Prediction of Dissolved Oxygen Factor at Oncheon Stream Watershed Using Long Short-Term Memory Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recurrent Neural Networks
2.2. LSTM Algorithm Selection
2.3. Study Area
2.4. Construction of DO Data and Meteorological Data
2.5. Study Conditions
3. Results and Discussion
4. Conclusions
- As a result of the prediction of the downstream point using the LSTM algorithm, the change in sequence length and iteration did not show much difference. It was confirmed that the result of the study using time data had slightly higher prediction accuracy than the study using day data and showed a lot of difference. In the daily prediction, the difference between the prediction using time data and the prediction using daily data was not large. However, as the 2-day and 3-day forecasting times increased, the prediction using time data showed higher prediction performance than the prediction using daily data.
- It was confirmed that the prediction accuracy using the time data was higher than the prediction using the daily data in all of the prediction results using the upper, middle, and downstream time data and daily data. In the prediction of the DO concentration at the downstream point, the data values of the upstream and midstream DO concentration did not seem to affect the prediction of the DO concentration at the downstream point.
- In the correlation analysis of upper, middle, and downstream data using time data, it appeared that the DO concentration data values of the upstream and middle stream did not affect the DO concentration prediction of the downstream point in the prediction of the DO concentration at the downstream point. In the correlation analysis of upper, middle, and downstream data using daily data, the DO concentration data values of the upstream and middle stream did not affect the prediction of the DO concentration at the downstream point.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ARIMA | Autoregressive integrated moving average |
BOD | Biochemical oxygen demand |
Chl-a | Chlorophyll a |
COD | Chemical oxygen demand |
DO | Dissolved oxygen |
D Str | Downstream |
HSPF | Hydrological simulation program–Fortran |
LSTM | Long short-term model |
M Str | Midstream |
RNN | Recurrent neural network |
TOC | Total organic carbon |
U Str | Upstream |
WASP | Water quality analysis simulation program |
W-ARIMA-GRU | Wavelet decomposition-autoregressive integrated moving average-gated recurrent unit |
References
- Lee, E.; Kim, T. Predicting BOD under Various Hydrological Conditions in the Dongjin River Basin Using Physics-Based and Data-Driven Models. Water 2021, 13, 1383. [Google Scholar] [CrossRef]
- Brown, L.C.; Barwell, T.O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual; EPA: Athens, GA, USA, 1987. [Google Scholar]
- Ambrose, R.B.; Wool, T.A.; Martin, J.L. The Water Quality Analysis Simulation Program, WASP5, Part A: Model Documentation; Environmental Research Laboratory, US Environmental Protection Agency: Washington, DC, USA, 1993. [Google Scholar]
- Zhou, S.; Song, C.; Zhang, J.; Chang, W.; Hou, W.; Yang, L. A hybrid prediction framework for water quality with integrated W-ARIMA-GRU and LightGBM methods. Water 2022, 14, 1322. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program Fortran, User’s Manual for Release 12; EPA: Athens, GA, USA, 2001. [Google Scholar]
- Liu, Z.; Tong, S. Using HSPF to Model the Hydrologic and Water Quality Impacts of Riparian Land-Use Change in a Small Watershed. J. Environ. Inform. 2011, 17, 1. [Google Scholar] [CrossRef]
- Taheri Tizro, A.; Ghashghaie, M.; Georgiou, P.; Voudouris, K. Time series analysis of water quality parameters. J. Appl. Res. Water Wastewater 2014, 1, 40–50. [Google Scholar]
- Kim, S.; Seo, D.J.; Riazi, H.; Shin, C. Improving water quality forecasting via data assimilation–Application of maximum likelihood ensemble filter to HSPF. J. Hydrol. 2014, 519, 2797–2809. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M.; Docheshmeh Gorgij, A. Dissolved oxygen prediction using a new ensemble method. Environ. Sci. Pollut. Res. 2020, 27, 9589–9603. [Google Scholar] [CrossRef]
- Kim, H.I.; Kim, D.; Mahdian, M.; Salamattalab, M.M.; Bateni, S.M.; Noori, R. Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems. Environ. Pollut. 2024, 355, 124242. [Google Scholar] [CrossRef]
- Paliwal, R.; Sharma, P.; Kansal, A. Water quality modelling of the river Yamuna (India) using QUAL2E-UNCAS. J. Environ. Manag. 2007, 83, 131–144. [Google Scholar] [CrossRef]
- Park, S.H.; Seo, Y.C.; Kim, Y.H.; Pang, S.P. Big Data-based Monitoring System Design for Water Quality Analysis that Affects Human Life Quality. J. Korea Entertain. Ind. Assoc. 2021, 15, 289–295. [Google Scholar] [CrossRef]
- Panyadee, P.; Champrasert, P.; Aryupong, C. Water level prediction using artificial neural network with particle swarm optimization model. In Proceedings of the 2017 5th International Conference on Information and Communication Technology (ICoIC7), Melaka, Malaysia, 17–19 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Piasecki, A.; Jurasz, J.; Skowron, R. Application of Artificial Neural Networks (ANN) in Lake Drwęckie Water Level Modelling. Limnol. Rev. 2015, 15, 21–29. [Google Scholar] [CrossRef]
- Jung, S.; Cho, H.; Kim, J.; Lee, G. Prediction of water level in a tidal river using a deep-learning based LSTM model. J. Korea Water Resour. Assoc. 2018, 51, 1207–1216. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.; Bae, J.H.; Lee, J.; Park, W.J.; Lee, D.; Kim, J.; Lim, K.J. Development and Evaluation of the Combined Machine Learning Models for the Prediction of Dam Inflow. Water 2020, 12, 2927. [Google Scholar] [CrossRef]
- Mok, J.Y.; Choi, J.H.; Moon, Y.I. Prediction of multipurpose dam inflow using deep learning. J. Korea Water Resour. Assoc. 2020, 53, 97–105. [Google Scholar] [CrossRef]
- Kala, A.; Vaidyanathan, S. Prediction of Rainfall Using Artificial Neural Network. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2019; pp. 339–342. [Google Scholar] [CrossRef]
- Mislan; Haviluddin; Hardwinarto, S.; Sumaryono; Aipassa, M. Rainfall Monthly Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East Kalimantan—Indonesia. Procedia Comput. Sci. 2015, 59, 142–151. [Google Scholar] [CrossRef]
- Lowe, M.; Qin, R.; Mao, X. A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, B.; Zhou, Y. An Efficient Water Quality Prediction and Assessment Method Based on the Improved Deep Belief Network—Long Short-Term Memory Model. Water 2024, 16, 1362. [Google Scholar] [CrossRef]
- Kim, Y.; Kwak, S.; Lee, M.; Jeong, M.; Park, M.; Park, Y.G. Determination of Optimal Water Intake Layer Using Deep Learning-Based Water Quality Monitoring and Prediction. Water 2024, 16, 15. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z. A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory. Water 2022, 14, 610. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Q.; Wen, F.; Qi, Y. A Water Quality Prediction Model Based on Multi-Task Deep Learning: A Case Study of the Yellow River, China. Water 2022, 14, 3408. [Google Scholar] [CrossRef]
- Ay, M.; Kisi, O. Modeling of Dissolved Oxygen Concentration Using Different Neural Network Techniques in Foundation Creek, El Paso County, Colorado. J. Environ. Eng. 2012, 138, 654–662. [Google Scholar] [CrossRef]
- Ahmed, A.M. Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud Univ.-Eng. Sci. 2017, 29, 151–158. [Google Scholar] [CrossRef]
- Shim, K.; Gyeonghoon, K.; Seongmin, K.; Youngseok, K.; Jin-pil, K. Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed. J. Korean Soc. Water Environ. 2020, 36, 445–452. [Google Scholar] [CrossRef]
- Chun, H.J.; Yang, H.S. A Study on Prediction of Housing Price Using Deep Learning. J. Resid. Environ. Institue Korea 2019, 17, 37–49. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Olah, C. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 5 May 2024).
- Lim, H.; An, H.; Choi, E.; Kim, Y. Prediction of the DO concentration using the machine learning algorithm: Case study in Oncheoncheon, Republic of Korea. Korean J. Agric. Sci. 2020, 47, 1029–1037. [Google Scholar] [CrossRef]
- Choi, C.; Kim, E.; Kim, K.; Kim, S. Application of Detention and Infiltration-based Retention Hybrid Design Technique to Oncheon Stream. KSCE J. Civ. Environ. Eng. Res. 2011, 31, 99–108. [Google Scholar] [CrossRef]
- Jeong, H.J.; Lee, S.J.; Lee, H.K. Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm. J. Environ. Sci. Int. 2002, 11, 201–207. [Google Scholar]
- Kim, J.; Chae, S.K.; Kim, B.S. Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques. J. Environ. Impact Assess. 2011, 20, 705–716. [Google Scholar]
- Kim, M.; Shin, H. Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network. J. Korea Water Resour. Assoc. 2013, 46, 697–706. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
Measure | Output Response | Temporal * Scale | Performance Evaluation Criteria | |||
---|---|---|---|---|---|---|
Very Good | Good | Satisfactory | Not Satisfactory | |||
Flow | D-M-A | > 0.85 | 0.75 < < 0.85 | 0.60 < < 0.75 | 0.60 > | |
Sediment | M | > 0.80 | 0.65 < < 0.80 | 0.40 < < 0.65 | 0.40 > | |
N/P | M | > 0.70 | 0.60 < < 0.70 | 0.30 < < 0.60 | 0.30 > |
Sequence Length | Iterations | ||||||
---|---|---|---|---|---|---|---|
24 h | 1 Day | 48 h | 2 Day | 72 h | 3 Day | ||
3 | 3000 | 0.8461 | 0.8008 | 0.7499 | 0.6931 | 0.7039 | 0.6718 |
5000 | 0.8445 | 0.796 | 0.7496 | 0.6854 | 0.6987 | 0.6288 | |
10,000 | 0.8429 | 0.7634 | 0.7519 | 0.6716 | 0.6997 | 0.5871 | |
5 | 3000 | 0.837 | 0.7889 | 0.74 | 0.6489 | 0.695 | 0.5868 |
5000 | 0.841 | 0.79 | 0.7382 | 0.6182 | 0.6921 | 0.5494 | |
10,000 | 0.8346 | 0.79 | 0.7439 | 0.6182 | 0.6832 | 0.5494 | |
7 | 3000 | 0.8377 | 0.7639 | 0.7515 | 0.5757 | 0.7044 | 0.4931 |
5000 | 0.8402 | 0.7576 | 0.745 | 0.535 | 0.6979 | 0.4646 | |
10,000 | 0.8406 | 0.7388 | 0.7328 | 0.5113 | 0.6991 | 0.4272 |
U·D Str 1 | ||||||
24 h | 1 day | 48 h | 2 day | 72 h | 3 day | |
Max | 0.8421 | 0.8156 | 0.7574 | 0.6688 | 0.7145 | 0.6182 |
Min | 0.8338 | 0.773 | 0.7355 | 0.5405 | 0.6969 | 0.4774 |
Average | 0.8388 | 0.7919 | 0.7465 | 0.5846 | 0.703 | 0.5618 |
M·D Str 2 | ||||||
24 h | 1 day | 48 h | 2 day | 72 h | 3 day | |
Max | 0.8474 | 0.7776 | 0.7524 | 0.6717 | 0.7028 | 0.6137 |
Min | 0.8379 | 0.7273 | 0.7394 | 0.5514 | 0.6932 | 0.4856 |
Average | 0.8445 | 0.7504 | 0.7452 | 0.6232 | 0.6983 | 0.5579 |
U·M·D Str 3 | ||||||
24 h | 1 day | 48 h | 2 day | 72 h | 3 day | |
Max | 0.8461 | 0.8008 | 0.7519 | 0.6931 | 0.7044 | 0.6718 |
Min | 0.8346 | 0.7388 | 0.7328 | 0.5113 | 0.6832 | 0.4272 |
Average | 0.8405 | 0.7766 | 0.7447 | 0.6175 | 0.6971 | 0.5509 |
Comparison Area | |||||||
---|---|---|---|---|---|---|---|
1 h | 2 h | 6 h | 12 h | 24 h | 48 h | 72 h | |
D Str | 0.9987 | 0.9938 | 0.9285 | 0.8278 | 0.8468 | 0.7443 | 0.696 |
U·D Str | 0.9986 | 0.9914 | 0.9185 | 0.8263 | 0.8388 | 0.7465 | 0.703 |
M·D Str | 0.9986 | 0.994 | 0.9369 | 0.8531 | 0.8445 | 0.7452 | 0.6983 |
U·M·D Str | 0.9985 | 0.9923 | 0.9319 | 0.8283 | 0.8405 | 0.7447 | 0.6971 |
Comparison Area | ||||||
---|---|---|---|---|---|---|
1 Day | 2 Day | 3 Day | 5 Day | 7 Day | 15 Day | |
D Str | 0.7575 | 0.6401 | 0.5599 | 0.5101 | 0.4613 | 0.4153 |
U·D Str | 0.7919 | 0.5846 | 0.5618 | 0.529 | 0.4997 | 0.4121 |
M·D Str | 0.7504 | 0.6232 | 0.5579 | 0.4837 | 0.4506 | 0.3749 |
U·M·D Str | 0.7766 | 0.6175 | 0.5509 | 0.5763 | 0.5115 | 0.4354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.; Shin, H.; Lee, J.; Do, J.; Song, I.; Jin, Y. Prediction of Dissolved Oxygen Factor at Oncheon Stream Watershed Using Long Short-Term Memory Algorithm. Water 2024, 16, 2363. https://doi.org/10.3390/w16172363
Lim H, Shin H, Lee J, Do J, Song I, Jin Y. Prediction of Dissolved Oxygen Factor at Oncheon Stream Watershed Using Long Short-Term Memory Algorithm. Water. 2024; 16(17):2363. https://doi.org/10.3390/w16172363
Chicago/Turabian StyleLim, Heesung, Hyungjin Shin, Jaenam Lee, Jongwon Do, Inhyeok Song, and Youngkyu Jin. 2024. "Prediction of Dissolved Oxygen Factor at Oncheon Stream Watershed Using Long Short-Term Memory Algorithm" Water 16, no. 17: 2363. https://doi.org/10.3390/w16172363
APA StyleLim, H., Shin, H., Lee, J., Do, J., Song, I., & Jin, Y. (2024). Prediction of Dissolved Oxygen Factor at Oncheon Stream Watershed Using Long Short-Term Memory Algorithm. Water, 16(17), 2363. https://doi.org/10.3390/w16172363