiske, P.; Kuusela, J.; Muladal, R.; Niemelä, E.; Uglem, I.; Forseth, T.; Mo, T.A.; Thorstad, E.B.; et al. Pink salmon in Norway: The reluctant invader. Biol. Invasions. 2019, 21, 1033–1054. [Google Scholar] [CrossRef]
- Lennox, R.J.; Berntsen, H.H.; Garseth, Å.H.; Hinch, S.G.; Hindar, K.; Ugedal, O.; Utne, K.R.; Vollset, K.W.; Whoriskey, F.G.; Thorstad, E.B. Prospects for the future of pink salmon in three oceans: From the native Pacific to the novel. Fish Fish. J. 2023, 24, 59–776. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Ruggerone, G.T.; Zimmerman, C.E. Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic? Environ. Biol. Fish. 2013, 96, 187–1226. [Google Scholar] [CrossRef]
- Ruggerone, G.T.; Nielsen, J.L. Evidence for competitive dominance of pink salmon (Oncorhynchus gorbuscha) over other salmonids in the North Pacific Ocean. Rev. Fish Biol. Fish. 2004, 14, 371. [Google Scholar] [CrossRef]
- Gordeeva, N.V.; Salmenkova, E.A.; Prusov, S.V. Variability of biological and population genetic indices in pink salmon, Oncorhynchus gorbuscha transplanted into the White Sea basin. J. Ichthyol. 2015, 55, 9–76. [Google Scholar] [CrossRef]
- Kovach, R.P.; Gharrett, A.J.; Tallmon, D.A. Temporal patterns of genetic variation in a salmon population undergoing rapid change in migration timing. Evol. Appl. 2013, 6, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.G. Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob. Change Biol. 2008, 14, 29–235. [Google Scholar] [CrossRef]
- Alix, M.; Kjesbu, O.S.; Anderson, K.C. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 2020, 97, 607–632. [Google Scholar] [CrossRef]
- Jonsson, N.; Jonsson, B. Energy allocation among developmental stages age groups and types of Atlantic salmon (Salmo salar) spawners. Can. J. Fish. Aquat. Sci. 2003, 60, 506–516. [Google Scholar] [CrossRef]
- Mommsen, T.P. Salmon spawning migration and muscle protein metabolism: The August Krogh principle at work. Comparative. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Esin, E.V.; Markevich, G.N.; Zlenko, D.V.; Shkil, F.N. Thyroid-mediated metabolic differences underlie ecological specialization of extremophile salmonids in the arctic lake El’gygytgyn. Front. Ecol. Evol. 2021, 9, 715110. [Google Scholar] [CrossRef]
- State Water Register of Russia. 2024.
- Lawrence, M.J.; Raby, G.D.; Teffer, A.K.; Jeffries, K.M.; Danylchuk, A.J.; Eliason, E.J.; Hasler, C.T.; Clark, T.D.; Cooke, S.J. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 2020, 97, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.J.; Jain-Schlaepfer, S.; Zolderdo, A.J.; Algera, D.A.; Gilmour, K.M.; Gallagher, A.J.; Cooke, S.J. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish? Can. J. Zool. 2018, 96, 774–786. [Google Scholar] [CrossRef]
- Feng, G.; Zhuang, P.; Zhang, L.; Kynard, B.; Shi, X.; Duan, M.; Liu, J.; Huang, X. Effect of anaesthetics MS-222 and clove oil on blood biochemical parameters of juvenile Siberian sturgeon (Acipenser baerii). J. Appl. Ichthyol. 2011, 27, 595–599. [Google Scholar] [CrossRef]
- Rożyński, M.; Ziomek, E.; Demska-Zakęś, K.; Zakęś, Z. Impact of inducing general anaesthesia with MS-222 on haematological and biochemical parameters of pikeperch (Sander lucioperca). Aquac. Res. 2019, 50, 2125–2132. [Google Scholar] [CrossRef]
- Félix, L.M.; Luzio, A.; Santos, A.; Antunes, L.M.; Coimbra, A.M.; Valentim, A.M. MS-222 induces biochemical and transcriptional changes related to oxidative stress cell proliferation and apoptosis in zebrafish embryos. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 237, 108834. [Google Scholar] [CrossRef] [PubMed]
- Sandnes, K.; Lie, Ø.; Waagbø, R. Normal ranges of some blood chemistry parameters in adult farmed Atlantic salmon Salmo salar. J. Fish Biol. 1988, 32, 129–136. [Google Scholar] [CrossRef]
- Fazio, F.; Saoca, C.; Capillo, G.; Iaria, C.; Panzera, M.; Piccione, G.; Spanò, N. Intra-variability of some biochemical parameters and serum electrolytes in rainbow trout (Walbaum 1792) bred using a flow-through system. Heliyon 2021, 7, 06361. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.M.; Schulze, A.D.; Ginther, N.; Li, S.; Patterson, D.A.; Farrell, A.P.; Hinch, S.G. Salmon spawning migration: Metabolic shifts and environmental triggers. Comp. Biochem. Physiol. Part D Genom. Proteomics. 2009, 4, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Hiroi, O.; Hara, A.; Yamauchi, K.; Nagahama, Y. Changes in serum concentrations of steroid hormones thyroxine and vitellogenin during spawning migration of the chum salmon Oncorhynchus keta. Gen. Comp. Endocrinol. 1984, 53, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Yamauchi, K. Biochemistry of fish migration. In Biochemistry and Molecular Biology of Fishes; Chapter 14; Elsevier: Amsterdam, The Netherlands, 1995; pp. 265–279. [Google Scholar]
- Miller, W.L.; Bose, H.S. Early steps in steroidogenesis: Intracellular cholesterol trafficking. J. Lipid. Res. 2011, 52, 2111–2135. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, M.A. Lipid dynamics in fish: Aspects of absorption transportation deposition and mobilization. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1988, 90, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.; Hiramatsu, N.; Fujita, T. Vitellogenesis and choriogenesis in fishes. Fish. Sci. 2016, 82, 187–202. [Google Scholar] [CrossRef]
- Babin, P.J.; Vernier, J.M. Plasma lipoproteins in fish. J. Lipid. Res. 1989, 30, 467–489. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Life-history effects of migratory costs in anadromous brown trout. J. Fish Biol. 2006, 69, 860–869. [Google Scholar] [CrossRef]
- Mommsen, T.P.; French, C.A.; Hochachka, P.W. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool. 1980, 58, 1785–1799. [Google Scholar] [CrossRef]
- Peter, M.C.S. The role of thyroid hormones in stress response of fish. Gen. Comp. Endocrinol. 2011, 172, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y.; Hwang, P.-P. Homeostatic responses to osmotic stress. Fish Physiol. 2016, 35, 07–249. [Google Scholar]
- Pritchard, A.L. Variation in the time of run sex proportions size and egg content of adult pink salmon (Oncorhynchus gorbuscha) at McClinton Creek, Masset Inlet, BC. Bull. Biol. Board Can. 1937, 3, 403–416. [Google Scholar] [CrossRef]
- Cooke, S.J.; Hinch, S.G.; Crossin, G.T.; Patterson, D.A.; English, K.K.; Healey, M.C.; Shrimpton, J.M.; Van Der Kraak, G.; Farrell, A.P. Mechanistic basis of individual mortality in pacific salmon during spawning migrations. Ecology 2006, 87, 1575–1586. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Ecology of Atlantic Salmon and Brown Trout; Springer: Dordrecht, The Netherlands, 2011; Volume 33, p. 680. [Google Scholar]
- Shapovalov, L.; Taft, A.C. The life histories of the steelhead rainbow trout (Salmo gairdneri gairdneri) and silver salmon (Oncorhynchus kisutch). Fish. Bulletin. 1954, 98, 1–375. Available online: https://escholarshiporg/uc/item/2v45f61k (accessed on 14 July 2024).
- Lorz, H.W.; Northcote, T.G. Factors affecting stream location and timing and intensity of entry by spawning kokanee (Oncorhynchus nerka) into an inlet of Nicola Lake British Columbia. J. Fish. Res. Board. Can. 1965, 22, 665–687. [Google Scholar] [CrossRef]
- Quinn, T.P.; McGinnity, P.; Reed, T.E. The paradox of ‘premature migration’ by adult anadromous salmonid fishes: Patterns and hypotheses. Can. J. Fish. Aquat. Sci. 2016, 73, 1015–1030. [Google Scholar] [CrossRef]
- Dahl, J.; Dannewitz, J.; Karlsson, L.; Petersson, E.; Löf, A.; Ragnarsson, B. The timing of spawning migration: Implications of environmental variation life history and sex. Can. J. Zool. 2004, 82, 1864–1870. [Google Scholar] [CrossRef]
- Andreeva, A.M.; Toropygin, I.Y.; Garina, D.V.; Lamash, N.E.; Vasiliev, A.S. The role of high-density lipoproteins in maintaining osmotic homeostasis in the goldfish Carassius auratus L. (Cyprinidae). J. Evol. Biochem. Phys. 2020, 56, 102–112. [Google Scholar] [CrossRef]
- Andreeva, A.M.; Lamash, N.; Martemyanov, V.I.; Vasiliev, A.S.; Toropygin, I.Y.; Garina, D.V. High-density lipoprotein remodeling affects the osmotic properties of plasma in goldfish under critical salinity. J. Fish Biol. 2023, 104, 564–575. [Google Scholar] [CrossRef]
- Fletcher, G.L.; Watts, E.G.; King, M.J. Copper zinc and total protein levels in the plasma of sockeye salmon (Oncorhynchus nerka) during their spawning migration. J. Fish. Res. Board. Can. 1975, 32, 78–82. [Google Scholar] [CrossRef]
- McDonald, D.G.; Rogano, M.S. Ion regulation by the rainbow trout Salmo gairdneri in ion-poor water. Physiol. Zool. 1986, 59, 318–331. [Google Scholar] [CrossRef]
- Pavlov, E.D.; Ganzha, E.V.; Pavlov, D.S. Difference between ion levels in the blood of the brown trout Salmo trutta from two closely located rivers before smoltification. Biol. Bull. 2021, 48, 673–680. [Google Scholar] [CrossRef]
- Watts, E.G.; Copp, H.; Deftos, L.J. Changes in plasma calcitonin and calcium during the migration of salmon. Endocrinology 1975, 96, 214–218. [Google Scholar] [CrossRef]
Parameters | Females | Males | ||
---|---|---|---|---|
Value | n | Value | n | |
T3, ng/mL | 3.0 ± 0.62 (0.1–7.7) | 21 | 4.1 ± 0.69 (0.6–12.5) | 22 |
T4, ng/mL | 10.6 ± 2.38 (0.9–41.8) | 21 | 14.0 ± 2.88 (1.5–54.6) | 22 |
T4/T3 | 6.5 ± 1.43 (0.7–21.6) | 21 | 3.9 ± 0.56 (1.0–10.4) | 22 |
Crt, ng/mL | 129 ± 33.4 (6–510) * | 20 | 38 ± 14.7 (0.7–297) * | 22 |
Ts, ng/mL | 22.0 ± 1.15 (11.3–28.1) | 19 | 19.0 ± 1.08 (10.2–25.8) | 21 |
E, ng/mL | 3.7 ± 0.26 (0.2–4.7) * | 19 | 1.3 ± 0.28 (0.2–5.1) * | 21 |
Ts/E | 9.2 ± 3.09 (3.5–64.0) * | 19 | 27.4 ± 5.85 (3.8–116.2) * | 21 |
Parameters | Females | Males | ||
---|---|---|---|---|
Value | n | Value | N | |
CHOL, mmol/L | 12.5 ± 0.42 (9.5–16.1) | 23 | 12.7 ± 0.43 (9.6–16.9) | 24 |
PL, mmol/L | 3.7 ± 0.03 (3.4–3.9) | 22 | 3.6 ± 0.03 (3.3–3.8) | 23 |
TGs, mmol/L | 4.4 ± 0.18 (2.9–6.2) * | 23 | 3.2 ± 0.17 (2.0–5.0) * | 24 |
NEFA, mmol/L | 0.4 ± 0.04 (0.1–0.7) | 16 | 0.4 ± 0.03 (0.2–0.6) | 19 |
LDL, mg/dL | 0.5 ± 0.03 (0.2–0.7) | 22 | 0.5 ± 0.03 (0.4–0.7) | 23 |
HDL, mg/dL | 3.2 ± 0.12 (2.5–4.7) * | 22 | 3.9 ± 0.11 (2.9–5.1) * | 23 |
Parameters | Females | Males | ||
---|---|---|---|---|
Value | n | Value | n | |
TP, g/L | 58.3 ± 1.29 (45.4–68.5) * | 23 | 49.5 ± 1.38 (37.2–63.2) * | 23 |
CREA, umol/L | 34.6 ± 2.87 (20.2–79.6) | 23 | 35.1 ± 2.29 (22.5–58.0) | 23 |
GLU, mmol/L | 3.6 ± 0.25 (1.1–5.6) | 23 | 3.7 ± 0.24 (1.8–6.5) | 22 |
ALT, U/L | 71.5 ± 1.65 (54.4–88.5) * | 23 | 82.1 ± 2.00 (56.1–92.1) * | 24 |
UREA, mmol/L | 16.4 ± 0.27 (13.6–18.6) | 23 | 17.2 ± 0.28 (14.5–19.5) | 24 |
Parameters | Females | Males | ||
---|---|---|---|---|
Value | n | Value | n | |
K+, mmol/L | 5.6 ± 0.36 (2.8–8.8) * | 18 | 4.2 ± 0.25 (2.6–7.1) * | 19 |
Na+, mmol/L | 161 ± 1.2 (152–171) * | 19 | 167 ± 1.7 (147–176) * | 18 |
Cl−, mmol/L | 108 ± 0.9 (102–115) | 19 | 110 ± 0.8 (102–118) | 20 |
Ca2+, mmol/L | 6.1 ± 0.23 (3.8–7.3) * | 18 | 4.1 ± 0.10 (3.5–5.6) * | 20 |
P+, mmol/L | 8.0 ± 0.09 (7.5–8.8) | 18 | 7.9 ± 0.13 (6.4–8.6) | 20 |
Mg2+, mmol/L | 2.1 ± 0.06 (1.6–2.5) | 19 | 2.1 ± 0.07 (1.6–2.8) | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganzha, E.V.; Pavlov, D.S.; Pavlov, E.D. Heterogeneity of Biochemical Parameters of Non-Native Pink Salmon Oncorhynchus gorbuscha Spawners at the Beginning of Up-River Movements. Water 2024, 16, 2000. https://doi.org/10.3390/w16142000
Ganzha EV, Pavlov DS, Pavlov ED. Heterogeneity of Biochemical Parameters of Non-Native Pink Salmon Oncorhynchus gorbuscha Spawners at the Beginning of Up-River Movements. Water. 2024; 16(14):2000. https://doi.org/10.3390/w16142000
Chicago/Turabian StyleGanzha, Ekaterina V., Dmitry S. Pavlov, and Efim D. Pavlov. 2024. "Heterogeneity of Biochemical Parameters of Non-Native Pink Salmon Oncorhynchus gorbuscha Spawners at the Beginning of Up-River Movements" Water 16, no. 14: 2000. https://doi.org/10.3390/w16142000
APA StyleGanzha, E. V., Pavlov, D. S., & Pavlov, E. D. (2024). Heterogeneity of Biochemical Parameters of Non-Native Pink Salmon Oncorhynchus gorbuscha Spawners at the Beginning of Up-River Movements. Water, 16(14), 2000. https://doi.org/10.3390/w16142000