At What Price Are Farmers Willing to Reduce Water Usage? Insights from the Aosta Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Information
2.2. Methodology
2.3. Questionnaire Design and Administration
3. Results
4. Discussion
4.1. Discussion on Survey
4.2. Policy Implications
4.3. Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Overview of the Four Experimental Blocks and the Corresponding Eight Choice Sets Used in the Survey
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 20% | 10% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 120 ha−1 y−1 | EUR 100 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 10% | 20% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 100 ha−1 y−1 | EUR 120 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 1 | 5 | No service |
Water reduction | 10% | 20% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 100 ha−1 y−1 | EUR 120 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 20% | 10% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 120 ha−1 y−1 | EUR 100 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 10% | 20% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 120 ha−1 y−1 | EUR 100 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 1 | 5 | No service |
Water reduction | 20% | 10% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 100 ha−1 y−1 | EUR 120 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 1 | 5 | No service |
Water reduction | 10% | 20% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 120 ha−1 y−1 | EUR 100 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 10% | 20% | No reduction |
Decrease in irrigated land | 2% | 5% | No reduction |
Monetary compensation | EUR 100 ha−1 y−1 | EUR 120 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
Appendix B. Example of the Survey Questionnaire Includes Three Sections: The Experimental Section (Block 1), a Section for Collecting Basic Personal Information about the Respondents and a Final Section Covering Farm Characteristics
- Section 1 (Choice Experiment)
- Which scenario would you choose among the proposed ones?
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 20% | 10% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 120 ha−1 y−1 | EUR 100 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
- 2.
- Which of these second set of scenarios would you adopt?
Scenario 1 | Scenario 2 | Status Quo | |
Advisory service | 5 | 1 | No service |
Water reduction | 10% | 20% | No reduction |
Decrease in irrigated land | 5% | 2% | No reduction |
Monetary compensation | EUR 100 ha−1 y−1 | EUR 120 ha−1 y−1 | EUR 0 ha−1 y−1 |
Which do you prefer? |
- 3.
- Why would you prefer not to adopt the voluntary measures described?
- Section 2 (General Information)
- 4.
- Gender: F/M
- 5.
- Year of Birth:
- 6.
- Education Level:
- -
- None
- -
- Primary School
- -
- Secondary School
- -
- High School Diploma
- -
- University Degree
- Section 3 (Farms’ Data)
- 7.
- Municipality where the business is located:
- 8.
- Farm Area
- Utilized Agricultural Area:
- Irrigated Agricultural Area:
- 9.
- Farming Type:
- If livestock, specify number of heads:
- 10.
- Do you make an annual contribution to the Consortia (role)? Yes/NoIf yes, how much?
- 11.
- Do you incur additional expenses for water allocation for irrigation? Yes/NoIf yes, what are they?How much?
- 12.
- Do you participate in the maintenance activities of the Consortia networks through the voluntary corvée system? Yes/NoIf not, what is the annual amount you contribute?
- 13.
- Does the water you use for irrigation come exclusively from the Consortia? Yes/NoIf not, what are the other sources?
- 14.
- What irrigation techniques do you use for your land?
- -
- Flooding
- -
- Sprinkler (rain)
- -
- Drip irrigation
- -
- Other
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture 2021—Systems at Breaking Point; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef]
- Buttinelli, R.; Cortignani, R.; Caracciolo, F. Irrigation water economic value and productivity: An econometric estimation for maize grain production in Italy. Agric. Water Manag. 2024, 295, 108757. [Google Scholar] [CrossRef]
- Radcliffe, J.C. Current status of recycled water for agricultural irrigation in Australia, potential opportunities and areas of emerging concern. Sci. Total Environ. 2022, 807, 151676. [Google Scholar] [CrossRef] [PubMed]
- El-Fakharany, Z.M.; Salem, M.G. Mitigating climate change impacts on irrigation water shortage using brackish groundwater and solar energy. Energy Rep. 2021, 7, 608–621. [Google Scholar] [CrossRef]
- Wen, L.Z.; Suhaimi, H.; Abas, P.E. Techno-economic feasibility of rainwater harvesting system for vertical aquaponics in Brunei Darussalam. AIP Conf. Proc. 2022, 2676, 030001. [Google Scholar] [CrossRef]
- Belaidi, S.; Chehat, F.; Benmehaia, M.A. The adoption of water-saving irrigation technologies in the Mitidja plain, Algeria: An econometric analysis. New Medit 2022, 21, 53–72. [Google Scholar] [CrossRef]
- Alam, A.U.; Ullah, H.; Himanshu, S.K.; Tisarum, R.; Cha-um, S.; Datta, A. Seed priming enhances germination and morphological, physio-biochemical, and yield traits of cucumber under water-deficit stress. J. Soil Sci. Plant Nutr. 2023, 23, 3961–3978. [Google Scholar] [CrossRef]
- Alam, A.; Ullah, H.; Thuenprom, N.; Tisarum, R.; Cha-Um, S.; Datta, A. Seed priming with salicylic acid enhances growth, physiological traits, fruit yield, and quality parameters of cantaloupe under water-deficit stress. S. Afr. J. Bot. 2022, 150, 1–12. [Google Scholar] [CrossRef]
- Zucaro, R. Condizionalità Ex-Ante per le Risorse Idriche: Opportunità e Vincoli per il Mondo Agricolo; INEA: Roma, Italy, 2014. [Google Scholar]
- Berbel, J.; Borrego-Marin, M.M.; Exposito, A.; Giannoccaro, G.; Montilla-Lopez, N.M.; Roseta-Palma, C. Analysis of irrigation water tariffs and taxes in Europe. Water Policy 2019, 21, 806–825. [Google Scholar] [CrossRef]
- Galioto, F.; Guerra, E.; Raggi, M.; Viaggi, D. The impact of new regulations on water pricing in the agricultural sector: A case study from Northern Italy. Agric. Econ. Rev. 2017, 18, 77–95. [Google Scholar]
- Gómez-Limón, J.A.; Martin-Ortega, J. The economic analysis in the implementation of the Water-Framework Directive in Spain. Int. J. River Basin Manag. 2013, 11, 301–310. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Borsotto, P.; Moino, F.; Novelli, S. Modeling change in the ratio of water irrigation costs to farm incomes under various scenarios with integrated fadn and administrative data. Int. J. Agric. Food Syst. 2021, 2020, 1–19. [Google Scholar] [CrossRef]
- Zucaro, R.; Seroglia, G. Monitoraggio dei Sistemi Irrigui delle Regioni Centro Settentrionali, Rapporto Sullo Stato Dell’irrigazione in Valle D’aosta; INEA: Roma, Italy, 2009. [Google Scholar]
- RAVA. Progetto di Aggiornamento del Piano di Tutela delle Acque, Relazione Generale, Assessorato Opere Pubbliche, Territorio ed Edilizia Residenziale Pubblica; 2019; 175p. Available online: https://www.regione.vda.it/territorio/allegati/progetti_via_1290_PTA%20VdA%20-%20RelGen.pdf (accessed on 16 April 2024).
- Novelli, S.; Moino, F.; Borsotto, P. External Benefits of Irrigation in Mountain Areas: Stakeholder Perceptions and Water Policy Implications. Land 2022, 11, 1395. [Google Scholar] [CrossRef]
- Giannoccaro, G.; Roselli, L.; Sardaro, R.; de Gennaro, B.C. Design of an incentive-based tool for effective water saving policy in agriculture. Agric. Water Manag. 2022, 272, 107866. [Google Scholar] [CrossRef]
- Hannus, V.; Venus, T.J.; Sauer, J. Acceptance of sustainability standards by farmers—Empirical evidence from Germany. J. Environ. Manag. 2020, 267, 110617. [Google Scholar] [CrossRef]
- Niskanen, O.; Tienhaara, A.; Haltia, E.; Pouta, E. Farmers’ heterogeneous preferences towards results-based environmental policies. Land Use Policy 2021, 102, 105227. [Google Scholar] [CrossRef]
- Schulz, N.; Breustedt, G.; Latacz-Lohmann, U. Assessing Farmers’ Willingness to Accept “Greening”: Insights from a Discrete Choice Experiment in Germany. J. Agric. Econ. 2014, 65, 26–48. [Google Scholar] [CrossRef]
- Boufous, S.; Hudson, D.; Carpio, C. Farmers’ willingness to adopt sustainable agricultural practices: A meta-analysis. PLOS Sustain. Transform. 2023, 2, e0000037. [Google Scholar] [CrossRef]
- Santos, M.; Garcês, C.; Ferreira, A.; Carvalho, D.; Travassos, P.; Bastos, R.; Cunha, A.; Cabecinha, E.; Santos, J.; Cabral, J.A. Side effects of European eco schemes and agri-environment-climate measures on endangered species conservation: Clues from a case study in mountain vineyard landscapes. Ecol. Indic. 2023, 148, 110155. [Google Scholar] [CrossRef]
- Roessiger, J.; Kulla, L.; Murgaš, V.; Sedliak, M.; Kovalčík, M.; Cienciala, E.; Šebeň, V. Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation. Eur. J. For. Res. 2022, 141, 517–534. [Google Scholar] [CrossRef]
- Zavalloni, M.; D’Alberto, R.; Raggi, M.; Viaggi, D. Farmland abandonment, public goods and the CAP in a marginal area of Italy. Land Use Policy 2021, 107, 104365. [Google Scholar] [CrossRef]
- Anastasiadis, S.; Chukova, S. An inertia model for the adoption of new farming practices. Int. Trans. Oper. Res. 2019, 26, 667–685. [Google Scholar] [CrossRef]
- Giri, S. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 2021, 271, 116332. [Google Scholar] [CrossRef]
- Cerutti, A.V. Le Pays de la Doire et Son Peuple; Musumeci Editeur: Quart, Italy, 1995; Quart; 406p. [Google Scholar]
- Janin, B. Le Val d’Aoste. In Tradition et Renouveau; Musumeci Editeur: Quart, Italy, 1991; 743p. [Google Scholar]
- Wikivoyage. Available online: https://upload.wikimedia.org/wikipedia/commons/0/07/Aosta_Valley_in_Italy.svg (accessed on 22 August 2024).
- Mappe Regione VdA. Available online: https://mappe.regione.vda.it/pub/geocartosct/ (accessed on 22 July 2024).
- CREA. L’agricoltura Nella Valle d’Aosta in Cifre; CREA: Roma, Italy, 2021. [Google Scholar]
- Trione, S. L’agricoltura Nella Valle d’Aosta in Cifre 2016; Consiglio per la Ricerca in Agricoltura e L’analisi dell’economia Agraria: Roma, Italy, 2017; 113p. [Google Scholar]
- Louviere, J.J.; Flynn, T.N.; Carson, R.T. Discrete Choice Experiments Are Not Conjoint Analysis. J. Choice Model. 2000, 3, 57–72. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D. Economic Choices. Am. Econ. Rev. 2001, 91, 351–400. [Google Scholar] [CrossRef]
- Raina, N.; Zavalloni, M.; Targetti, S.; D’Alberto, R.; Raggi, M.; Viaggi, D. A systematic review of attributes used in choice experiments for agri-environmental contracts. Bio-Based Appl. Econ. 2021, 10, 137–152. [Google Scholar] [CrossRef]
- Altobelli, F.; Lall, U.; Dalla Marta, A.; Caracciolo, F.; Cicia, G.; D’Urso, G.; Del Giudice, T. Willingness of farmers to pay for satellite-based irrigation advisory services: A southern Italy experience. J. Agric. Sci. 2018, 156, 723–730. [Google Scholar] [CrossRef]
- Altobelli, F.; Marta, A.D.; Heinen, M.; Jacobs, C.; Giampietri, E.; Mancini, M.; Cimino, O.; Trestini, S.; Kranendonk, R.; Chanzy, A.; et al. Irrigation Advisory Services: Farmers preferences and willingness to pay for innovation. Outlook Agric. 2021, 50, 277–285. [Google Scholar] [CrossRef]
- Conrad, S.A.; Rutherford, M.B.; Haider, W. Profiling Farmers’ Preferences about Drought Response Policies Using a Choice Experiment in the Okanagan Basin, Canada. Water Resour. Manag. 2017, 31, 2837–2851. [Google Scholar] [CrossRef]
- Jørgensen, S.L.; Termansen, M.; Pascual, U. Natural insurance as condition for market insurance: Climate change adaptation in agriculture. Ecol. Econ. 2020, 169, 106489. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Hauber, A.B.; González, J.M.; Groothuis-Oudshoorn CG, M.; Prior, T.; Marshall, D.A.; Cunningham, C.; IJzerman, M.J.; Bridges JF, P. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Health 2016, 19, 300–315. [Google Scholar] [CrossRef]
- Revelt, D.; Train, K. Mixed logit with repeated choices: Households’ choices of appliance efficiency level. Rev. Econ. Stat. 1998, 80, 647–657. [Google Scholar] [CrossRef]
- Louviere, J.J. Choice experiments: An overview of concepts and issues. In The Choice Modelling Approach to Environmental Valuation; Edward Elgar Publishing: Cheltenham, UK, 2001; Volume 13. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Weituschat, C.S.; Pascucci, S.; Materia, V.C.; Caracciolo, F. Can contract farming support sustainable intensification in agri-food value chains? Ecol. Econ. 2023, 211, 107876. [Google Scholar] [CrossRef]
- Li, G. 1985. Robust regression. In Exploring Data Tables, Trends, and Shapes; Hoaglin, D.C., Mosteller, C.F., Tukey, J.W., Eds.; Wiley: New York, NY, USA, 1985; pp. 281–340. [Google Scholar]
- Bhujel, R.R.; Joshi, H.G. Understanding farmers’ intention to adopt sustainable agriculture in Sikkim: The role of environmental consciousness and attitude. Cogent Food Agric. 2023, 9, 2261212. [Google Scholar] [CrossRef]
- Fleming, A.; Vanclay, F. Farmer responses to climate change and sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 11–19. [Google Scholar] [CrossRef]
- D’Amico, M.E.; Pintaldi, E.; Sapino, E.; Quaglino, E.; Passarella, I.; Freppaz, M.; Navillod, E.; Rocco, R.; Casola, S. Carta dei Suoli della Valle d’Aosta: Note illustrative; Assessorato Opere Pubbliche Valle d’Aosta: Aosta, Italy, 2019. [Google Scholar]
- Alcon, F.; Tapsuwan, S.; Brouwer, R.; Yunes, M.; Mounzer, O.; de-Miguel, M.D. Modelling farmer choices for water security measures in the Litani river basin in Lebanon. Sci. Total Environ. 2019, 647, 37–46. [Google Scholar] [CrossRef]
- Doherty, E.; Mellett, S.; Norton, D.; McDermott TK, J.; Hora, D.O.; Ryan, M. A discrete choice experiment exploring farmer preferences for insurance against extreme weather events. J. Environ. Manag. 2021, 290, 112607. [Google Scholar] [CrossRef]
- Šumrada, T.; Japelj, A.; Verbič, M.; Erjavec, E. Farmers’ preferences for result-based schemes for grassland conservation in Slovenia. J. Nat. Conserv. 2022, 66, 126143. [Google Scholar] [CrossRef]
- Xiuling, D.; Qian, L.; Lipeng, L.; Sarkar, A. The Impact of technical training on farmers adopting water-saving irrigation technology: An empirical evidence from China. Agriculture 2023, 13, 956. [Google Scholar] [CrossRef]
- Zoundji, G.C.; Okry, F.; Van Mele, P.; Bentley, J.W.; Kwame Sackey, C. The potential of farmer training video for supporting agroecological vegetable production in Benin. Cogent Food Agric. 2024, 10, 2358607. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Hua, B.; Liu, J.X.; Dai, H.B.; Miao, M.M. University MOOC should be added with farmer interested sections and provide individualized service to adapt to farmer training. PLoS ONE 2023, 18, e0288309. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Alzahrani, K.; Ali, M.; Azeem, M.I.; Alotaibi, B.A. Efficacy of Public Extension and Advisory Services for Sustainable Rice Production. Agriculture 2023, 13, 1062. [Google Scholar] [CrossRef]
- Santini, A.; Di Fonzo, A.; Giampietri, E.; Martelli, A.; Cimino, O.; Dalla Marta, A.; Annosi, M.C.; Blanco-Velázquez, F.J.; Del Giudice, T.; Altobelli, F. A Step toward Water Use Sustainability: Implementing a Business Model Canvas for Irrigation Advisory Services. Agriculture 2023, 13, 1081. [Google Scholar] [CrossRef]
- Parikoglou, I.; Emvalomatis, G.; Thorne, F.; Wallace, M. Farm Advisory Services and total factor productivity growth in the Irish dairy sector. Eur. Rev. Agric. Econ. 2023, 50, 655–682. [Google Scholar] [CrossRef]
- Ingram, J.; Mills, J. Are advisory services “fit for purpose” to support sustainable soil management? An assessment of advice in Europe. Soil Use Manag. 2019, 35, 21–31. [Google Scholar] [CrossRef]
Attributes | Description | Levels |
---|---|---|
Advisory Service | Adoption of regional advisory service guidelines for a specified period | 5 years; 1 year; No service |
Water Reduction | Reduction in total irrigation water usage | 20%; 10%; No reduction |
Decrease in Irrigated land | Reduction in the percentage of irrigated area by excluding specific plots | 5%; 2%; No reduction |
Monetary Compensation | Monetary compensation for implementing the measure | EUR 100 ha−1 y−1; EUR 120 ha−1 y−1; EUR 0 ha−1 y−1 |
Main Production | Frequency | Mean UAA * (SD) | Mean Irrigated UAA * (SD) |
---|---|---|---|
Fruit | 12 | 3.4 ha (2.5) | 2.4 ha (1.6) |
Wine | 9 | 9.7 ha (5.1) | 8.2 ha (4.3) |
Vegetable | 6 | 4.2 ha (3.4) | 3.4 ha (3.6) |
Livestock | 73 | 43.7 ha (61.8) | 19.2 ha (14.7) |
Total | 100 | 33.4 ha (55.3) | 15.2 ha (14.5) |
Frequency n. | Frequency % | |
---|---|---|
They are already working toward water optimization | 21 | 28 |
The economic support does not cover the damages | 17 | 23 |
Issues related to the installation of hydropower stations | 6 | 8 |
Concerns regarding the impacts of climate change | 6 | 8 |
The soil characteristics do not allow for reduction | 4 | 5 |
No response was provided | 21 | 28 |
Attribute | Coef. | Std.err | p-Value | Marginal WTA (EUR y−1) |
---|---|---|---|---|
Advisory service | 0.228 | 0.260 | 0.380 | 7.23 |
Water reduction | −1.150 *** | 0.431 | 0.008 | −36.39 |
Decrease in irrigated lands | 0.132 | 0.174 | 0.450 | 4.34 |
Monetary compensation | 0.032 ** | 0.015 | 0.041 |
Coef. | Std.err | p-Value | Marginal WTA (EUR y−1) | |
---|---|---|---|---|
Age (years) | 0.453 *** | 0.158 | 0.005 | |
Education | ||||
Degree | 0 | 0.56 | ||
Diploma | 12.584 ** | 5.766 | 0.032 | 13.14 |
Secondary school | 14.696 ** | 6.357 | 0.023 | 15.25 |
Primary school | 10.199 | 11.106 | 0.361 | 10.76 |
Main production | ||||
Livestock | 0 | 22.78 | ||
Fruit | −21.794 *** | 6.156 | 0.001 | 0.99 |
Vegetable | −10,480 | 8.156 | 0.202 | 12.30 |
Wine | −19.144 * | 10.960 | 0.084 | 3.64 |
Irrigation technique | ||||
Sprinkler irrigation | 0 | 8.12 | ||
Drip irrigation | 20.372 * | 10.808 | 0.063 | 28.50 |
Flooding | −5.849 | 6.156 | 0.345 | 2.27 |
Association | −7.308 * | 4.345 | 0.096 | 0.82 |
Constant | 11.608 | 7.095 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moino, F.; Caracciolo, F.; Borsotto, P.; Trione, S.; Chabloz, D.; Bassignana, M.; del Giudice, T.; Altobelli, F. At What Price Are Farmers Willing to Reduce Water Usage? Insights from the Aosta Valley. Water 2024, 16, 2412. https://doi.org/10.3390/w16172412
Moino F, Caracciolo F, Borsotto P, Trione S, Chabloz D, Bassignana M, del Giudice T, Altobelli F. At What Price Are Farmers Willing to Reduce Water Usage? Insights from the Aosta Valley. Water. 2024; 16(17):2412. https://doi.org/10.3390/w16172412
Chicago/Turabian StyleMoino, Francesca, Francesco Caracciolo, Patrizia Borsotto, Stefano Trione, Denise Chabloz, Mauro Bassignana, Teresa del Giudice, and Filiberto Altobelli. 2024. "At What Price Are Farmers Willing to Reduce Water Usage? Insights from the Aosta Valley" Water 16, no. 17: 2412. https://doi.org/10.3390/w16172412
APA StyleMoino, F., Caracciolo, F., Borsotto, P., Trione, S., Chabloz, D., Bassignana, M., del Giudice, T., & Altobelli, F. (2024). At What Price Are Farmers Willing to Reduce Water Usage? Insights from the Aosta Valley. Water, 16(17), 2412. https://doi.org/10.3390/w16172412