Copper as a Complex Indicator of the Status of the Marine Environment Concerning Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Matrices
2.2. Sampling
2.2.1. Fish for Copper Analysis
2.2.2. Fish Blood for Micronucleus Test Analysis
2.2.3. Sediment
2.2.4. Macrobenthic Plants
2.3. Analysis
2.3.1. Copper Analysis
- Fish
- Plants
- Sediment
2.3.2. Sediment Dating
2.3.3. Processing Results
3. Results and Discussion
3.1. Copper in Fish and Micronucleus Test Results
3.2. Copper in Macrobenthic Plants
3.3. Copper in Sediments
3.4. Copper Toxicity and Environmental Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Gauss, M.; Gusev, A.; Aas, W.; Shatalov, V.; Ilyin, I.; Rozovskaya, O.; Klein, H.; Nyiri, A.; Vulyh, N. Atmospheric Supply of Nitrogen, Copper, HCB, BDE-99, SCCP and PFOS to the Baltic Sea in 2019, EMEP MSC-W TECHNICAL REPORT 1/2021, ISSN 1504-6206, 2021 Oslo. Available online: https://emep.int/publ/helcom/2021/MSCW_technical_1_2021.pdf (accessed on 20 August 2024).
- Inputs of Hazardous Substances to the Baltic Sea (PLC-8). Baltic Sea Environment Proceedings N°196. HELCOM 2024. Available online: https://helcom.fi/wp-content/uploads/2021/09/Inputs-of-hazardous-substances-to-the-Baltic-Sea.pdf (accessed on 20 August 2024).
- Cui, L.; Cheng, C.; Li, X.; Gao, X.; Lv, X.; Wang, Y.; Zhang, H.; Lei, K. Comprehensive Assessment of Copper’s Effect on Marine Organisms under Ocean Acidification and Warming in the 21st Century. Sci. Total Environ. 2024, 927, 172145. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, X.; Li, J.; Gao, X.; Zhang, J.; Liu, Z. Ecological and Health Risk Assessments and Water Quality Criteria of Heavy Metals in the Haihe River. Environ. Pollut. 2021, 290, 117971. [Google Scholar] [CrossRef] [PubMed]
- Solomons, N.W. Biochemical, Metabolic, and Clinical Role of Copper in Human Nutrition. J. Am. Coll. Nutr. 1985, 4, 83–105. [Google Scholar] [CrossRef]
- Österberg, R. Physiology and Pharmacology of Copper. Pharmacol. Ther. 1980, 9, 121–146. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace Elements in Human Physiology and Pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper Biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef]
- Collins, J.F. Copper Nutrition and Biochemistry and Human (Patho)Physiology. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2021; Volume 96, pp. 311–364. ISBN 978-0-12-820648-5. [Google Scholar]
- Bulcke, F.; Dringen, R.; Scheiber, I.F. Neurotoxicity of Copper. In Neurotoxicity of Metals; Aschner, M., Costa, L.G., Eds.; Advances in Neurobiology; Springer International Publishing: Cham, Switzerland, 2017; Volume 18, pp. 313–343. ISBN 978-3-319-60188-5. [Google Scholar]
- Alimba, C.G.; Dhillon, V.; Bakare, A.A.; Fenech, M. Genotoxicity and Cytotoxicity of Chromium, Copper, Manganese and Lead, and Their Mixture in WIL2-NS Human B Lymphoblastoid Cells Is Enhanced by Folate Depletion. Mutat. Res. Toxicol. Environ. Mutagen. 2016, 798–799, 35–47. [Google Scholar] [CrossRef]
- Grillo, C.A.; Reigosa, M.A.; Fernández Lorenzo De Mele, M.A. Does Over-Exposure to Copper Ions Released from Metallic Copper Induce Cytotoxic and Genotoxic Effects on Mammalian Cells? Contraception 2010, 81, 343–349. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Bennekou, S.H.; Koutsoumanis, K.; Lambré, C.; et al. Re-evaluation of the Existing Health-based Guidance Values for Copper and Exposure Assessment from All Sources. EFSA J. 2023, 21, e07728. [Google Scholar] [CrossRef]
- Gledhill, M.; Nimmo, M.; Hill, S.J. The Toxicity of Copper (II) Species to Marine Algae, with Particular Reference to Macrolgae. J. Phycol. 1997, 33, 2–11. [Google Scholar] [CrossRef]
- Moore, J.W.; Ramamoorthy, S. Applied Monitoring and Impact Assessment. In Heavy Metals in Natural Waters; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Khellaf, N.; Zerdaoui, M. Growth Response of the Duckweed Lemna gibba L. to Copper and Nickel Phytoaccumulation. Ecotoxicology 2010, 19, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Schramm, W. Investigations on the Influence of Organic Substances Produced by Seaweeds on the Toxicity of Copper. In Macroalgae, Eutrophication and Trace Metal Cycling in Estuaries and Lagoons, Proceedings of the COST 48 Symposium, Thessaloriiki, Greece, 1993; Rijstenbil, J.W., Haritonidis, S., Eds.; Institut für Meereskunde (Institute of Marine Science}, Universität Kiel: Kiel, Germany, 1993; pp. 106–120. Available online: https://core.ac.uk/download/pdf/158572307.pdf (accessed on 20 August 2024).
- Šesták, Z.; Lobban, C.S.; Harrison, P.J. Seaweed Ecology and Physiology. Biol. Plant. 1996, 38, 396. [Google Scholar] [CrossRef]
- Woody, C.A.; O’Neal, S. Effects of Copper on Fish and Aquatic Resources. 2012; 26p. Available online: https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/alaska/sw/cpa/Documents/W2013ECopperF062012.pdf (accessed on 20 August 2024).
- Rougier, F.; Troutaud, D.; Ndoye, A.; Deschaux, P. Non-Specific Immune Response of Zebrafish, Brachydanio Rerio (Hamilton-Buchanan) Following Copper and Zinc Exposure. Fish Shellfish Immunol. 1994, 4, 115–127. [Google Scholar] [CrossRef]
- Eisler, R. Handbook of Chemical Risk Assessment; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-367-80139-7. [Google Scholar]
- Craig, P.M.; Wood, C.M.; McClelland, G.B. Water Chemistry Alters Gene Expression and Physiological End Points of Chronic Waterborne Copper Exposure in Zebrafish, Danio Rerio. Environ. Sci. Technol. 2010, 44, 2156–2162. [Google Scholar] [CrossRef]
- Tierney, K.B.; Baldwin, D.H.; Hara, T.J.; Ross, P.S.; Scholz, N.L.; Kennedy, C.J. Olfactory Toxicity in Fishes. Aquat. Toxicol. 2010, 96, 2–26. [Google Scholar] [CrossRef]
- Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN Project: Detailed Description of the Scoring Criteria for the Cytokinesis-Block Micronucleus Assay Using Isolated Human Lymphocyte Cultures. Mutat. Res. Toxicol. Environ. Mutagen. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Rigonato, J.; Mantovani, M.S.; Jordão, B.Q. Comet Assay Comparison of Different Corbicula Fluminea (Mollusca) Tissues for the Detection of Genotoxicity. Genet. Mol. Biol. 2005, 28, 464–468. [Google Scholar] [CrossRef]
- HELCOM 1999, Guidelines for Monitoring of Phytobenthic Plant and Animal Communities in the Baltic Sea, Annex for HELCOM COMBINE Programme, Annex C-9, 1999; 12p. Available online: https://www.vliz.be/imisdocs/publications/265080.pdf (accessed on 20 August 2024).
- Zalewska, T.; Woroń, J.; Danowska, B.; Suplińska, M. Temporal Changes in Hg, Pb, Cd and Zn Environmental Concentrations in the Southern Baltic Sea Sediments Dated with 210Pb Method. Oceanologia 2015, 57, 32–43. [Google Scholar] [CrossRef]
- Zalewska, T.; Przygrodzki, P.; Suplińska, M.; Saniewski, M. Geochronology of the Southern Baltic Sea Sediments Derived from 210Pb Dating. Quat. Geochronol. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Griboff, J.; Wunderlin, D.A.; Monferran, M.V. Metals, As and Se Determination by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in Edible Fish Collected from Three Eutrophic Reservoirs. Their Consumption Represents a Risk for Human Health? Microchem. J. 2017, 130, 236–244. [Google Scholar] [CrossRef]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of Heavy Metals through Terrestrial Food Webs: A Review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, G.L.; Toal, B.F. Quantitative Approach for Incorporating Methylmercury Risks and Omega-3 Fatty Acid Benefits in Developing Species-Specific Fish Consumption Advice. Environ. Health Perspect. 2009, 117, 267–275. [Google Scholar] [CrossRef]
- Roditi, H.A.; Fisher, N.S. Rates and Routes of Trace Element Uptake in Zebra Mussels. Limnol. Oceanogr. 1999, 44, 1730–1749. [Google Scholar] [CrossRef]
- Terlecki, J. 2000a. Okoń (Perca Fluviatilis) (w:) Ryby Słodkowodne Polski, Brylińska M. (Red.). PWN, Warszawa, Ss. 455–461. Available online: https://archiwum.bdpn.pl/dokumenty/roczniki/rb30/art01.pdf (accessed on 20 August 2024).
- Schwantes, D.; Gonçalves Junior, A.C.; Manfrin, J.; Campagnolo, M.A.; Zimmermann, J.; Conradi Junior, E.; Bertoldo, D.C. Distribution of Heavy Metals in Sediments and Their Bioaccumulation on Benthic Macroinvertebrates in a Tropical Brazilian Watershed. Ecol. Eng. 2021, 163, 106194. [Google Scholar] [CrossRef]
- Kowobari, E.D.; Oladeji, T.A.; Adedapo, A.M.; Fagbohun, I.R.; Opanike, O.O.; Akindele, E.O. Heavy Metal Bioaccumulation in the Macroinvertebrate Functional Feeding Guilds of an Impaired Stream in South-West Nigeria. Chem. Ecol. 2024, 40, 241–259. [Google Scholar] [CrossRef]
- Jackson, T.A. The Biogeochemical and Ecological Significance of Interactions between Colloidal Minerals and Trace Elements. In Environmental Interactions of Clays; Parker, A., Rae, J.E., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 93–205. ISBN 978-3-642-08208-5. [Google Scholar]
- Carrasco, K.R.; Tilbury, K.L.; Myers, M.S. Assessment of the Piscine Micronucleus Test as an in Situ Biological Indicator of Chemical Contaminant Effects. Can. J. Fish. Aquat. Sci. 1990, 47, 2123–2136. [Google Scholar] [CrossRef]
- Guner, U.; Gokalp Muranli, F.D. Micronucleus Test, Nuclear Abnormalities and Accumulation of Cu and Cd on Gambusia affinis (Baird & Girard, 1853). Turk. J. Fish. Aquat. Sci. 2011, 11, 615–622. [Google Scholar] [CrossRef]
- Zalewska, T. Seasonal Changes of 137Cs in Benthic Plants from the Southern Baltic Sea. J. Radioanal. Nucl. Chem. 2012, 292, 211–218. [Google Scholar] [CrossRef]
- Zalewska, T. Distribution of 137Cs in Benthic Plants along Depth Profiles in the Outer Puck Bay (Baltic Sea). J. Radioanal. Nucl. Chem. 2012, 293, 679–688. [Google Scholar] [CrossRef]
- Zalewska, T.; Danowska, B. Marine Environment Status Assessment Based on Macrophytobenthic Plants as Bio-Indicators of Heavy Metals Pollution. Mar. Pollut. Bull. 2017, 118, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, T. Bioaccumulation of Gamma Emitting Radionuclides in Polysiphonia Fucoides. J. Radioanal. Nucl. Chem. 2014, 299, 1489–1497. [Google Scholar] [CrossRef]
- Zalewska, T.; Wilman, B.; Łapeta, B.; Marosz, M.; Biernacik, D.; Wochna, A.; Saniewski, M.; Grajewska, A.; Iwaniak, M. Seawater Temperature Changes in the Southern Baltic Sea (1959–2019) Forced by Climate Change. Oceanologia 2024, 66, 37–55. [Google Scholar] [CrossRef]
- Bełdowska, M.; Jędruch, A.; Bełdowski, J.; Szubska, M. Mercury Concentration in the Sediments as a Function of Changing Climate in Coastal Zone of Southern Baltic Sea—Preliminary Results. E3S Web Conf. 2013, 1, 06002. [Google Scholar] [CrossRef]
- Cui, L.; Li, X.; Luo, Y.; Gao, X.; Wang, Y.; Lv, X.; Zhang, H.; Lei, K. A Comprehensive Review of the Effects of Salinity, Dissolved Organic Carbon, pH, and Temperature on Copper Biotoxicity: Implications for Setting the Copper Marine Water Quality Criteria. Sci. Total Environ. 2024, 912, 169587. [Google Scholar] [CrossRef]
- European Copper Institute, 2008 European Copper Institute, 2008. Voluntary Risk Assessment Report (VRAR) for Copper, Copper(II) Sulfate Pentahydrate, Copper(I) Oxide, Copper(II) Oxide, Dicopper Chloride Trihydroxide. Available online: https://echa.europa.eu/copper-voluntary-risk-assessment-reports (accessed on 23 August 2024).
- USEPA—United States Environmental Protection Agency. Draft Aquatic Life Ambient Estuarine/Marine Water Quality Criteria for Copper-2016; EPA-822-P-16-001; Office of Water: Washington, DC, USA, 2016.
- Schnitzler, J.G.; Thomé, J.P.; Lepage, M.; Das, K. Organochlorine Pesticides, Polychlorinated Biphenyls and Trace Elements in Wild European Sea Bass (Dicentrarchus Labrax) off European Estuaries. Sci. Total Environ. 2011, 409, 3680–3686. [Google Scholar] [CrossRef]
- Castritsi-Catharios, J.; Neoafitou, N.; Vorloou, A.A. Comparison of Heavy Metal Concentrations in Fish Samples from Three Fish Farms (Eastern Mediterranean) Utilizing Antifouling Paints. Toxicol. Environ. Chem. 2015, 97, 116–123. [Google Scholar] [CrossRef]
- Pieniak, Z.; Verbeke, W.; Scholderer, J. Health-related Beliefs and Consumer Knowledge as Determinants of Fish Consumption. J. Hum. Nutr. Diet. 2010, 23, 480–488. [Google Scholar] [CrossRef]
- Malhotra, N.; Ger, T.-R.; Uapipatanakul, B.; Huang, J.-C.; Chen, K.H.-C.; Hsiao, C.-D. Review of Copper and Copper Nanoparticle Toxicity in Fish. Nanomaterials 2020, 10, 1126. [Google Scholar] [CrossRef]
- Sahlin, S.; Ågestrand, M. Copper in Sediment EQS Data Overview; Department of Environmental Science and Analytical Chemistry (ACES) Stockholm University: Stockholm, Sweden, 2018. [Google Scholar]
- Campana, O.; Simpson, S.L.; Spadaro, D.A.; Blasco, J. Sub-Lethal Effects of Copper to Benthic Invertebrates Explained by Sediment Properties and Dietary Exposure. Environ. Sci. Technol. 2012, 46, 6835–6842. [Google Scholar] [CrossRef]
Species | Herring | Flounder | Perch |
---|---|---|---|
Mean Cu (mg kg−1 ww) | 3.8 | 12.0 | 4.2 |
r coefficient | |||
length [cm] | −0.07 | 0.05 | 0.29 |
mass [g] | −0.32 | 0.10 | 0.30 |
gonads stadium | −0.54 | −0.24 | −0.10 |
age | −0.19 | 0.16 | −0.07 |
Mean (Min–Max) Cu Concentration (mg kg−1 dw) | Bioconcentration Factor (BCF) (dm3 kg−1) | Plant Quality Standard (PQS) (mg kg−1 dw) | Recommended PQS (mg kg−1 dw) | ||
---|---|---|---|---|---|
Red algae | Vertebrata fucoides | 24.7 (3.8–83.0) | 7717 | 38.6 | 50 |
Furcellaria lumbricalis | 18.8 (5.5–56.8) | 5880 | 29.4 | ||
Coccotylus truncatus | 24.2 (7.6–39.6) | 7548 | 37.7 | ||
Ceramium diaphanum | 26.5 (4.0–72.7) | 8287 | 41.4 | ||
Vascular plants | Stuckenia pectinata | 11.0 (3.6–29.2) | 3431 | 17.2 | |
Zannichellia palustris | 18.8 (6.7–87.5) | 5869 | 29.3 | ||
Zostera marina | 12.2 (3.0–24.4) | 3807 | 19.0 | ||
Seawater | 3.2 µg L−1 | recommended 5 µg L−1 WQS |
Species | Fishery | Cu [mg/kg] | EDI | Target Consumption [g/day] | ADI | Target Cu [mg/kg] |
---|---|---|---|---|---|---|
herring | LWLA | 1.79 | 0.20 | 2.41 | 0.07 | 0.63 |
LKOL | 2.27 | 0.25 | ||||
flounder | Pomeranian Bay | 16.12 | 1.77 | 0.50 | ||
Gdańsk Bay | 3.85 | 0.42 | ||||
perch | LZSZ | 3.53 | 0.39 | 1.78 | ||
LZW | 1.98 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalewska, T.; Danowska, B.; Wilman, B.; Saniewski, M.; Iwaniak, M.; Bork-Zalewska, J.; Marciniewicz-Mykieta, M. Copper as a Complex Indicator of the Status of the Marine Environment Concerning Climate Change. Water 2024, 16, 2411. https://doi.org/10.3390/w16172411
Zalewska T, Danowska B, Wilman B, Saniewski M, Iwaniak M, Bork-Zalewska J, Marciniewicz-Mykieta M. Copper as a Complex Indicator of the Status of the Marine Environment Concerning Climate Change. Water. 2024; 16(17):2411. https://doi.org/10.3390/w16172411
Chicago/Turabian StyleZalewska, Tamara, Beata Danowska, Bartłomiej Wilman, Michał Saniewski, Michał Iwaniak, Jaśmina Bork-Zalewska, and Małgorzata Marciniewicz-Mykieta. 2024. "Copper as a Complex Indicator of the Status of the Marine Environment Concerning Climate Change" Water 16, no. 17: 2411. https://doi.org/10.3390/w16172411
APA StyleZalewska, T., Danowska, B., Wilman, B., Saniewski, M., Iwaniak, M., Bork-Zalewska, J., & Marciniewicz-Mykieta, M. (2024). Copper as a Complex Indicator of the Status of the Marine Environment Concerning Climate Change. Water, 16(17), 2411. https://doi.org/10.3390/w16172411